Publications

Export 15 results:
Sort by: [ Author  (Desc)] Title Type Year
Filters: Author is S. Pal  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Zhang, Y., S. Pal, M. J. Coates, and D. Üstebay, "Bayesian graph convolutional neural networks for semi-supervised classification", Proc. AAAI Int. Conf. Artificial Intelligence, Hawaii, USA, 02/2019.  Download: 1811.11103.pdf (282.23 KB)
Zhang, Y., F. Regol, S. Pal, S. Khan, L. Ma, and M. J. Coates, "Detection and Defense of Topological Adversarial Attacks on Graphs", Proc. Int. Conf. Artificial Intell. and Statist., Virtual Conference, Apr., 2021.  Download: zhang21i.pdf (828 KB); zhang21i-supp.pdf (812.3 KB)
T
Teimury, F., S. Pal, A. Amini, and M. J. Coates, "Estimation of time-series on graphs using Bayesian graph convolutional neural networks", Proc. SPIE Wavelets and Sparsity XVIII, vol. 11138, San Diego, CA, USA, pp. 299 – 306, Sep., 2019.  Download: spie_paper.pdf (380.41 KB)
R
Regol, F., S. Pal, and M. J. Coates, "Node Copying for Protection Against Graph Neural Network Topology Attacks", Proc. IEEE Comput. Adv. in Multi-Sensor Adaptive Process., Guadeloupe, West Indies, Dec., 2019.  Download: 2007.06704.pdf (310.01 KB)
P
Pal, S., F. Regol, and M. J. Coates, "Bayesian graph convolutional neural networks using non-parametric graph learning", Proc. Representation Learning on Graphs and Manifolds Workshop (Int. Conf. Learning Representations), New Orleans, USA, 05/2019.  Download: 1910.12132.pdf (567.01 KB)
Pal, S., and M. J. Coates, "Scalable MCMC in degree corrected stochastic block model", Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), Brighton, UK, 05/2019.  Download: dcbm_mcmc.pdf (233.44 KB)
Pal, S., and M. J. Coates, "Particle flow particle filter for Gaussian mixture noise models", Proc. IEEE Int. Conf. Acoust., Speech and Signal Process. (ICASSP), Calgary, Canada, IEEE, 04/2018.  Download: ICASSP_v7.pdf (204.1 KB)
Pal, S., L. Ma, Y. Zhang, and M. J. Coates, "RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting", Proc. Int. Conf. Machine Learning, Virtual Conference, Jul., 2021.  Download: 2106.06064.pdf (6.6 MB)
Pal, S., and M. J. Coates, "Sequential MCMC with the discrete bouncy particle sampler", Proc. IEEE Statistical Signal Processing Workshop (SSP), Freiburg, Germany, IEEE, 06/2018.  Download: ssp18_v4.pdf (210.86 KB)
Pal, S., and M. J. Coates, "Particle Flow Particle Filter using Gromov’s method", Proc. IEEE Comput. Adv. in Multi-Sensor Adaptive Process., Guadeloupe, West Indies, Dec., 2019.  Download: CAMSAP_MC_2019.pdf (251.51 KB)
Pal, S., F. Regol, and M. J. Coates, "Bayesian graph convolutional neural networks using node copying", Proc. Learning and Reasoning with Graph-Structured Representations Workshop, (International Conference on Machine Learning), Long Beach, USA, 06/2019.  Download: 1911.04965.pdf (417.04 KB)
Pal, S., and M. J. Coates, "Gaussian sum particle flow filter", Proc. IEEE Computational Advances in Multi-Sensor Adaptive Process. (CAMSAP), Curacao, The Netherlands, IEEE, 12/2017.  Download: CAMSAP_v8.pdf (217.44 KB)
Pal, S., S. Malekmohammadi, F. Regol, Y. Zhang, Y. Xu, and M. J. Coates, "Non-Parametric Graph Learning for Bayesian Graph Neural Networks", Proc. Uncertainity in Artificial Intell., Virtual Conference, Aug., 2020.  Download: 2006.13335.pdf (796.91 KB)
L
Li, Y., S. Pal, and M. J. Coates, "Invertible particle-flow-based sequential MCMC with extension to Gaussian mixture noise models", IEEE Trans. Signal Processing, vol. 67, issue 9, pp. 2499-2512, 05/2019.  Download: 1807.02535.pdf (3.72 MB)