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Abstract

For the design and control of ATM systems, it is important to have a
performance model which produces reasonably accurate results over a
wide range of parameters, since one major feature of ATM is that it can
support many kinds of bursty traffic which have different communication
speeds and time variations. We consider in this paper a heuristic approach
which is based on the fluid approximation. In order to remove the possible
inaccuracy of the fluid approximation in light to moderate traffic, we
propose a G/D/1 adjustment. The performance analysis predicts the
buffer content and packet delay distributions which usually have stringent
requirements. An infinite buffer is assumed in the analysis. However
for ATM networks, where the buffer overflow probability is small, the
infinite buffer model well approximates the finite buffer case. A number
of numerical examples show that this heuristic approach is very accurate
over a wide range of system parameters.

1. INTRODUCTION

To construct a multiservice network capable of fulfilling all a user’s
requirements for data, voice and video communications, fast packet (also
known as cell in ATM terminologies) switching technology seems promis-
ing for implementing an integrated access and transport network since
the switching mechanism is independent of service bandwidth and offers
potential gains in bandwidth efficiency by statistically multiplexing bursty
traffic streams. The performance analysis of integrated services ATM sys-
tems has been an intense area of research in recent years motivated by
the need to explore the advantages and the limitations of the novel and
largely untried switch architectures. However most existing relevant work
is performed in the context of packetized voice with suppressed silent peri-
ods or of packetized voice/data where the data arrival process is assumed
to be a Poisson process.

The packetized voice with suppressed silent periods constitutes an
example of bursty traffic. However, packetized voice systems have several
characteristics which are not shared by other systems. For example, in
a typical packetized voice system, the source peak rate is low compared
with line speed and the average burst length (the average number of cells
generated in a burst) is short. One major feature of ATM is that it can
support many kinds of bursty traffic which have different communication
speeds and time variations. It is therefore important to have a performance
model which can produce reasonably accurate results over a wide range
of system parameters.

The performance models in [1-8] are all performed in the packetized
voice context and their applicability in the cases other than packetized
voice systems has not been demonstrated. The MMPP mode! presented
by Heffes and Lucantoni [1] gives very accurate results (at least for
the mean and variance of defay) in packetized voice systems. In [9] it
was shown that this model can be less accurate for other cases and an
alternative method for the determination of the four parameters in MMPP
was proposed. The latter method produces better results when the ratio
of the source peak rate to the line speed is high or the average burst
length is long.

In [10), Viterbi gave an explicit formula for the average packet de-
lay when the ratio of the source peak rate to the line speed is unity.
Bruneel [11] considered discrete-time statistical multiplexors. However
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in his model the packet interarrival time of an active source is random
variable rather than deterministic. For the special case where we have a
deterministic packet interarrival time, the ratio of source peak rate to line
speed is unity or higher.

In this paper, we consider a heuristic approach which basically is
a fluid approximation [12] also referred to as uniform arrival and service
(UAS) model in [2] and [6]. To remove the possible inaccuracy of the fluid
approximation in light to moderate traffic, we propose an adjustment.
More specifically, the packet delay is divided into two parts; the first part
is approximated by the fluid approximation and the second by a G/D/1
queue.

In Section 2, we give a brief description of the system we deal with
in this paper. The fluid approximation or UAS model is presented in
Section 3. Section 4 describes in detail the G/D/1 adjustment while
Section 5 considers the calculation of the packet delay as the sum of the
delay approximated by UAS model and that by G/D/1 queue. Section 6
presents numerical results which are validated again<t simulation results.

2. SYSTEM DESCRIPTION

We first consider the packetized voice case. A voice source is active
when the talker is actually speaking. During an active period, the voice
generates fixed length packets at regular intervals. When the speaker
is silent, the voice source is inactive and generates no packets. While
it is difficult to model the speech activity of an individual speaker with
accuracy, Weinstein [13] found that the number of active voice sources
can be modeled very well by a continuous-time birth-and-death process.
It is then commonly assumed that the lengths of both active and inactive
periods are exponentially distributed. It follows that the number of packets
generated in an active periods is geometrically distributed.

Here we take the same system model where each source has alter-
natively active periods (burst) and inactive periods. An active source
generates packets with peak rate P and the packet interarrival time is
a constant and equals P!, The lengths of both bursts and silent peri-
ods are assumed to be exponentially distributed. The number of packets
generated in a burst is then geometrically distributed and we denote the
mean by B which is called average burst length. The average silent period
length is denoted by S which is measured in the same units as the average
burst length. Without loss of generality, we assume that the output link
speed is unity. As a result, the source peak rate P is also the ratio of
source peak rate to link speed which is a very important parameter for
resource management in an ATM network [14]). Packets have constant
length, the transmission link acts as a single server and waiting packets
are served in FIFO order. The service time is then deterministic. If the
total number of sources is NV, the system utilization rate p is given by

B
p:NP—B—_'_—S- (1)

3. UNIFORM ARRIVAL AND SERVICE MODEL

In the UAS model, described in {12], each active source generates
information to the buffer at a uniform rate of 1 unit of information per
time unit and the server removes the information from the buffer at a
uniform rate not to exceed C units of information per time unit. Here the
server's capacity is C. When i sources are active simultaneously, as long
as the buffer is not empty, the instantaneous rate of change is i ~ C. If
the buffer empties while the number of active sources is less than C, the
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buffer remains empty until the number of active sources again exceeds C.
For reasons of analytical tractability, the capacity C can not be integer
valued in the elegant algorithm developed in Anick, Mitra and Sondhi
12].

- In order to fit our system to the model described in [12], it is necessary
to make some parameter transformations. First, the server’s capacity in
our system is equivalent to P~1. Second, in [12], the unit of time is taken
to be the average duration of an active period. The unit of information is
taken to be the amount of information that would generated by a source
during an active period of average length; a unit of information would
therefore be equivalent to the average burst length B packets.

We now turn to the mathematical formulation of the system. Let
Pi(t,z),0 < i < N,t >0, z >0, denote the probability that at time
t, i sources are active and the buffer content does not exceed z. We can
first write a set of simple partial differential equations for P;(t,z) and
then obtain a set of differential equations for Fi(z) = limy_.o Fi(t, z).
In fact, we obtain, for i € [0, N],
dF;
dz
where A = BS~!. The equations defining the functions F; can be
expressed in the following vector-matrix form (for details, see [12])

(i—-C)5= =(N =i+ DAFicy ~{(N =i)A+ i} Fi + (i+ 1)Fiya (2)

%F(:c) = AF(z) 3)
The solution to the differential equations (2) can be written as
N-[C}-1
F(z)=F(oo)+ Y e“a;¥; 4)
i=0

where z; are stable or negative eigenvalues of the matrix A, ®; are the
associated eigenvectors, a; is determined by the boundary conditions and
[C] is the greatest integer less or equal to C. F;(oo) is the probability
that i out of N sources are on simultaneously and is given by the binomial

distribution . N
. M 5
e (1) ®
Anick, Mitra and Sondhi [12] study in detail the system and they
derive simple analytic formulae to compute the complementary buffer
occupancy distribution, G{z). The buffer occupancy corresponds, with a
change of scale, to the virtual waiting time. In this paper, we are interested
in packet defay rather than buffer occupancy. Taking into account the
change of scale, we have

Fi(o0) =

N
Pr(delay < z) = §1V+B£ Z iF;(B™z) (6)
i=0

where the time unit of delay is the packet service time.

A formula is presented in [12] to calculate the moments of the buffer
content. In this formula, we need to calculate only eigenvalues of the
matrix A and the associated eigenvectors need not to be computed
explicitly. Therefore if we are interested only in the average packet delay,
we can use this formula and the Little's theorem without computing
explicitly the eigenvectors. However in this paper we are also interested
in the packet delay probability distribution function. If we first calculate
the Fi(x) and use the formula (6) to get the packet delay distribution
function, we need to compute explicitly the eigenvectors &; which is the
most time consuming part. In the following we present a method to avoid
the calculation of the eigenvectors.

Given an eigenvalue z, we can obtain three quantities ry, r, and k&
(for details, see [12]). The ith component of the associated eigenvector
is written as

k
s= =y () (VI 0cish @
i=o0

Let © denote the row vector [0,1,2,---, N]. Therefore we have

N
0% =) ig
=0
®)
N k
S )
i=0 ji=0

After some algebraic manipulations, we obtain

k N-—-k
1—7‘1 1—1‘2

0 = (1-r)*(1~r)V=¥( ) ®

The packet delay distribution function can be expressed as

S48 N-[C]-1
Pr(delay < z)=1+ NB E B %0, (08;) (10

i=0

We observe that the nth moment of the packet delay

00
E{z"} :/ z"dPr(delay < z) (11)
0
We then obtain
N-[C]-1
ny_ n! a;(0;)
E{z"} = =y Zo i - i (12)
=

The formula (9) improves considerably the computational efficiency.

Maglaris et al. [15] used a fluid approximation to obtain the queue
length distribution in a packet video multiplexor. The UAS model was
used in [6-8] to study packetized voice systems with a finite buffer size.
In [16], Roberts and Simonian used a two-state fluid approximation to
analyse packet voice and video multiplexors. For the packetized voice
system, the two-state fluid approximation, as the UAS model, accurately
estimates the mean delay in heavy traffic but seriously underestimates it
for low loads.

4. G/D/1 ADJUSTMENT

As indicated in [2] and [6], the UAS model lacks the concept of
packetization. It follows that this model ignores the “high frequency”
variations in buffer content present in the real system. From a muiti-layer
concept, Filipiak [17] concluded that the fluid approximation can only
characterize the delay in the burst layer but does not capture the small
time scale fluctuations in the packet layer. He also proposed a multi-
layer analysis where the input process is modeled by a multi-layer Markov
Chain. The discrete-time queueing model in the burst level is basically a
fluid model.

It is well known that the fluid approximation generally does not
produce accurate results in light to moderate traffic. Here we use the
word “generally " since the fluid approximation gives very accurate results
when the peak rate is high even in the light traffic case. This can
be explained by the fact that the UAS model ignores “high frequency"”
variations in buffer content, since in the real system, information does not
enter the transmission buffer, and therefore can not be transmitted, until a
particular source completes generation of one packet. It follows then that
the higher is the source peak rate (the shorter is the packet interarrival
time), the slighter is the effect of packetization on the accuracy of UAS
model. The effect will completely disappear when the source peak rate is
unity or higher.

To cope with the inaccuracy of the UAS model in light to moderate
traffic caused by the packetization effect, we propose a G/D/1 adjust-
ment. Basically, we divide the packet delay into two parts; one part is
approximated by fluid approximation while the other is approximated by
G/D/1 queue. Based on several comparisons between analytical and sim-
ulation results, we find that when the system is heavily loaded or the
source peak rate is high, the packet delay can be very well estimated by
the fluid approximation while in the alternative case, the M/D/1 approxi-
mation produces very good results. Here we use a two moment approach
for the G/D/1 where the mean packet interarrival time is equal to that
of the superposition process. As far as the coefficient of variation ¢, is
concerned, it should be a function of the system utilization rate p and the
source peak rate P. Based on the above-mentioned remarks, c4(p, P)
should have the following properties:

1) lim,_.1¢4(p, P) =0

2) limp_1cq(p,P) =0

3) ca{p, P) is a decreasing function of p and P
4) limp_o,poca(p, P) = 1
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One possibility for the choice of the function cq(p, P) is
ca(p, P)=(1-p")1~P") nm>0 (13)

which has obviously the above-listed properties. A comparison between
the simulation and the approximate results for different values of m and
n indicates that the set m = 6 and n = 1 gives the best results.

For the analysis of the G/D/1 queue, we will calculate the proba-
bility of waiting, the mean and the variance of delay by using different
approximations. For the probability of delay and the average delay, we use
the Kraemer and Langenbach-Belz approximations [18]. Let o and EW
denote the probability of delay Pr(W > 0) and the average delay respec-
tively. Noting that in our case the coefficient of variation of service time
equals 0 and the coefficient of variation of interarrival time c,(p, P) < 1,
we have then

(¢ — D)p(1 — gy LT
o= P+ (= VAl = Dy (14)
and 2 21-p) 1—c?
= PCa _ P ~Ca\2 1
EwW 2(1_17)67817[ 3 ( . )’ (15)

where h is the packet service time.

Here we can see that the average delay of the G/D/1 queue is
proportional to the packet service time while the delay estimated by the
fluid approximation is independent of the packet service time distribution.
If all the characteristics of sources are held fixed but the packet size
is decreased (the mean number of packets generated during an active
period is increased), the delay estimated by the G/D/1 queue is scaled
down. Decreasing the packet size increases the difference between the
burst time scale and the packet time scale (multiple time scales). When
the mean number of packets generated during an active period is very
large, this delay can be ignored. This presence of multiple time scales
provides the justification for fluid models in several cases {19,20]

In principle, it is difficult or impossible to find the second moment of
the delay distribution, since generally its determination involves the third
moments. |n order to get an approximation for the variance of the delay,
we use an argument by Whitt [21]. He observed that the conditional
delay given that the server is busy in a GI/G/1 queue (rather than the
total delay) depends more on the service-time distribution than on the
interarrival time distribution. Let D denote the conditional delay given
that the server is busy. Evidently, we have ED = EW/o. As for the
second moment of D, if we denote the squared coefficient of variation
of D by c%, the M/D/1 formula for ¢ is used as an approximation for
G/D/1 systems. The M/D/1 formula for ¢, is

¢ = g/%l (16)
From D we then obtain second-moment characteristics for W
E(W?) ch+l-0
2 _ _1="Cb
v = Twy 1 - (17)
and
Var(W) = (EW)%c%, (18)

We now proceed with the approximation of the probability distribution for
W. The distribution has an atom at zero as given in (14). The density is
chosen so that the first two moments fit those of W and D which have
already been determined. Here we consider only the case where ¢, < 1,
since from (16) we can see that c}, can not be greater than 1.

Case 1: 0.5 < ¢}, < 1. Let the distribution of D be the convolution
of two exponential distributions with parameters v1 and v2 (71 > ¥2).
i.e., let D have density

_ N2 ez -nz .
z) = — (e - 19
fo(=) 71_72( e~TF) (19)
with S
_ ED + /2Vag(D) — (ED)?
451 = ED+/2Vay(D) = (ED) )
and
7t =ED -yt (21)
The corresponding probability distribution is
P(D<z)=1-(ne " —ne ™) /(11 —72) (22)

Case 2: ¢4 < 0.5. Let D have a gamma distribution with parameters
n and 7. lts density is

_ (yz)n7b

fo(z) = —r(;j—-ye"” (23)

with
n=[cp'] (24)

and
v=n(ED)™} (25)

where the symbol [-] denotes the largest integer part of its argument.
Here in order to facilitate the numerical calculation, we take an integer
value for n and the coefficient of variation is only approximately matched.

5. PACKET DELAY DISTRIBUTION

As we mentioned in the preceding section, in order to cope with the
possible inaccuracy of the fluid approximation in light to moderate traffic,
we propose a G/D/1 adjustment. Therefore the packet delay is divided
into two parts; one part is approximated by the fluid approximation and the
other by a G/D/1 queue. We use a two moment approach for the analysis
of the G/D/1 queue whose arrival process depends on several system
characteristics. Based on a comparison between simulation and analytical
results, we find that the coefficient of variation of the interarrival time
should be a function of the source peak rate and the system utilization
rate to well approximate the packet delay.

Let W) denote the part of packet delay approximated by UAS model
and W, the other part. 1¥; and W, are assumed to be two mutually in-
dependent random variables whose approximate probability distributions
are given in Section 3 and in Section 4, respectively. Denoting the packet
delay by W, we then have W = W; + W5 and its probability distribution
is approximated by the convolution of the approximate probability distri-
butions of W; and W,. The calculation is straightforward but tedious.
Its detail is not reported here.

While the calculation of the packet delay probability distribution is
complicated, its mean and variance are easy to obtain. In fact, we have
the simple formulae:

B(W) = E(W,) + E(Ws) )
Var(W) = Var(W) + Var(W,)

6. NUMERICAL RESULTS AND DISCUSSIONS

For the analysis in all the numerical examples, we always use the
set {n = 6,m = 1} in Equation (13) which is shown by a comparison
between simulation and analytical results to be the best to give reasonably
accurate results over a wide range of system parameters. In addition the
unit of time of the delay is the packet service time. In the following we
use the number of sources N, the source peak rate P, the average burst
length B and the utilization rate p to describe a system. The average
inactive period length can be easily obtained from these parameters. We
have

S=BE -1 27)

We have programmed the MMPP model proposed by Heffes and
Lucantoni [1] (but the resulting MMPP/D/1 queue is solved by a discrete-
time approach described in [9] rather than the matrix-geometric method
they used in [1]). For the purpose of comparison to the results of [1],
[3]. [4] and [16], we first consider the packetized voice system with line
speed 1.536 Mbits/s, voice packet length 64 bytes, mean active period
353 ms (22 packets) and mean silent period 650 ms. In Table 1, results of
six approximations are presented: 1), GI/D/1 queue by Sriram and Whitt
[3]; 2), 2-state MMPP/D/1 by Heffes and Lucantoni [1]; 3), N-IPP/D/1
by Ide [4]; 4), 2-state fluid approximation by Roberts and Simonian [16];
5), fluid approximation [12]; 6), the heuristic approach presented in this
paper. The simulation results are cited from [2]. From this table, we can
see that only the heuristic approach produces results which are all in the
confidence intervals and that the heuristic approach significantly improves
the fluid approximation results in light to moderate traffic (p < 0.878).

In Table 2, a number of examples are presented with different source
peak rates, average burst lengths and utilization rates for the average
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No. of voice simulation approximations [ms]
sources N (95% C.INT.) 1 2 3 4 5 6
20 0.03 (+ .001) 0.04 0.03 0.03 0.00 0.00 0.03
40 0.07 (£ .001) | 0.08| 007 007{ 0.00{ 000 0.07
60 013 (+£.001)| 016| 014| o014| o000| o000| 0.3
80 0.22 (£ .007) 031 0.27 0.26 0.00 0.00 0.22
90 0.31 (+ 0.02) 0.45 0.38 0.37 0.00 0.00 0.29
100 0.45 (+ 0.14) 0.72 0.57 0.57 0.04 0.02 0.40
110 0.89 (+ 0.14) 136 1.04 114 0.50 0.36 0.84
120 407 (+04) 3.75 357 4.15 3.6 3.49 4.10
125 104 (+13)| 85 | 11.33| 1025| 93 | 10.14| 10.83
130 319 (+48)| 284 37.25| 3141 | 289 3260 | 33.36
132 521 (+75 ) 553 | 63.98| 55.73| 52.0 | 57.90| 58.70
134 109.6 (+:21.4) | 129.3 | 131.38 | 120.58 | 115. 124.65 | 125.68

Table 1 Comparison of approximations of the average packet delay
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Fig. 1 Packet delay survivor function
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N] P ] B| p []simul(95%C. INT.)] approx.
14]0.250 [ 100 | 05675 | 23.63 (+ 5.81) | 25.06
140 | 0.025 | 100 | 05675 | 050 (+ 0.03) | 062
16 0.100 | 100 [ 0.9000 | 8850 (+ 7.46) | 84.70
16 | 0.400 | 100 | 0.9000 | 547.70 (+ 70.04) | 594.65
16 | 0.700 | 100 | 0.9000 | 663.46 (= 172.86) | 735.19
16 | 1.000 | 100 | 0.9000 | 801.32 (+ 114.31) | 787.52
160700 | 100 | 01000 | 591 (+ 1.06) | 653
16| 1.000 | 100 | 0.1000 |  9.82 (+ 1.89) | 10.32
42(0042| 22| 08750 [ 14.71(+ 225) | 10.43
1280020 22| 08587 | 9.16(x 19) | 7.78
13110020 22| 08733 1082(+ 131) | 11.26
21| 0.267 | 200 | 05087 | 49.00 (+ 580) | 46.45
220200 | 200 | 0.4000 | 10.68 (+ 3.25) | 7.47
31| 0200 | 200 | 05636 | 48.30 (+ 14.66) | 49.46
2/ 0889|200 01616 1650 (+ 2.68) | 1557
3| 0778|200 | 0.2121| 2287 (= 3.16) | 24.44
410694|200|02525) 3417 (+ 520) | 29.88
32| 0100 | 500 [ 0.1000 | 015(+ 017) | 0.05

Table 2 Comparison of simulation and analytical results for
average packet delay

packet delay. The agreement between simulation results and the heuristic
approach is excellent over a wide range of system parameters: p from
0.1 to 0.9, P from 0.02 to 1.0 and B from 22 to 500. All the analytical
results except one (the 9th example) are in the confidence intervals. This
shows that the heuristic approach is robust over a wide range of system
parameters.

As we mentioned in Section 4, the fluid approximation generally does
not give accurate results in light to moderate traffic. But if the source
peak rate is high compared with the line speed, the fluid approximation
produces very accurate results even in light traffic case. Here we present
two examples. The parameters of the first example are N = 14, P = 0.25,
B = 100 and p = 0.5675. The simulation estimation of the average
packet delay is 23.63 with a 95% confidence interval [17.82,29.44] and the
fluid approximation gives an estimation of 24.61. In the second example,
we have N = 16, P = 1.0, B = 100 and p = 0.1. The simulation and
analytical results are 9.82(£1.96) and 10.32, respectively.

Study of packet loss is of great importance to the design of ATM sys-
tems. Here we have an infinite buffer system. However, if the packet loss
probability is very low, an infinite buffer system can constitute an accurate
approximation for a finite buffer system. Now we are speaking of a packet
loss probability between 1075 to 10° in an ATM network [22]. In that
range, a truncated packet delay distribution in an infinite buffer system
can be used as an accurate approximation for packet delay distribution in
a finite buffer system. Fig. 1 show the complementary cumulative distri-
bution functions (or survivor functions) for different system parameters.
It is seen that the heuristic approach gives also a good approximation for
the packet delay probability distribution function. It was shown [2] that
generally, the fluid approximation overestimates the probability that the
queue is empty. But the heuristic approach produces reasonably good
results for the delay probability. The case where the heuristic approach
gives the worst results is with system parameters: N = 60, P = (.02083,
B = 22 and p = 0.439. In this case the delay distribution is essentially
approximated by a G/D/1 queue and the average delay estimated by the
fluid approximation is zero.

7. CONCLUSIONS

We have presented a heuristic approach for the performance analysis
of ATM systems. This approach is basically a fluid approximation and a
G/D/1 queue adjustment which removes the possible inaccuracy of the
fluid approximation in light to moderate traffic. The performance analysis
predicts the buffer content and packet delay distributions. Comparisons
with simufation show the approach to be accurate over a wide range of
system parameters.
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