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A Multiserver Queue with Narrow- and Wide-Band 
Customers and Wide-Band Restricted Access 

YVES DE SERRES AND LORNE G. MASON 

Abstract-We consider a multiserver queueing system with two classes 
of customers: a type 1 (narrow-band, NB) customer requires a single 
server, while each type 2 (wide-band, WB) customer requests n of the rn 
servers (n is not random). Servers allocated to a type 2 customer are seized 
and released simultaneously. Service times are exponentially distributed 
with mean l/p, for type i customers (i = 1,2). Blocked type 1 customers 
are cleared while blocked type 2 customers may be delayed in an infinite 
waiting room. A type 1 customer enters service immediately upon arrival 
if at least one server is free, irrespective of the status of the type 2 queue. 
WB customers have restricted access to the service facility; a cutoff 
parameter specifies the maximum number of type 2 customers that can be 
in service at the same time. Two approaches, moment-generating 
functions and matrix-geometric techniques, are considered for the 
computation of the system performance; that is, the mean waiting time in 
queue and the probability of delay (i.e., nonzero waiting time) for type 2 
customers, as well as the probability of blocking for type 1 customers. 

I. INTRODUCTION 
HE model considered in this paper is a member of the class T of queueing systems in which some customers require 

service by more than one server. An important feature of such 
systems is that a customer cannot enter service until all 
required servers are available (simultaneous seizure); as a 
consequence, these systems do not qualify as batch arrival 
queues. 

These models have wide applications in the computer and 
communications fields; for example, in the study, 1) of 
message storage systems [20], [24], 2) of demand-assigned 
multiple access (DAMA) circuit-switched services in com- 
munication satellite svstems [ 11, [2], [3], [ 151, and 3) of the 
multiplexing of multiple bit-rate data lines onto a wide-band 
digital trunk 171, 1141, [16], [221, [231, [32], [33], as well as in 
multiple areas of operations research [ 171, [ 191. 

The above class of queues can be divided into two 
subclasses distinguished by the release mechanism which 
specifies whether the servers allocated to the same customer 
end service independently (independent release) or simulta- 
neously (simultaneous release). 

A major contribution to the study of queues in which 
customers require service by more than one server is the work 
of Green [5], [lo], [17], [18], [19]. A characteristic of the 
models she considers is that customers request a random 
number of servers. She first showed in [19] how the 
independent release of servers allocated to the same customer 
can be exploited to solve delay models with infinite waiting 
room. The key observation is that the waiting time analysis of 
the multiserver system can be reduced to that of a related M /  
GI1 queue with exceptional service. The technique was 
subsequently applied to more general systems [lo], [ 171. 
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Gimpelson [16] considered a multiserver queue with two 
types of customers and simultaneous release. Customers of 
one type (narrow-band customers) require service from a 
single server, while each customer of the other type (wide- 
band customers) requests service by n of the m servers. Two 
methods of operation are studied. In both cases, blocked 
narrow-band customers are lost; blocked wide-band customers 
are either lost or delayed in a finite waiting room. The state 
equations of the birth-death process corresponding to each 
model are solved numerically to obtain the blocking probabili- 
ties. Gimpelson brought to light the oscillatory behavior of the 
blocking probability curves, a characteristic of these systems. 

Kaufman [24] considered a pure loss model of a resource 
facility shared by several classes of customers, each class 
being characterized by its bandwidth and temporal require- 
ments. Units allocated to the same customer are seized and 
released simultaneously. The main contributions of [24] are 
the generality of the residency distribution and the importance 
placed on efficient algorithms for the computation of the 
blocking probabilities. Previous studies of similar loss models 
are referenced in [24]; more recent contributions include [3], 
171, 1221, 1321. 

Using a system point approach, which is an extension of the 
system point method developed by Brill, (Brill and Green [5]) 
studied a multiserver queue in which customers require a 
random number of servers which are to begin and end service 
concurrently. In its general formulation, the model consists of 
m servers and k customer classes. Type i customers arrive 
according to a Poisson process at rate Xi  and require an 
exponentially distributed amount of service time with mean 1/ 
pi ,  simultaneously from c ( i )  servers. Customers enter service 
in their order of arrival. Based on system point theory, a 
general framework for deriving the waiting time distribution 
for each customer type is presented. Explicit solutions were 
derived for the two-server system with pi = p. A numerical 
analysis of this model, based on the application of the block 
Gauss-Siedel method, is reported in [13]. The approach 
makes possible the analysis of systems with more than two 
servers, and with state-dependent or state-independent arriv- 
als. 

Kraimeche and Schwartz [27] studied a model of a broad- 
band channel carrying a mixture of narrow- and wide-band 
traffics. As opposed to Gimpelson’s model and to the model 
we propose here in which blocked wide-band customers are 
allowed to queue while blocked narrow-band customers are 
lost, Kraimeche and Schwartz consider a system in which the 
wide-band traffic is nonqueueable while the narrow-band 
traffic may queue in an infinite waiting room. The need for 
access control is addressed, and two access control strategies 
are analyzed by a moment-generating functions approach. 
Kraimeche and Schwartz had previously considered the 
bandwidth allocation problem in an all-blocked traffic model 
[28]. Recently, they reported an analysis of the all-queued 
traffic model [26]. 

The system studied in this paper is a multiserver queue with 
two types of customers: a type 1 customer (narrow-band 
customer) requests a single server; each type 2 customer 
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end service together. Service times are exponentially distrib- 
uted with mean l/pi for type i customers (i  = 1, 2). 

Type 1 customers are operated with loss while type 2 
customers are operated with delay and are allowed to queue in 
an infinite waiting room. Upon arrival, a type 1 customer 
enters service if there is at least one free server; otherwise, it is 
blocked and cleared. We note that narrow-band customers 
have access to the service facility even if there is a nonzero 
queue of wide-band customers, since it is possible to have free 
servers in front of a nonempty queue. Wide-band customers 
have restricted access to the service facility; the cutoff 
parameter ro specifies the maximum number of type 2 
customers that can be in service at the same time. Therefore, a 
queue of type 2 customers forms as soon as a type 2 arrival 
finds ro type 2 customers already in service or otherwise if 
there are not enough free servers. Of course, a wide-band 
arrival joins a nonempty queue. The cutoff parameter deter- 
mines, in the above manner, the sharing policy imposed to the 
traffic mixture. 

The system is then modeled as a two-dimensional Markov 
process (n2(t), nl( t ) )  where n2(t)  is the number of type 2 
customers in the system (Le., in service or in queue) and nl( t )  
is the number of type 1 customers in service. The state space is 
then the set { ( i ,  j ) l O  I i, 0 I j I m}, and the steady-state 
probability that the system is in state (i ,  j )  is denoted p(i, j). 

If m = rn + s where both r and s are nonnegative integers 
with 0 s s < n, the states ( i ,  j )  corresponding to an empty 
queue for the sharing policy described above are as follows: 

O s j s s + ( r - r o ) n ,  
and for each I, (r  - ro) + 1 I I I r, 

and O s i s r ,  (identified by /=O), 

s + ( I - l ) n + l ~ j s s + I n ,  and O s i s r - I .  
These “zero-queue” states are identified by 0 in Fig. 1, which 
is the state diagram of a system with m = 10, n = 3, and ro = 
2; it follows that r = 3 and s = 1 .  In Fig. 1 ,  we have indicated 
by an arrow only the unidirectional transitions. The segment 
between two neighboring states replaces (for graphical clarity) 
a pair of arrows in opposite directions from one state to the 
other. The transition rates out of state (i ,  j ) are given in Fig. 2 
below where is 0 when the number of busy servers is m 
(Le., full service facility), and XI otherwise. The states 
corresponding to a full service facility are easily identified as 
those on the top row of the state diagram, together with the 
states at the tip of the vertical arrows in Fig. 1.  

111. A SOLUTION BASED ON MOMENT-GENERATING FUNCTIONS 
We present in this section a solution based on moment- 

generating functions techniques. The method is the same as in 
141, but applied to the more general model considered here. 
Although, in theory, this approach yields a general solution, 
we will see below that a restrictive condition must be imposed 
to the set of system parameters for the solution to be 
computationally tractable. 

A. The Birth and Death Equations 
From Figs. 1 and 2, the global balance equations are easily 

obtained by equating the total rate at which the process leaves 
a state to the total rate at which it enters that state. Here is the 
list of balance equations. 

For the block of states identified by I = 0: 

O s j s s + ( r - r o ) n ,  O s i s r o -  1: 

(wide-band customer) requires simultaneous service from n of 
the m servers where n is fixed (not random). Blocked narrow- 
band customers are cleared while blocked wide-band cus- 
tomers are delayed in an infinite waiting room. A narrow-band 
customer enters service immediately upon arrival if there is at 
least one free server, irrespective of the number of wide-band 
customers waiting in the queue at that time. Interarrival and 
service times are exponential with possibly different means for 
each type. Finally, a cutoff parameter specifies the maximum 
number of wide-band customers that can be in service 
concurrently. The cutoff parameter protects the type 1 traffic 
against overload of type 2 traffic. 

Our motivation for studying this queueing model is pro- 
vided by the need to predict the performance of circuit- 
switched-based integrated services networks which can sup- 
port a variety of wide-band services in addition to voice 
traffic. Examples include audio and video teleconferencing 
services [12], as well as virtual private networks. It is 
recognized that the assumption of Poisson arrivals for telecon- 
ference calls may be questioned, and indeed other models 
based on reservations have been considered in the literature. 
Our justification for this choice lies in its theoretical conven- 
ience in light of the absence of an accurate model for the 
subscriber behavior for these new services. 

Our system is similar to the one studied by Gimpelson [ 161, 
however, it differs in two ways: 1) the infinite waiting room 
for wide-band traffic and 2) the possible cutoff imposed on the 
wide-band traffic. 

Our model generalizes the one studied by Bhat and Fisher in 
[4] and by Feldman and Claybaugh in 1111; their system is a 
multiserver queue in which customers of two types require 
service from a single server and are served in their order of 
arrival. Server holding times are different for customers of 
different types. As in our model, customers of one type are 
operated with loss while customers of the other type are 
operated with delay; however, there is no provision for cutoff. 
The solution reported in 141 is based on moment-generating 
functions techniques while [ 111 presents a matrix-geometric 
solution of this simpler model. 

Besides 141 and [l l] ,  there is abundant literature on 
multiserver queues with two heterogeneous classes of cus- 
tomers in which each customer requires service by a single 
server irrespective of its type. The interested reader is referred 
to [6], 1211, [25], as well as the previous papers referenced 
therein. 

In this paper, two approaches are used to compute the 
system performance. One solution is based on moment- 
generating functions techniques; the other is a matrix-geomet- 
ric solution based on a result, obtained by Neuts, for 
multiserver queues. In each case, the mean waiting time and 
the probability of delay for wide-band customers, as well as 
the probability of blocking for narrow-band customers are 
computed. 

In the second section, the model is described precisely and 
the notation i s  introduced. In Section 111, the moment- 
generating functions approach is sketched, while Section IV is 
devoted to the matrix-geometric solution. In Section V, the 
two solutions are compared. Finally, the solutions are used in 
Section VI to discuss the performance of the system. 

11. THE MODEL 
We consider a multiserver system (m servers) in which 

customers request either a single server (type 1 customers), or 
n servers (type 2 customers) where n is smaller or equal to m 
but is typically greater than one. Service requests of successive 
customers are independent and n is fixed (Le., not random). 
Customers arrive according to a Poisson process with mean 
arrival rates XI and X2 for type 1 and type 2 customers, 
respectively. Servers assigned to a type 2 customer begin and 
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Fig. 1. State diagram. 
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Fig. 2. Transition rates out of state (i ,  j). 

O s j s s + ( r - r o ) n -  1 ,  i i r o :  

.i = s + ( r  - rn)n,  i i ro : 

and for each 1, (r - ro) + 1 I I 5 r :  

s + ( l - l ) n +  l i j s s + l n ,  O s i < r - I :  

j = s + ( l - l ) n + l ,  i > r - I :  

j = s +  In, i i  r -  I: 

+X2p( i -  1 , j ) + ( r - - I ) p 2 p ( i +  1 , j ) .  (8) 

B. Solution of Birth and Death Equations 
Steady state for the process (n2(t) ,  n , ( t ) )  will exist if the 

stability condition h2 < rap2 is satisfied. Indeed, this condition 
is sufficient as r0p2 is the maximum rate at which the system 
can perform work on wide-band traffic. This maximum rate 
might not be achieved immediately due to competing narrow- 
band calls, but since these are served on a loss basis enough 
servers (namely, ron) are bound to become free and allocated 
to wide-band calls. 

Under stability, the performance measures, probability of 
delay and mean waiting time for type 2 customers and 
probability of blocking for type 1 customers, are obtained in a 
number of steps as follows: 

1) define appropriate moment-generating functions and 
obtain from the balance equations a set of linear equations in 
these moment-generating functions [Section III-B l)] , 

2) apply the analyticity of the moment-generating functions 
to compute the “zero-queue” probabilities which here play 
the role of “boundary” probabilities [Section III-B2)], 

3) solve for the moment-generating functions at z = 1, and 
deduce the system performance [Section III-Bl)] . 

I) Moment-Generating Functions and System Perform- 
ance: We define the following moment-generating functions: 

i = r - /  
s + ( l -  l ) n + l s j s s + I n .  

Multiplying (2), (3), and (5) to (8) by appropriate powers of 
z and summing over i results in a set of linear equations 
involving the moment-generating functions and the “zero- 
queue” probabilities. These equations can be written in matrix 
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form as 

where the m + 1 by m + 1 matrix A(z) is a band matrix of 
width 3, whose upper and lower off-diagonal entries are 
multiples of the system parameters XI, Xz, p1, pz, while the 
diagonal entries are of the form Az(1 - z) + apz(l - z- ’ ) ,  
for CY E (0, 1 ,  . * . , ro}. The entries of the m by 1 column 
vector B(z) are linear combinations of the zero-queue proba- 
bilities. The matrices A(z) and B(z)  are defined in the 
Appendix. 

In Section 111-B2) below, we show how, by using the 
analyticity of the moment-generating functions Qj(z), the 
zero-queue probabilities p(i, j) can be computed up to a 
normalizing constant. Substituting these values into the 
column vector B(z), the system (10) can be solved for Qj(l) 
and Q j  (1) as multiples of a normalizing constant. That 
computation is simplified by the particular Jordan-like struc- 
ture of the matrix A(z) (see the Appendix), and can be 
performed recursively. As is usual in solutions of queueing 
problems by moment-generating functions, the computation 
(actually only the last step) requires the application of 
Cramer’s rule followed by the application of 1’Hospital rule. 
Details will not be provided here but can be found in [9].  

The normalizing constant is then obtained through the 
following normalizing equation: 

The model performance, namely, the mean waiting time and 
the probability of delay for type 2 customers, as well as the 
probability of loss for type 1 customers, is then easily 
obtained. 

The mean number of type 2 customers waiting for service 
Q2 is given by 

m 

Q 2 = Z  Q i l ( 1 ) .  (12) 
j = O  

The mean waiting time in queue W 2  for type 2 customers is 
obtained by Little’s formula 

wz=-. Q2 

A2 ’ 

The probability P, that a type 2 customer has to experience a 
delay before entering the service facility is given by 

(14) 

On the other hand, the loss probability for type 1 customers is 
given by 
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2) Computation of the Zero-Queue Probabilities: The 
usual approach for obtaining the boundary probabilities is to 
use the analyticity of the moment-generating functions in- 
volved. In the present situation this translates into the fact that, 
by Cramer’s rule applied to (lo), the determinant of the matrix 
obtained from A(z) by replacing any one of its columns by the 
column vector B(z) must vanish at each zero of the determi- 
nant IA(z)l of A(z) on the unit disk. Since the vector B(z) 
depends only on zero-queue probabilities, each zero of I A (z) 1 
generates a linear equation in these probabilities. If the roots of 
IA(z)l = 0 on the unit disk are distinct, the analytic property 
together with balance equations (1) and (4) produce as many 
linear equations, minus one, as there are zero-queue states. 
These equations can then be solved for the zero-queue 
probabilities p(i, j) up to a normalizing constant, and the 
system performance can be computed as explained previously. 

Unfortunately the roots of IA(z)l = 0 are not necessarily 
distinct as can be seen by setting m = 12, n = 2, ro = 4, 
p~ = p2 = 1.0, XI = 6.0, Xz = 2.0, in which case 0.5 is a 
double root of IA(z)l = 0; this can be verified simply by 
writing down the matrixA(0.5). However, it can be shown, as 
in [29], that the determinant of each “block” of the matrix 
A(z) [see the Appendix for a complete description of A(z)] has 
distinct real roots. 

In theory, the multiple roots case is solvable; it would 
require considering higher dbrivatives of Q,(z). In practice, 
however, this results in complex computational procedures, 
and we did not investigate it further. As will be seen, the 
matrix-geometric solution presented below does not involve 
the computation of the roots of IA(z)l = 0, and consequently 
circumvents the multiple roots problem. 

Under the assumption of distinct roots of IA(z)l = 0, the 
adjoint matrix of A(z) must be computed at each root to obtain 
the zero-queue probabilities. The structure of the matrix A(z) 
makes possible an easy recursive computation of its adjoint. 
Details can be found in [9]. 

The limit imposed on the computational algorithm by the 
distinct roots assumption prompted the research of another 
approach, which resulted in a matrix-geometric solution 
presented in next section. 

IV. THE MATRIX-GEOMETRIC SOLUTION 
The states are ordered lexicographically. We define the row 

vectorspi, f o r i  = 0, 1 ,  2, * * a ,  

Pi=(p( i ,  01, ~ ( i ,  11, * * H i ,  m)). (16) 

The steady-state probability vector p = (PO, pi, * . * )  is the 
solution of 

P Q = O  
p l = l  (17) 

where 1 is the all 1 column vector of appropriate dimension, 
and Q is the transition rate matrix of the Markov process and is 
given by 

Q =  Q =  

. . .  
. . .J  

L. 

. . .  
. . .J  

The matrices A; are m + 1 by m + 1, are band matrices of 
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A 

(m - in + 1)pl  A 
(m-( i -  l ) n +  1)pl A?) 

. . .  
(m - n + 1)pl A?)  

A ;  = 

c. = 

where the matrix AIo) is m - in + 1 by m - in + 1 and equal to (in-band matrix representation) 

(22) 

L 

cy 
C!” 

while for each k, 1 5 k 5 i ,  the matrix AIk) is n by n and equal to (in-band matrix representation) 

where In is the n by n identity matrix and 

Finally, the matrix B is 

B = AzI,,,+ 1. (24) 
As in [ 113, we apply theorem 2 of Neuts [3 11 to obtain in 

our case the following. 
Theorem: Provided that the queue is stable, i.e., the 

Markov process Q is positive recurrent (A2 < r o p ~ ) ,  the 
steady-state probability vector p = (po, pl, * .) is given by 

Pk =pro - 1 R k - r O +  k 1 ro. (25) 
The matrix R is the minimal nonnegative solution of the matrix 
equation 

R2Cro + RA,  + B = 0. (26) 

The probability vector fi  = (PO, . . , Pro- I )  is the unique 

(19) 

solution of 

pT=O 

p ” l + P r o - l R ( Z - R ) - ’ l =  1 (27) 
where the matrix Tis a generator (T1 = 0) and equal to 

T =  - (28) 

c r o -  I A,- 1 +RCro 

Finally, 

RCro1=BI=A21. (29) 
The solution is then obtained by a two step process: 
1) First, the rate matrix R is determined by iterative 

substitution in (26). Efficient ways of performing that opera- 
tion are examined in [30]. 

2) Once R is known, the rom “boundary” probabilities 
are determined by solving a system of rom linear equations. 
Different approaches are considered in Section IV-A. 

Once the matrix R and the boundary probabilities have been 
computed, the -model performance is easily obtained. The 
mean number Q2 of type 2 customers waiting for service is 

j = O  i = r o  
s + / n  9 ( i - r + l j p ( i , j )  (30) 

/ = l + r - r o  j = s + ( / - l ) n + l  ; = r - /  
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which, using (25), is easily reduced to 

r s+ /n  ro-1 

wherethecolumnvectoruisu = (0, * - * , O ,  1, * - A ,  1,2,  * - - ,  

2, . * . , ro, . - . , ro)‘, in which there are s + (r  - ro)n + 1 
components equal to 0, n equal to 1 ,  n equal to 2, and so on 
until the n components equal to ro. The mean waiting time for 
type 2 customers is obtained from Little’s formula, that is 

a 
w2=, . 

A2 

The probability of delay P ,  for type 2 customers is 

st(r-r,,)n 

j = O  i=ro  

Again from (25), this simplifies to 

(34) 
ihe  probability of blocking Pb for type 1 customers is 

r m  

/ = r - r o  i = r - /  

which becomes with the use of (25) 

where ( ) j  denotes the j t h  component of the vector in 
parentheses. 

A. Computation of the ‘‘Boundary” Probabilities 
The two approaches described in this section have been 

considered for the solution of the linear system (30). 
I )  Computation by Decomposition: Due to its special 

structure, the solution of (27) can be obtained by decomposi- 
tion as in [30]. The equation p T  = 0 can be written 

(37) 

from which it is easily obtained that 

p ;  =pro-  1 Hi, 0 5 is ro - 2 (38) 
where the matrices H; are computed recursively by 

H r o - I = I  

Hr0-2= -(Aro-I +RCr0)B-’ 

Hro - i = - (Hro - i +  1ArO - i t  1 + H r o  - i +  2 Cro - i +  2)B- 9 

3 s i s r 0 .  (39) 
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From the first equation in (37) and the normalizing equation 
in (27), we have that pro-l is the solution of 

This linear system of equations was solved by the most 
accurate, double precision, IMSL subroutine (international 
mathematical and statistical libraries). Experience with our 
Fortran program on a DECNENUS 8600 has revealed that 
computational inaccuracies appear when the number of recur- 
sions in the above scheme (ro iterations) exceeds 7 (see Table I 
below). As an alternative to the above solution of (37), we 
have examined iterative methods of solution for linear systems 
of equations. 

2) Computation by Iterative Methods: Gauss-Siedel 
method with successive overrelaxation [34] was applied to the 
linear system (27). The number of iterations required can be 
reduced by appropriately selecting the value of the relaxation 
factor. Since our interest was mainly an analysis of the range 
of the algorithm, we did not consider computing an exact or 
approximate value of the optimum relaxation factor [34]; the 
relaxation factor was prespecified; the value 1.5 appeared 
to be secure and efficient for this particular problem. Iteration 
is continued until the maximum point-wise relative difference 
between the last two iterates is below some prespecified 
threshold, for example, 

The linear system (27) could be solved that way for slightly 
larger systems; for example, it took 456 iterations to solve (27) 
in the special case m = 48, n = 4, ro = 12, Xl/mpl = 0.7,  
X2/r0p2 = 0.1, pLI/p2 = 5.0, and a stopping threshold equal to 
10 -4.  

V. COMPAFUSON OF THE Two SOLUTIONS 
As the system size increases, both algorithms suffer a loss 

of precision which manifests itself by the appearance of 
negative “boundary” probabilities. These probabilities are 
solutions of a linear system of equations and are computed by 
the most accurate double-precision IMSL subroutine. This 
routine performs iterative improvement of the solution, and 
indicates upon exit, the degree of accuracy obtained (the 
approximate number d of digits unchanged after improve- 
ment). Table I shows the decrease of accuracy for a given set 
of model parameters as the number of servers is increased; the 
parameters are determined by XI /mp ,  = 0.7, h2/rOp2 = 0.1, 
and p l  = 1 .O. We note that 16 digits is machine precision for 
double precision arithmetic. 

The matrix-geometric solution is more attractive than the 
moment-generating functions solution, both theoretically and 
algorithmically. 

On a theoretical basis, the main advantage of the matrix- 
geometric solution is that it covers all combinations of system 
parameters resulting in a stable model. We recall that the 
solution based on moment-generating functions requires the 
computation of the roots of the determinant of a complex 
matrix; the solution is easily obtained only under the assump- 
tion that these roots are distinct, a condition that is not always 
satisfied. 

On a computational basis, the solution based on moment- 
generating functions and the matrix-geometric solution with 
boundary probabilities computed by decomposition have more 
or less the same range. For moderatively large systems (m = 
48), it appears that the matrix-geometric solution in which the 
boundary probabilities are computed by iterative methods can 
be used to determine the system performance. However, 
convergence may be slow and more sophisticated ways of 
accelerating it should be considered if that procedure is to be 
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TABLE I 
ACCURACY AND RANGE OF THE ”0 SOLUTIONS; dl REFERS TO THE 
GENERATING FUNCTIONS SOLUTION, d2 TO THE MATRIX-GEOMETRIC 
SOLUTION. THE HYPHEN INDICATES THAT THE ALGORITHM FAILED TO 

eo. . 

COMPUTE THE SOLUTION 

m n ro ~ 1 1 ~ 2  dl d2 
4 2 2 5.0 16 16 

12 6 2 5.0 15 15 
24 12 2 5.0 13 14 
36 18 2 5.0 - 13 

8 2 4 5.0 12 14 

. 5 .  

16 4 4 5.0 12 13 Fraction of wide-band traffic 
24 6 4 5.0 10 11 
36 9 4 5.0 - 10 m = 18, total load = 16.0, ~ 1 / y 2  = 10.0. 
12 2 6 5.0 9 13 

24 4 6 5.0 8 9 

36 6 6 5.0 - 7 I 

Fig. 3. Effect of the bandwidth factor n/m on the mean waiting time for 

1.1 . . . . . 
16 2 8 5.0 6 9 
24 3 8 5.0 4 7 
32 4 8 5.0 - - 

24 4 6 0.5 9 12 
24 4 6 1.0 9 11 
24 4 6 5.0 8 11 
24 4 6 10.0 7 9 
24 4 6 20.0 6 8 

24 2 12 5.0 - - 

24 3 8 5.0 4 7 
24 4 6 5.0 8 9 
24 6 4 5.0 10 11 
24 8 3 5.0 12 12 

24 12 2 5.0 13 14 

efficient enough to justify the cost of an exact solution in such 
cases. Unfortunately, the computational range of these solu- 
tions is far from covering practical communications systems. 
Their usefulness is then limited to the qualitative investigation 
of the behavior of such systems. Large systems must be 
studied through numerical solutions or through approxima- 
tions. 

VI. DISCUSSION 
The nonmonotonic variation of the blocking probability as a 

function of the percentage of one traffic type was discovered 
by Gimpelson [ 163. This oscillatory variation is due to the fact 
that in competing for capacity, a single narrow-band customer 
can keep a wide-band customer out of service. This narrow- 
band customer effectively “reserves” a number of channels 
for the narrow-band traffic, resulting in an improved perform- 
ance for that traffic type. The effect depends mainly on n, the 
number of servers required by a wide-band customer, called 
the bandwidth factor by Gimpelson. Gimpelson considered a 
loss model; the oscillatory variation appeared in the probabil- 
ity of blocking. In our delay/loss model, the phenomenon 
affects both the mean waiting time and the probability of 
blocking, as is shown in Figs. 3 and 4. This behavior, 
characteristic of systems carrying mixtures of traffics with 
different bandwidth requirements, can have dramatic conse- 
quences when designing a system in which the relative 
percentages of traffics are not known exactly. 

To produce these graphs, the system performance was 
computed with the parameter pL1 set to 1. It follows that the unit 
of time for the mean waiting time curves is the mean service 
time of a narrow-band customer. 

The nonmonotonic variation of the mean waiting time and 

.5 

L a 

1 . os . I  . e  .5 I 
Fraction of wide-band traffic 

. l l  . . . . * 

Fig. 4. Effect of the bandwidth factor n / m  on the probability of blocking for 
rn = 18, total load = 16.0, pl /pz  = 10.0. 

the probability of blocking also depends on the ratio of mean 
service times for both traffic types. Figs. 5 and 6 show the 
effect of the ratio p I / p *  on the model performance. 

As mentioned in the Introduction, the cutoff parameter 
protects the narrow-band traffic against overload of the wide- 
band traffic. Reducing the cutoff parameter results in smaller 
narrow-band blocking and larger wide-band delay (Figs. 7 and 
8). As observed, the cutoff imposed on the wide-band traffic 
results in an improved performance of the narrow-band traffic, 
especially when the percentage of wide-band traffic is large. 
The point at which the cutoff effect manifests itself (Le., the 
point at which the curves depart from one another) depends 
on the total load. For the total load selected here, the system 
becomes unstable as ro is reduced and the percentage of wide- 
band traffic increases; that explains why the curve correspond- 
ing to ro = 3 does not cover the full range of traffic divisions. 
Finally, we note that when access restriction is exercised, part 
of the service capacity is reserved to narrow-band customers 
so that as the fraction of wide-band traffic approaches 1 (i.e., 
the fraction of narrow-band approaches 0) the probability of 
blocking approaches 0 unless instability has occurred. On the 
other hand, if wide-band customers have access to the full 
service capacity, the limit of the probability of blocking, as the 
percentage of wide-band traffic approaches 1, depends on the 
total load. 
The combined effect of blocking and delay is measured by the 
power factor 

The larger the power, the better is the system. As shown in 
Fig. 9, reducing the cutoff results in overall smaller power. To 
protect the narrow-band traffic, a nontrivial cutoff parameter 
(i.e., ro # m/n)  is needed to avoid NB traffic to be blocked 
for long periods. 
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Fraction of wide-band traffic 
Fig. 5. Effect of the ratio pl/pz on the mean waiting time, for rn = 16, 

n = 8, ro = 2, total load = 14.0. 
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fiaction of wide-band traffic 

Fig. 6. Effect of the ratio pl/pz on the probability of blocking, for in = 16, 
n = 8, ro = 2, total load = 14.0. 

13” 

fiaction of wide-band traffic 

Fig. 7.  Effect of the cutoff parameter on the mean waiting time, for rn = 15, 
n = 3, p ~ / p z  = 1.0, total load = 12.0. 

ro=5 /I 
3 \  \ - I  ‘ 11 

* OSOS 4 . I  .e .I 

Fraction of wide-band traffic 

Fig. 8. Effect of the cutoff parameter on the probability of blocking, for 
rn = 15, n = 3, pI/p2 = 1.0, total load = 12.0. 

t ‘ 1  
01 ‘ . . ’ .  J 
.os . I  .i? .3 1 

Fraction of wide-band traffic 

Fig. 9. Effect of the cutoff parameter on the power for m = 15, n = 3, 
pl/pz = 1.0, total load = 12.0. 

VII. CONCLUSION 
Two basic techniques have been used to analyze a multiser- 

ver, delay/loss queue, with narrow- and wide-band traffics and 
WB restricted access. This queue is a member of an important 
class of multiserver models that are found in the analysis of 
many practical systems. 

Much effort has been devoted to the computational aspects 
of both solutions so as to determine and possibly extend the 
range of parameters over which the performance can be 
computed. Partial success has been obtained but only dimen- 
sions much smaller than those of practical systems remained 
computationally tractable. There is ongoing research on 
approximations for large systems of this kind; the exact 
solutions described here can be used for validation of these 
approximations. 

The solutions were used to examine the model performance. 
The oscillatory variation of the probability of blocking versus 
the percentage of wide-band traffic, first pointed out by 
Gimpelson for a loss model, was shown to be present also in 
our delay/loss model where both the probability of blocking 
and the mean waiting time exhibit oscillations. A cutoff 
parameter is introduced as a protection mechanism for narrow- 
band traffic against overload of wide-band traffic; its effect on 
system performance has been described. 

An analysis of the blocking period has been carried out for 
both the exact model reported herein, and for various 
approximate models. These results will be reported in a 
forthcoming paper. 

APPENDIX 
In this Appendix, the matrices A(z) and B(z) of (IO) are 

defined. As mentioned in Section 111-Bl), (10) is the matrix 
formulation of the set of linear equations [in the moment- 
generating functions Qj(z)] obtained by applying (9) to the 
balance equations, and grouping terms. The operations in- 
volved are elementary. 

Before describing A(z), we comment on its form. A(z) is a 
band matrix of width 3 with a Jordan-like structure. The 
nonzero entries of the matrix A(z) corresponding to the 
example in Fig. 1 are shown below: 
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This structure of A(z) is pivotal to the computation of the roots of JA(z)l = 0, as well as the recursive computation of its adjoint 
matrix and the moment-generating functions Qj( 1 )  and Q; ( 1 ) .  

SERRES AND MASON: MULTISERVER QUEUE WITH NARROW- AND WIDE-BAND CUSTOMERS 

In general, defining ci = s + (r - ro + i)n + 1 ,  matrix A(z) is of the form 

A(z)= 

7 
(43) 

where the submatrices A(')(z) (defined below) correspond to the entries in (42), while the entries - cip1z-I correspond to the * 
in (42). The submatrix A"(z) is the s + (r  - ro)n + 1 by s + (r - ro)n + 1 band matrix of width 3 

where Zk is the identity matrix of order k, f J z )  
matrix representation. 

For each I, ( r  - ro) + 1 I I 5 r andj, = 

where again the second term of (45) is shown in-band matrix representation. 
The column vector B(z) has the form (B(O)(z), B ( r - r o + l ) ( ~ ) ,  * * . , B(')(z))' where 

X2p(ro- 1 ,  o)-~0p2z-1P(~01 0) 
X,p(ro- 1 ,  1)-rop2z-'p(ro, 1 )  

X2p(r0-1, s+(r-ro)n-l)-rop2z-'p(ro,  s+ ( r - ro )n-  1 )  
X,p( ro - 1 ,  s + ( r  - r0)n) - ropzz- 'p(r0, s + ( r  - r0)n) - (s + ( r  - ro)n + l)p1z- ' p (  ro - 1 ,  s + ( r  - ro)n + 1 )  

B(O)(z) = 

a n d f o r e a c h I , ( r - r o ) +  1 ~ Z ~ r a n d j / = s + ( l -  1)n 

I X2p(r-I- 1 ,  j , + n -  1 ) - ( r - f ) p 2 z - ' p ( r - f ,  j / + n -  1 )  

J Xzp(r - f - 1 ,  j / +  n )  - ( r  - I)p2z-Ip(r- 1, j /  + n )  - ( j / +  n + l )pIz-Ip(r-  I -  1 ,  j / +  n + 1 )  
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