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Call Admission and Routing in MLulti-Service 
Loss Networks 

Zbigniew Dziong, Member, IEEE, and Lorne G. Mason 

AbstTact- A state-dependent policy for call admission and 
routing in a multi-service circuit-switched network is syn- 
thesiced. To meet different requirements the objective func- 
tion is defined as the mean value of reward from the net- 
work. Policy iteration is applied to find the optimal control. 
Assuming link independence the network reward process is 
decomposed into the set of link reward processes thereby 
significantly reducing complexity. The approach is imple- 
mentable for large systems if certain approximations are 
used. A simulation study shows that the algorithm con- 
verges in two iterations, exhibits good traffic efficiency, and 
provides a flexible tool for performance allocation among 
services. The approach also constitutes a framework for 
studying, synthesizing and optimizing other call admission 
and routing strategies. In particular the results of sensitiv- 
ity analysis are used to  compare the proposed decomposition 
approach with that developed by F.P.Kelly for optimiration 
of a load sharing policy in telephone networks. 

Keuwords- state-dependent routing, heterogeneous trafflc, 
Markov decision process, decomposition, shadow prices, sen- 
sitivity analysis, optimization. 

I. INTRODUCTION 
Dynamic and adaptive routing, introduced into the North 
American telephone network in the 1980’s, has substan- 
tially improved network performance and reliability. Im- 
plementation of advanced routing techniques is now in prog- 
ress worldwide. The next step - extension to integrated- 
services networks - is the subject of research. These net- 
works are characterized by high link speeds, heterogeneous 
character of the traffic and performance requirements, and 
uncertain and variable traffic demand. These features in- 
crease the complexity of the traffic management problem 
and give new prominence to the synthesis of control pro- 
cedures which ensure efficient operation while maintaining 
prescribed service levels for the different traffic classes. 

One promising approach to this problem involves the 
synthesis of adaptive control algorithms for call set-up, 
(call admission and routing), which respond to measured 
network conditions. A number of approaches to the adap- 
tive routing of calls in telephone networks have been p r e  
posed in the literature. These methods range from decen- 
tralized adaptive schemes employing learning automata [l], 
through centralized time-variable schemes [2] to adaptive 
routing procedures based on the least loaded path (LLP) 
approach [3,4,5,6]. A framework for an application of the 
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strategies described in [2, 51 to multiservice integrated net- 
works is described in [7]. In this scheme each service has 
access to dedicated and shared bandwidth so the service 
performance can be controlled. There is also a substantial 
literature on call admission control in one link multiservice 
networks. Thme works vary from some optimal models [8, 
9,101 to Simplified schemes based on threshold type policies 
[ll, 12, 131. 

More recently two new elements have been added to the 
algorithms for call admission and routing in telephone net- 
works: Markov decision theory and revenue maximization. 
In [14] and [15], Markov decision theory was employed to 
compute a state dependent routing policy off-line by exe- 
cuting a single policy iteration step. In [16] it was shown 
that a modified version ol this scheme is more efficient than 
the least loaded path approach. Kelly [17] has introduced 
the notion of link shadow prices to the problem of decen- 
tralized adaptive load sharing with revenue maximization 
objective (a simplified version of this concept was also pre- 
sented in 1181). The link shadow price can be interpreted 
as an average price paid for carrying a call on the link. In 
[19], it was shown how this concept can be generalized to 
state-dependent link shadow prices. In this caae the perfor- 
mance was also superior to the least loaded path approach. 
Moreover it was shown that the call revenue parameters 
provide a means for controlling almost independently and 
continuously the grade of‘ service (GOS) of different traffic 
classes. Note that this feature is crucial in the control of 
multi-service circuit-switched networks where call classes 
with different bandwidth requirements can encounter very 
different grades of service. 

The new advantages, archieved by the application of rev- 
enue maximization and Markov decision theory to tele- 
phone network control, motivated us to extend and gen- 
eralize these concepts to multi-service circuit-switched loss 
networks. In the paper we formulate the call admission 
and routing problem, for such networks, as maximization 
of the reward from all carried calls (each call is character- 
ized by a reward parameter). In general this problem can 
be solved by applying the policy iteration algorithm from 
Markov decision theory (Section 11). However, the exact 
state model leads to enormous complexity, putting com- 
putation of the control beyond reach for practical cases. 
To achieve an implementable solution we propose (Section 
111) a novel decomposition of the Markov decision problem. 
Namely it is shown that, under the statistical link indepen- 
dence assumption, the network reward process can be de- . - .  
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composed into a set of separable link reward processes. In 
this model the control decision is based on state-dependent 
link shadow prices interpreted as a predicted price for seiz- 
ing link bandwidth by the call. Despite decomposition, 
the control policy is still evaluated by the complete policy 
iteration algorithm. This is in contrast to the model pre- 
sented in 114, 151 where only one iteration can be executed. 
The important element of the proposed scheme is that the 
analytical part of the model is fed by real time traffic me% 
surements of current flow distribution in the network. This 
feature also implies that the network control will track or 
adapt to time variable traffic demand. 

Several link models for the evaluation of state-dependent 
shadow prices are described in Section IV. They vary from 
the exact solution based on the value iteration procedure 
to a simplified model using the ”near complete decompos- 
ability” feature and recurrence solution. TQ evaluate link 
arrival rates a simplified model using the traffic measure- 
ments is applied. 

In Section V it is shown that the call average of link 
shadow price can be used to evaluate sensitivity of the av- 
erage reward from the network with respect to arrival rates. 
This result is later used to reduce the error in traffic flow 
distribution (caused by the independence assumption) and 
speed up the convergence in the control model. Sensitiv- 
ity analysis results are also used to show the relationship 
of the proposed approach, when reduced to the load shar- 
ing strategy in telephone networks, to the work of Kelly 
[17]. It is shown that while in the proposed approach the 
network reward process is decomposed into separable link 
processes, in Kelly’s approach only the network Markov 
process is decomposed. 

In the final part of the paper (Section VI) the important 
characteristics of the algorithm are studied. The results 
confirm the predicted ability to provide almost continuous 
and independent control of each call class GOS by simply 
changing the call reward parameters. To test the efficiency 
of the proposed algorithm we compare it with a general- 
ized version of the least loaded path strategy, known to be 
very efficient for telephone networks. In all cases tested 
the proposed algorithm provides better utilization of the 
network resources. We indicate inherent reasons justifying 
this result. 

In the conclusions (Section VII) we underline new contri- 
butions of the paper - the main being synthesis of a control 
model for multiservice networks where all basic functions, 
including control of each service GOS, are included and 
optimized in one homogeneous, theoretically based model 
fed by real time measurements. Also some further areas of 
investigation are indicated. 

Although the presentation focuses on multi-service net- 
works most results and conclusions are of course applicable 
to the special case of one service networks (e.g. telephone 
net works). 

11. PROBLEM FORMULATION 
We describe the network as a set of nodes and a set of 
trunk groups connecting the nodes. The network is offered 

many classes of calls. The j-th class is characterized by the 
following: origin-destination (OD) node pair, number of 
required channels, dj , intensity of arrival process (assumed 
to be Poissonian), A j ,  mean holding time (assumed to be 
exponentially distributed), p;’, set of alternative paths 
(in general this set can contain all feasible paths), W’ , and 
reward parameter rj E (0,m) which can be interpreted 
as the average reward for carrying the j-th class call (the 
reward rate from a carried call is given by qj = r j p j ) .  The 
network operates in a lost call mode and when a call is 
accepted we assume instantaneous call set up. 

The problem addressed in the paper can be formulated 
a8 follows: find the optimal routing policy T* which max- 
imizes the mean value of reward from the network defined 
as: 

i 

where denotes the average rate of accepted j-th class 
calls (the process is assumed to be stationary). In gen- 
eral this problem can be solved within the framework of 
the theory of continuous-time Markov Decision Processes 
(MDP). In the following we present this solution. 

The state of the considered system can be described by 
a matrix z = {zj”} where zj” denotes the number of j-th 
class calls carried on the k-th path from the Wj and z E 2. 
For each state the rate of reward from the system, q ( z ) ,  is 
given by 

j k  

In the case of call arrival the state transition is described 
as z -+ z + h j ( z ,  A)  where z + A j ( z ,  A)  denotes the state 
after accepting the j-th type call on path k , recommended 
by policy T, in state I. In cases where either all paths from 
Wj are blocked or it is not efficient to carry the call, the 
decisions are defined by Aj(z, T) = (0). In the case of call 
departure the state transition is described as z -+ z - 6; 
where z - Sj” denotes state after the departure of the j-th 
type call from path k in state z .  The rates of the transitions 
are Aj and z; - p j ,  respectively. 

From the MDP theory [20, 211 it follows that since our 
system is ergodic, the optimal policy A’ is deterministic 
and can be found by applying one of the well known al- 
gorithms (eg. policy iteration, linear programming, value 
iteration). We have chosen the policy iteration algorithm 
resulting in the following iteration cycle. 

- For given polacy T, solve the set of value-determination 
equations (for relative values v(z, A)  ; z E Z ) 

j k  

by setting the relative value for an arbitrary reference state 
zr t o  zero. 
- For each state z find the alternative set of decisions, 
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Aj(Z, T') ), that maximizes the expression 

i k  

using the relative values from the previous policy. This 
set of decisions constitute an improved policy T' t o  be used 
again in the first step. 
The theory of MDP ensures that starting from an arbi- 
trary initial policy this procedure converges to t* in a finite 
number of iterations. However, for most telecommunica- 
tion networks, the policy iteration procedure based on the 
exact network state description is intractable due to the 
enormous cardinality of the state and policy spaces. In the 
following section we propose an approach where the net- 
work reward process is decomposed into a set of separable 
link reward processes. While this approximation reduces 
computational and memory requirements to manageable 
levels, the policy iteration algorithm is preserved. 

For further consideration it is convenient to introduce 
the notion of the path net-gain, gj(a,  a), defined as 

Si(" ,  t) = V ( Z  + A ~ ( z ,  T ) ,  T )  - ~ ( 2 ,  T ) .  ( 5 )  

It can be shown that the path net-gain can be also ex- 
pressed as 

where R(a, A, T) denotes the expected reward from the net- 
work in the interval ( t o ,  to+T), assuming state z in t o .  Note 
that the separable form of the objective function (4) to be 
maximized in the second step of the iteration procedure, 
assures that this step is equivalent to the separate maxi- 
mization of gj(z, .) over I, for each state 1; and call class 
j ,  pair. 

111. DECOMPOSITION OF MDP 
First we assume that link arrivals are state dependent Pois- 
son streams and that link state distributions are statisti- 
cally independent. These assumptions are commonly made 
in network performance analysis. In particular, they im- 
ply that a call connected on a path consisting of 1 links is 
decomposed into 1 independent link calls characterized by 
the same mean holding time as the original call. Then the 
Markov process for a given policy t can be described sepa- 
rately for each link in terms of the link state x = {zj} and 
the transition rates defined by the link arrival rates A;(x, a) 
and departure rates p j ,  where zj denotes the number of j -  
th  class calls carried on the considered link (to simplify 
notation, we assumed that alternative paths for j-th class 
calls have no common links - this is not a limitation of the 
approach). Concerning the evaluation of Aj(x, T ) ,  it can be 
done in two ways. One is to develop an analytical model for 
performance analysis of the network with the given rout- 
ing policy a. The second possibility is to estimate Aj(x, T) 

based on some simple statistics measured in the network. 
We have chosen the second option due to its smaller com- 
plexity and automatic adaptation to changes in the traffic 
patterns. The details of this approach are given in Section 
1V.A. 

Although the above mentioned assumptions provide a 
decomposition of the Markov process, it is not sufficient to 
decompose the analysis of the Markov decision problem. 
To do that we propow decomposition of the network re- 
ward process into a set of separable link reward processes. 
This can be done by dividing the reward parameter of a 
call offered to a multilink path among the link calls, 80 

that ehch link call is characterized by the link call reward 
parameter, ri(7r). It is dear that the division rule should 
provide maximization of the mean value of reward from the 
network with the obvious constraint: 

(7) 
8 E k  

where k denotes the path chosen by policy T for carrying 
the j-th type call. The division of the reward parameter is 
discussed in Section 1V.A. 

Now, for a given routing policy, each link reward process 
can be described independently by the set {A!(x, t), r$(n), 
pj} enabling definition of the link net-gain, g j ( x , r ) ,  as 
the expected increase in the reward from the link caused 
by accepting the j-th clws link call: 

g j ( x , r )  = lim [R'(~X+S~,?T,T)-R~(X,~C,T)] (8) 

where R'(x, ?r, T) denotes the expected reward from the 
link in the interval ( t o , t o  + T), assuming state x in to ,  
and Sj is 3-vector with 1 in the position j and zeros in all 
other positions. Observe that under the link independence 
assumption we have 

T4CU 

(9) 

where y = {x} denotes the network state in the decom- 
posed model. Thus from (6, 8) it follows that the path 
net-gain for the decomposed model is given by 

This separable form of the path net-gain constitutes our 
basis for decomposition of the Markov decision problem 
since it was shown in the previous section that the values 
of path net-gain define the policy improvement procedure. 

For subsequent simplifications of our model it is conve- 
nient to define a state-dependent link shadow price p j ( x ,  T )  

which is related to the link net gain and the link call reward 
by the equation 
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This value can be interpreted BS the expected price fos 
accepting a j-th type call on link s in state x. Notice 
that from (7, 10, 11) it follows that the path net-gain from 
carrying the j-th type call on the path 5 can be expressed 
as 

a € k  

The models for evaluation of the link shadow prices (and 
link net-gains) are given in Section 1V.R. 

Using the concept of state dependent link shadow prices, 
the policy iteration procedure from the previous section can 
be rewritten in the following steps: 

- Collect the statistics in the network operating under a 
given routing policy T ,  then evaluaie A;(x,T) and, using 
these values, compute the new values of the lank shadow 
prices p j ( x ,  T), 
- For each arrival of the j - t h  class call find the maximum 
net-gain over all feasible paths 

using the new values of link shadow prices, if gmao as pos- 
itive, carry the call on the path gtvang the maximum net- 
gain, otherwise reject the call. 

Assuming that starting from an arbitrary policy this proce- 
dure (henceforth called MDPD) converges to a limit policy 
r* , we could treat this solution as the optimal policy if all 
used assumptions are exact. Since there are approxima- 
tions, policy T* is in general suboptimal. 

The main advantage of the presented decomposition ap- 
proach (compared to the exact model) is that the evalua- 
tion of the path net-gain is decomposed into link analysis 
problems (state space reduction) and that the policy need 
not to be stored for all network states but instead the deci- 
sions can be easily computed at the instant of call arrivals 
on the basis of link shadow prices (memory requirement re- 
duction). It is also important that the evaluation of shadow 
prices is based on the real-time measurement which implies 
that the routing policy will track or adapt to a time vari- 
able traffic demand. 

In the conclusion of this section we indicate the method- 
ological difference between the proposed approach and the 
models for control of telephone networks, with the objec- 
tive to maximize total traffic, presented in [14, 151. Namely 
in [14, 151 the separability of link shadow prices (link costs 
in [14, 151) is achieved by applying direct routing as the 
initial policy in the standard policy iteration algorithm. 
Thus by neglecting multilink flows the link costs can be 
easily evaluated at the price of restricting the policy it- 
eration procedure to one iteration since the link distribu- 
tions cannot be changed. This idea could be applied to the 
multi-service problem as well (in this case XJ(X,T) = X j  
and r j ” ( ~ )  = r j ) .  Nevertheless as it will be shown in Sec- 
tion VI the performance of this option can be significantly 
worse than that of the MDPD strategy. 

IV. LINK SHADOW PRICE EVALUATION 
A .  Link Call Parameters 

The approach assumes that the following statistics are 
measured in the network (for each call class): average ar- 
rival rate of offered calls, A j  (r), and average rate of calls 
accepted on each alternative path, I;(.). Observe that 
these statistics can be also very helpful in network man- 
agement and planning. 

The evaluation of the state dependent link arrival rates is 
based on the assumption that the arrival rates seen by links 
(in the non blocking states) under a state-dependent rout- 
ing can be approximated by a load sharing model where 
the arrival rate of stream offered to the k-th path, A;(%), 
is Poissonian (similar assumptions were made in the perfor- 
mance models for networks with state-dependent routing 
presented in [24, 251). We assume that A;(.) is propor- 
tional to the rate of accepted j-th type calls on path k :  

Then under the link independence assumption the link 
state dependent arrival rates in the non blocking states 
can be found from the path model and are given by 

A;(<., T) = Ai(.) 9 f j ( x ,  K) (1 - Bje(r)) (15) 
C € k \ I $ l  

where Bje(r) denotes the probability that link c has not 
enough free capacity to accept the j-th type call (blocking 
state) and fj(x, T )  denotes a filtering probability defined 
as 

f j ( x , ~ ) = p {  ~ j ” ( x , ~ ) < r j - ~ j ( x , r ) ~ B j }  (16) 
c € k \ I s l  

where Bj denotes condition that neither link is in the block- 
ing state (note that p j ( x ,  T) is constant in (16)). In other 
words f j ( x ,  T) is the probability that the path net-gain is 
positive (on condition that there is enough path capacity 
to carry the call). This probability can be computed using 
the link state distributions. Note that for evaluation of the 
link shadow prices we do not need to define the link arrival 
rates for the link blocking states. Nevertheless to simplify 
presentation of the link model we assume XjJ(x,n) = 0 in 
these states 

Concerning evaluation of the link call reward parameters, 
T ~ ( K ) ,  the rule for allocation of rj among the path’s links 
can have an influence on the average reward from the net- 
work. The exact solution maximizing the reward from the 
network is quite complex since the optimization procedure 
would require a network performance model. Nevertheless 
the investigation presented in [26] based on an analytical 
path model indicated that in the practical range of param- 
eters the reward from the network is quite insensitive to 
the division rule. That is why we focus on a simple so- 
lution which, due to its economical interpretation, can be 
very attractive in network management and dimensioning. 
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TABLE I 
REWARD LOSSES [%I FOR DIFFERENT REWARD ALLOCATION RULES 

D1 D2 D3 

nominal conditions 

W7N 0.96 f .15 1.03 f .12 1.02 f .17 
N7N 1.44 f .09 1.42 f .09 1.41 f .09 
NllN 0.51 f .07 0.51 f .06 0.53 f .06 

ov&xu3 conditions 

W7N 4.84 f .32 4.83 f .30 4.73 f .32 
N7N 6.12 f .10 6.10 f -10 6.15 f .10 
N l l N  5.21 f .lo 5.19 f .ll 5.23 f .ll 

Namely we assume that the reward parameter r i (n)  as- 
signed to the s-th link should be proportional to the call 
average link shadow price, jjj(n), paid for carrying the j-th 
type link call on this link: 

where Fj(n) is defined by 

Fj(n) = ~5'c[p;(x, .)I = C Qj(x)~j(x, n) 

and Qj(x) denotes the probability that the j-th type call 
is accepted in state x. Note that F j ( r )  can be estimated 
in a real network by averaging the values of link shadow 
price at the instants of the j-th type calls arrivals. It can 
be shown that the proposed rule is optimal in the case of 
a fully symmetrical path and in the case where zjjb(n) = 0. 

To illustrate the conclusion that in the practical range 
of parameters the reward from the network is not sensitive 
to the division rule we compare performance (expressed 
as the network reward losses, H = 1 - x / ( c j  rjAj) ), in 
three network examples (described in Section VI) for three 
different division rules. The first rule (Dl)  is described 
above. The second (D2) assumes that all link call reward 
parameters are equal to each other. The last one (D3) is 
an adaptation of the reward allocation rule from the model 
developed by Kelly [17] for the load sharing strategy: 

(18) 
X€X 

r j (n)  = rj - jjp(n) (19) 
C E L \ t 8 1  

In this ca& the sum of link call reward parameters is not 
equal to the call reward parameter (equation (7) does not 
hold). The explanation of this fact and relation of the 
MDPD approach to Kelly's model are described in Section 
V. The results from simulation model are presented in Ta- 
ble I. The performance of all three versions is very close to 
each other and falls within the confidence interval of the 
other versions. This result suggests that from a control 
performance point of view the simple rule D2 is sufficient 
in the practical range of parameters. Nevertheless as indi- 
cated in [23] the natural economical interpretation of the 

D1 rule can be very attractive from a management, plan- 
ning and dimensioning point of view. It can be also shown 
that in some limiting caws the performance with the D2 
rule is worse than the one with the D1 rule. 

B. Exact Link Models 
Once the values of link arrival rates, Xj(x, n), and link 

call reward parameters, r!(n), are given, the link net-gains 
can be evaluated by solving the following set of equations 
(achieved by applying (3) and ( 5 )  to the link reward pro- 
c - 4  

Xi"(.) 
j 

- C x j j j g j ( x - s j , n )  ; X E X '  (20) 
j 

where a8(n) denotes average reward from the link and 
q(x) = x j r j ( n ) z j p j  ie the rate of link reward in state 

An attractive alternative is the value-iteration algorithm 
[21] which in general is a convenient method for solving 
large Markov problems due to numerical simplicity (see 
e.g. [22]). Since this algorithm is applicable directly only 
for discrete time Markov processes we must first apply the 
uniformization technique with certain average length of the 
transition time, 7 [21]. Then the basic recurrence for our 
link model is stated as follows: 

X. 

Vi(X,?r) = q(x) * 7 

+ q x ,  n) 7 [Vi-l(X + s j ,  n)-V,b_,(x, n)] 
j 

+Czj~j ~ [ v : - l ( ~ - b j 1 r ) -  v:-~(x,~)I  

+V,"-1(x1 T )  ; x E xa (21) 
j 

where the value function, V i ( x ,  n), can be interpreted as 
the expected reward from the link within n transition p e  
riods assuming state x at the beginning of the considered 
time and terminal reward of V ~ ( x , n )  at the end of this 
time. It can be proved [21] that starting from an arbi- 
trarily chosen { V$(x, n) ; x E X) the difference VJ(x, T )  - 
Vl-l(x, n) will be as close as needed to the average reward 
from the link, xa(n) . T ,  for sufficiently large n. It can be 
shown that having the value functions, the link net-gain 
can be expressed as 

g?(x, n) = lim [V,"(X + Sj , r) - V:(X, r)] (22) 3 ndoo 

It is important that in (,he particular case of one call class 
the set of equations [20] can be rewritten in the form of two 
recurrence relations which provide a very efficient solution 
for link net-gains. Nam'ely after solving recurrences 

1 +z ' p  * u(z - 1) 
4x9 4 u(2) = ; 2 = 1, .., N - 1  (23) 

2 /.l w(z' - 1) - q(z) 

q x ,  4 w(2) = ; = 1, .., N - 1  (24) 
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Fig. 1. Reward losses vs. shadow price factor, 7. 

with initial values u(0) = l/X(O, T) and w(0)  = 0, we have 

-s q ( N )  - N * p  * w ( N  - 1) R ( T )  = 1 +  N * / A  * u(N - 1) (25) 

g b ( c ,  T) = ~ ' ( ~ ) u ( z )  + ~ ( z )  ; z = 0, .., N-1 (26) 

where N denotes link capacity. This solution can be viewed 
as a generalization of the models for link cost evaluations 
given in [14,15], since it covers the cases of state-dependent 
arrival rates. The same feature is possessed by another 
recurrence solution given in [19] which was derived analo- 
gously to the equations for the mean of the first passage 
time of the Markov chain. 

C. Lank Mod el Simplaficat ions 
Despite significant reduction of state space in the MDPD 

model, one can still encounter some numerical problems or 
time constraints during the solution of (20) or (21) if the 
link state space X is very large. One obvious remedy is to 
simplify the link model. Such an approach is encouraged 
by the fact that the performance of the control is hardly 
affected even if the optimal values of shadow prices are 
changed by several percent. This feature is illustrated in 
Fig.1 where we presented the performance of the networks 
W7N and N7N (described in Section VI) versus parameter 
y by which all shadow prices in the decision algorithm are 
multiplied. The function H ( y )  is shallow in a quite large 
surrounding of the optimal points. In the following we 
present several simplifications that can significantly reduce 
the cardinality of the link state space. 

-1) Aggregation of Lank Call Classes: Let us construct a 
modified link reward process in which the link call classes 
with the same bandwidth requirement and mean holding 
time are aggregated into one class i with an average reward 
parameter defined as 

where Ii(7r) denotes the average rate of j-th class tails 
accepted on the link. In general the aggregated reward 

0.8 

0.6 
Q z 

0.4 

0.2 

exact - 
aggreg ------ 

.___.._ _ _  _____._____-.- ------ 
0 '  1 

0 5 10 15 20 25 30 35 40 45 50 
X'  

Fig. 2. Shadow price vs, link state. 

TABLE I1 
REWARD LOSSES, H, AND SHADOW PRICE ERROR, a, 

FOR DIFFERENT LINK MODELS 

N7S - nominal conditions 

exact 42.0 3.60.1 0.28 f.05 
agggreg. 42.0 3.60.1 0.036 0.30 f . 05  
SAR 42.0 3.6 0.001 0.27 6.03 

~ ~~ 

N7S - overload conditions 

exact 46.2 6.60.0 4.37 f . 12  
a&Feg- 46.2 6.60.0 0.063 4.43 f .16 
SAR 46.2 6.6 0.053 4.38 f .12 

- Ad, Am denote total arrival rates of direct and multilink streams 
offered to a link, respectively. 

process should be statistically close to the original process 
so one can expect that 

pj(x, p:'(x, T> ; j E i (28) 

In fact it can be shown (for details see [27]) that in many 
cases this relation becomes equality. In particular this is 
true when all streams have Poissonian not state-dependent 
arrival rates. The results for an opposite case are presented 
in Fig.2 and Table I1 (the studied network example N7S is 
described in Section VI). The control version with priority 
for direct link is applied (for details see Section VI) so each 
direct link stream has steady Poissonian arrival rate and 
multilink streams are state-dependent (modeled according 
to (15)). The values of link shadow prices p ( z ' ) ,  where 
z' is the total number of carried calls, presented in Fig.2 
indicate that the model based on aggregation overestimates 
the shadow price and the error (compared to the exact state 
description) is in the range of few percent of the average 
link call reward (in this case the shadow prices are the same 
for direct and multilink calls). Despite this overestimation 
the differences in the reward losses H ,  presented in Table 
11, are within the confidence intervals (simulation model). 
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Additionally the call average of the absolute error in the 
values of shadow prices, Z = Ee[p:’(x, a*) - p j ( x ,  a*)],  is 
given (based on link analytical model). 

2) Steady Am’val  Rates: In the model for link arrival 
rates evaluation, (15), the largest part of the complexity is 
attributed to the evaluation of filtering probabilities. To 
assess the importance of these probabilities from the net- 
work performance point of view we investigated a simplified 
model (henceforth called SAR) where the filtering probabil- 
ity is assumed to be equal to one for all states. The results 
for the network example N7S are presented in Table 11. 
The comparison between the exact and SAR link models 
shows that although the error in shadow price values, E, is 
as large as a few percent of the call reward parameter value 
(rj = l), its influence on the network reward losses, H, is 
negligible. 

3) Decomposition of the link model: Let us divide the 
link call classes into two groups: narrow-band (NB) class 
with d ,  = 1 and wide-band (WB) classes with di > 1. 
The main idea of the link model decomposition is based 
on the assumption that since the transition rates of wide 
band calls are expected to be significantly smaller than the 
ones for NB calls, the NB calls reach the steady state dis- 
tribution instantaneously for each state of WB calls. This 
feature known also as near co lete decomposability allows 
to analyse the stationary pr rties of the system sepa- 
rately for NB Markov process (for each state of WB calls) 
and WB Markov process. After applying this decompe 
sition technique, the shadow prices for the NB calls can 
be evaluated from the recurrence solution (23-26) and the 
evaluation of the shadow prices for WB calls is simplified 
by neglecting the NB calls (in the case of one WB call 
class also the recurrence solution can be used). The mu- 
tual influence of the two processes is taken into account 
by reducing the arrival rates of WB calls (blocking caused 
by NB calls), by adding the average reward from NB calls 
to the rate of reward from WB calls and by applying the 
dynamic bandwidth allocation (DBA) [13] to protect WB 
calls against NB calls. More details on this model can be 
found in [27, 131. The efficiency of this approach (hence- 
forth called DLM) is illustrated in Section VI. 

V. AVERAGE SHADOW PRICE AS 
A SENSITIVITY MEASURE 

Let us define the average path net-gain, J j ( a ) ,  in the exact 
model as 

Y j ( r )  = Ez[gj(”, .)I = ~ ( 2 ,  r)gj(z ,  a )  (29) 
Z E Z  

where Q(s,  a)  denotes the state probability and g j ( z ,  a )  = 
0 for n where call j is rejected. 

Theorem 1 : In the exact network model the derivative of 
average network reward with respect to  am’val rate of class 
j is  given by  

Proof : From the sensitivity analysis models presented 
in [28, 291, it follows that in the case of our system the 
right-hand derivative is given by 

where p’(z, u) denotea the reward rate of the process with 
one additional call added randomly at time to. By using 
(6) it can be shown that (31) is equivalent to 

Analogous proof holds for the left-hand derivative. In this 
case one call is removed randomly from the system. 1 

For further considerations it is convenient to define the 
derivative of the average network reward with respect to 
the average rate of calls accepted on the path: 

-k 
where AAj corresponds to the change of the average rate 
of calls accepted on path k in case A j  is changed by AAj 
but all calls from AAj atre ignored except ones that would 
be carried on path k. In the same manner as proof for 
Theorem 1 one can show that 

d z  
7 = Eebj”(z, a:,] = Qj(Z, 7r)gj”(z, a )  (34) 
dAj ZEZ 

where Qjk(z, a )  denotes the probability that the j-th type 
call offered to the k-th path is accepted in state z. 

It can be shown that in the MDPD model we have 

Since the Tneorem 1 is valid also for the MDPD model, 
based on (30, 34, 35) we have 

and 

d A j  a € k  

The results from the sensitivity analysis can be applied 
to optimization of the load sharing policy, a f ,  where the 
j-th type call is offered to the k-th path with probability hi” 
so A; = hf A j  . We do not impose any policy concerning call 
admission to the path. In case the call cannot be accepted 
by the chosen path it is lost. The reason for considering 
this scheme is that conclusions from its analysis can be 
helpful in analyzing and improving other schemes. 
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a?i d Theorem 2 : Equalization of the derivatives ,w on 

all paths w e d  b y  call class j ,  as a necessary condition to  
maximize R ( d )  over the load shaPdng probabilities, { l a ! ) .  

Proof : By changing the optimization variables from hj to 
A; and transforming the first order Kuhn-Tucker conditions 
one can achieve the following optimality conditions 

where uj denotes the associated lagrangian multiplier. This 
condition also implies that a path with negative &) 

Note that due to (361, in the MDPD model, the opti- 

aE T’ 

ax, 
should not be offered any traffic of type j. 

mality conditions can be rewritten as follows 

If we restrict the model to telephone networks with load 
sharing strategy and without call admission control on the 
path level (all calls are accepted if there is free capacity), 
it can be shown that the average shadow prices in (39) are 
the unique solutions to the equations 

(40) 
where E(.) denotes the Erlang’s formula, i is the index of 
stream using the s-th link with Na trunks, A 8 ,  Aa denote 
the rates of the superposition of all calls offered to and ac- 
cepted on the link s, respectively. Almost identical results 
as (39,40) were obtained by Kelly [17] for a telephone net- 
work with the load sharing policy but based on a different 
model (no MDP). In fact the only difference is in the defini- 
tion of the link reward parameter which in [17] is given by 
(19) in place of (17). The explanation of this difference is 
that although in both cases the evaluation of the average 
shadow prices (shadow price in [17]) is based on the de- 
composition of the Markov process, resulting in the Erlang 
fixed-point approximation, the reward process is treated 
differently. In the case of MDPD the reward process is 
also decomposed providing that rj = CsEk rj(6(7p) and con- 
sequently Z(x) = E, X(T) .  This feature can significantly 
simplify network dimensioning and the routing optimiza- 
tion problem with blocking constraints (see [23]). In the 
case of Kelly’s model the reward process is not decomposed 
and it is easy to show that in general rj # CsEk r j ( ~ )  so 
the separable link average rewards cannot be defined. 

- 

VI. MDPD PERFORMANCE ANALYSIS 
The performance analysis was performed for the network 
examples described in Table 111. The levels of traffic and 
network structures in examples W7N, N7N and N l l N  are 
similar to the examples based on the ITU data for tele- 
phone networks [19]. They are non symmetrical but well 

TABLE 111 
DESCRIPTION OF NETWORK EXAMPLES 

symmetrical 
# nodes 

% traffic 
traffic [Erl.] 
overload [%I 
link capacity 
r :  = r jp j  Jdj 

W7N 

no 
7 

1, 6 
1, 10 
50 % 
2466 
+lo 

0-200 
1 

w 7 s  

1,12 
1,lO 
49 % 
2058 
+10 
120 
1 

W8N 

no 
8 

1,12 
1,lO 
35 % 
394 
+20 
120 

1 

W6N 

no 
6 

1, 6 
1, 1 

33 % 
203 
+20 
120 
1 

N7N N7S 
no yes 
7 7  
1 1  
1 1  

0 %  0 %  
1137 1722 
+lo +lo 

7-170 50 
1 1 

Nl lN 

no 
11 
1 
1 
0% 
10355 
+lo 
0-439 

1 

W8N 

high level 
of M l C  

low level 
of traffic 

W6N 
A 

Fig. 3. Network connectivity and traffic structure 
for examples W8N and W6N. 

connected and well dimensioned. The examples W7S and 
N7S are fully connected and symmetrical. Finally the ex- 
amples WSN, W6N, created to show some particular fea- 
tures, are not well connected and not well dimensioned 
(e.g. specific hour in the multihour case). The structure of 
examples WSN, W6N are presented in Fig.3. In all exam- 
ples the length of alternative paths is limited to two links. 
The policy iteration procedure was implemented with the 
direct routing, nd, as the initial policy and the value iter- 
ation algorithm was used to evaluate link shadow prices. 
The applied link model assumes that the filtering probai 
bility is equal 1 for all link states (model SAR from Section 
IV.C.l), uses D2 model for call reward parameter division 
(Section 1V.A) and aggregates all link call classes with the 
same bandwidth requirements. The 95% confidence inter- 
vals for simulation results are presented in the tables. For 
the sake of the presentation clarity they are omitted in the 
figures, nevertheless they can be approximately agsessed 
from the corresponding examples in tables. 

Since the exact solution is not computable for any rea- 
sonable example, in the following we use an indirect anal- 
ysis to investigate important features of the model. 
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z 
4 

10 

8 -  

N7N 

N l l N  

W7N 

6 -  

4 -  

N7N 

N l l N  

W7N 

6 -  

4 -  

0 ’  I 
0 1 2  3 4 . 5  6 7 8 9 

iter 

Fig. 4. Convergence of the policy iteration algorithm. 

A. Convergence 
The convergence of the proposed policy iteration scheme 

can be influenced by the accuracy of statistics used for eval- 
uation of link arrival rates. To minimize influence of this 
factor in our study the policy updating period is equal to 
ten maximum mean holding times. Typical examples of the 
convergence of the algorithm are presented in Fig.4 where 
the average reward losses, H, are given as a function of 
the number of iteration cycles, i. Observe that the policy 
achieved after the first iteration (shadow price evaluation 
based on direct routing) is equivalent to the approach pro- 
posed in [14, 151 for telephone network (see Section 111). 
The results indicate that by neglecting the multilink flows 
the performance of the routing can be deteriorated by sev- 
eral hundreds of percent (examples W6N and N l l N ) .  The 
convergence of the proposed algorithm is very fast and in 
all tested cases two iterations are sufficient to achieve pol- 
icy close to the limit one. In the sequel all results are given 
for 8 iterations (arbitrary number). 

B. Path Selection 
To investigate the optimality of flow distribution we con- 

sider two modifications of the path selection algorithm. In 
the first one the direct link has priority. It means that a 
new call is offered to the direct link whenever the direct 
link net-gain is positive, otherwise a path with maximum 
positive net-gain is chosen. In fact the priority for direct 
link is commonly used in most existing and proposed rout- 
ing schemes for circuit switched networks (e.g. [16,30]). 
The second modification utilizes the result from sensitiv- 
ity analysis presented in Section V. Namely we increase 
probability of choosing path with higher value of 4, by 

modifying the path net-gain (for path selection purpose 
only) as follows 

d X j  

TABLE IV 
IMPACT OF DIFFERI~NT PATH SELECTION SCHEMES 

ON REWARD LOSSES [%] 
~ ~ 

MDPD priority MDPD’ SEQ 
a = o  a = o  a = 0.6 a = 1.0 

nomind conditions 
~ 

W7N 1.03 f .12 0.79 f .14 0.83 f .20 0.88 f .15 
W7S 1 .10 f  .17 0 .97 f  .23 0.90 f .15 1.21 f .27 
W8N 0.91 f .17 25.81 f .37 0.70 f .14 2.29 f .22 
N7N 1.42 f .09 1.02 f .09 1.07 f .09 1.18 f .lo 
N7S 0.76 f .07 0.17 f -03 0.26 f .04 0.48 f .05 
NllN 0.51 f .06 0.:12 f .03 0.20 f .05 0.26 f .05 

overload conditions 

W7N 4.83f  .30 4.34f  .24 4.57 f .37 4.27f .30 
W7S 5.54 f .43 4.80 f .40 5.13 f .45 5.46f .44 
WSN 5.02 f .31 33.87f .25 4.92 f .29 10.50 f .26 
N7N 6.10 f .10 6.08 f .11 6.00 f .11 6.18 f .10 
N7S 4.60 f .12 4.38 f .12 4.42 f . l l  4.90 f .10 
NllN 5.19f . l l  5.:34 f .12 5.11 f .13 5.28f .10 

- 
where a = [0,1] is a weighting factor and % is substi- 

tuted using (37). The riztional of this modification can be 
explained as follows. Firstly, by increasing the flow on the 
paths with higher value of 4 the algorithm tries to equal- 

ize, whenever possible, the average net-gain of the used 
paths (the optimality condition for load sharing strategy). 
Secondly, the model for evaluation of the average shadow 
prices is not directly influenced by the link independence 
assumption thus the derivative 4 is less biased by this 

assumption (compared to the state dependent path net- 
gain). 

The results presented in Table IV show that priority for 
direct link provides marginal improvement in the perfor- 
mance of well connected and well dimensioned network ex- 
amples especially in nominal conditions. But in the case 
of W8N example the performance is significantly deterio- 
rated by the modification. These results indicate that in 
the MDPD the flow distribution can be slightly biased by 
the link independence iulsumption. On the other hand it is 
clear that priority for direct link should not be used as a 
general solution. 

The performance of the second modification as a function 
of CY is presented in Fig.5. The performance for a = 0.6 
(MDPD’) and a = 1.0 (SE&) is also presented in Table 
IV. In the first phase of increasing cy the control perfor- 
mance is approaching the performance of the case with 
priority for direct link when this scheme provides perfor- 
mance improvement. Thus, in this range, the feature of an 
adaptive load sharing routing is correcting the flow distri- 
bution. In the second plhase, when a approaches unity the 
average blocking is increasing in most cases. This is caused 
by the fact that in this range all paths - for given OD are 
ordered according to thle value of % and the sequential 

choice in many cases does not provide optimal flow dis- 

d 4  

dX, 

dX 

dXj 
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Fig. 6. Convergence of the algorithm with a = 0.0 and a = 0.6. 

tribution. From a practical point of view it is important 
that in most tested cases the optimal value of Q falls in the 
interval [0.3,0.?] and that the function H ( a )  is shallow in 
this interval. This indicates that one value of Q can pro- 
vide close to optimal performance for all networks. Based 
on this premiss we use Q = 0.6 (MDPD') in all subsequent 
considerations. 

The correction factor has also influence on the conver- 
gence of the algorithm. Namely besides improving perfor- 
mance of the final policy (i 2 2) it can also significantly 
improve the performance of the policy after first iteration. 
This is illustrated in Fig.6. Finally it should be stated that 
under heavy overload the flow distribution error is disap- 
pearing since the probability that a multilink path is chosen 
when direct link is available is negligible. This is shown in 
Fig.7. 

6. GOS Dastribdion Control 
To illustrate the powerful influence of call reward pa- 

rameters we present in Fig.8 the blocking probability of NB 
calls, €In (average over all classes), the blocking probability 
of WB calls, Bw (average over all classes) and the weighted 
overall blocking probability, Bt , versus normalized reward 
parameter of WB calls, rI, ( I.; = r j p j / d j ) .  As can be seen 
the reward parameters provide a tool for controlling the 

10 

Y 
0.1 ' 

0 2 4 6 8 1 0 1 2 1 4  
overload [%] 

Reward losses vs. overload factor (ex. Nl lN) .  Fig. 7. 

14 I 

1: 

0.5 1 2 
rl, 

Fig. 8. Traffic losses YS. reward parameter 5-h 
in network example W7N. 

ratio of WB traffic losses to NB traffic losses over a very 
wide range including their equalization. The control of 
individual stream is illustrated in Fig.9. In this case the 
blocking of WB stream, Bj,  offered to the j-th origin des- 
tination node pair can be controlled over a wide range by 
its reward parameter, rj ,  while the average network losses, 
Bt,  are little influenced. 

Fig. 9. Traffic losses vs. reward parameter r i  
in network example W7S. 
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TABLE V 
REWARD LOSSES [%I FOR DIFFERENT ROUTING STRATEGIES 

MDPD’ LLP DLM 

nominal conditions 

Wi” 0.83 f .20 1.20 f .08 0.96 f .16 
w 7 s  0.90 f .15 1.17 f .08 0.89 f .12 
W8N 0.70 f .14 9.93 f .20 0.89 f .30 
N7N 1.07 f .09 1.26 f .09 
N7S 0.26 f .04 0.37 f .02 
NllN 0.20 f .05 0.34 f .07 

overload conditions 

the authors believe that Ithe qualitative conclusions can be 
generalized to all LLP schemes due to some inherent fea- 
tures of the MDPD’ and LLP schemes. Obviously the gen- 
eral argument could be sthat the MDPD’ approach is de- 
rived from the optimal model. But this statement can be 
also supported by two more detailed yet simple arguments. 
Firstly, although both the MDPD’ and the LLP schemes 
are using all link states to make the decision, in the case 
of LLP only the state of the path’s link with smallest free 
capacity counts. It means that the probability of choos- 
ing the path is not changed for a whole range of states on 
the other links providing that their free capacity is larger 
than or equal to the bottleneck. In the case of MDPD’. the 

W7N 4.57 f .37 5.71 f .18 5.29 f .28 state of each link influences the path net-gain thus more 
information about the network state is used in the decision. w 7 s  5.13 f .45 5.97 f .29 5.31 f .33 

W8N 4.92 f -29 13.15 f .23 5.58 f :41 
N7N 6.00 f .ll 6.42 f .07 Secondly, the decision in the MDPD’ model takes into ac- 
N7S 4.42 f .ll 4.53 i -07 
NllN 5.11 f .13 6.93 f .03 

D. Comparison with LLP and DLM Strategies 
For the comparison with the reward maximization ap- 

proach we have developed a policy which is an extension 
of the least loaded path approach proposed in [30]. In the 
extended model a call from class i is offered to the direct 
link first and if it is blocked a recommended path is tried. 
The recommended path is chosen randomly with the prob- 
ability proportional to the path’s available capacity defined 
as: 

(42) -E zi - - min[Na - C zt di - t i  - hp (XI] 
i sEk 

where ti denotes the trunk reservation level (protecting di- 
rect calls against multilink calls) and hf(x) denotes the 
number of of trunks reserved for WB calls in state x (pro- 
tecting WB calls against NB calls). Concerning the eval- 
uation of t f  we tried approaches which varied from the 
published adaptive schemes via some heuristics to a search 
through the space of all possible combinations in case of 
symmetrical networks. The best results are reported. Con- 
cerning the evaluation of hf(x)  we applied the the dynamic 
bandwidth allocation algorithm, DBA [13, 271 (also used 
in the DLM strategy). It is clear that hi(.) = 0 for WB 
calls. As has been shown in [13, 271 the performance and 
structure of DBA are close to optimal. Note. that in the 
DBA model the link bandwidth is shared among services. 
This is in contrast with [7] where a part of the bandwidth is 
dedicated to particular services and limits on the maximum 
number of each type calls are set. 

The comparison of the performance of MDPD’, LLP and 
the approach based on link model decomposition, DLM 
(Section IV.C), is given in Table V. In all tested exam- 
ples the performance of the MDPD’ model is better than 
that of the LLP model though the differences are relatively 
small in most cases. The exception is the example W8N 
where the performance of the LLP model is significantly 
worse, This is mainly caused by the priority for direct link 
scheme used in the LLP approach. Although the results 
are achieved for a particular version of the LLP approach 

count the current flow distribution in the network by using 
the traffic measurements; in the evaluation of the shadow 
prices. This feature allovvs to model the system dynamics. 
In the case of LLP the network state information is static. 

The performance of the DLM model is in all cases close 
to the MDPD’ model. This result confirms the conclusion 
from Section IV. C that simplified link models for shadow 
price evaluation can provide good performance. 

VII. CONCLUSIONS 
The model presented in the paper contributes to the field 
of network control in several areas. From the applica- 
tion point of view the inain contribution is synthesis of 
a control strategy for miultiservice networks where all ba- 
sic functions, including control of each service GOS, are 
included and optimized in one homogeneous, theoretically 
based model. The important feature of this approach is 
the real-time traffic measurements which feed the model 
with the current flow distribution and provides that the 
control policy adapts to a time variable traffic demand. It 
is also significant that onice the scheme is implemented the 
control of GOS can be executed by simply varying the call 
reward parameters. From the modeling point of view the 
main contribution is the decomposition of the network re- 
ward process into separ(ab1e link reward processes. This 
decomposition permits an implementable solution of the 
network Markov decision problem while the full policy it- 
eration procedure is preserved. The approach, together 
with its sensitivity analysis provides also a general frame- 
work for studying, constructing and optimizing other call 
admission and routing strategies. 

The proposed approach also opens up some new areas 
of investigation. In particular decompoaitian of the net- 
work reward process into a set of separable link network 
processes allows one to introduce new economical consid- 
erations in network dimensioning, planning and manage- 
ment. The basis for these considerations is setting a rela- 
tion between the link cast, reward from the link and call 
reward parameters. A preliminary discussion of these is- 
sues is given in [23]. Another potential area open to inves- 
tigation is application of the model to control ATM based 
networks. This might require further simplifications in the 
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link model. Some preliminary results on this subject are 
given in [31]. Finally, a model for sensitivity of blocking 
probabilities with respect to the reward parameters would 
help to take full advantage of the ability to control GOS 
distribution. 
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