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Summary 
The  stability of non-hierarchical  circuit-switched  networks is 

considered. New results  are  derived,  using  the  equilibrium flow 
technique. which relate  various  parameters  to network stability. 
It is demonstrated  that  instability is a pervasive phenomenon 
in networks  with  mutual overflow. while trunk  reservation  and 
route  cancellation  provide effective means  to  stabilize  an  oth- 
erwise unstable  network. A simple  expression is derived for a 
stabilizing  reservation level. 

1. Introduction 
Instabilities in networks?  employing  non-hierarchical  rout- 

ing. were  first reported by Sakagomi  and  Mori '. Krupp '. pre- 
sented  simulation  results which exhibited  bistable  behavior in 
networks  with  non-hierarchical  routing. He  also demonstrated 
that  a  small  amount of trunk  reservation removed this  unde- 
sirable  feature.  Marbukh  carried  out  a  dynamic  analysis of 
the  asymptotic  network, which contains  an infinite number of 
nodes  and  bypass  routes.  In  an  equilibrium flow analysis  was 
made for uniform  symmetric  networks  with  a  finite  number of 
alternate  routes.  Akinpelu '. has  considered  the  performance 
of engineered  networks  with  non-hierarchical  routing  and  trunk 
reservation. 

Several characterizations of network  instability  are possible 
'. The list includes : non-uniqueness of the  equilibrium flow 
pattern:  multi-modality in the  state  probability  distribution: 
eigenvalues corresponding  to  dynamic  modes  with long time con- 
stants:  bifurcation in the  dynamic  state  phase  trajectory; discon- 
tinuities in the  input-state-throughput  characteristics:  hysteresis 
in the  static load-loss or  load-state  relation. 

Several techniques have  been  employed to  investigate  the 
stability of multi-access  networks '. including  exact  and  approx- 
imate  static  models.  transient  analyses,  and  catastrophe  theory, 
where it has been shown  that  the  equilibrium flow technique 
provides  reasonably  accurate  predictions in regard  to network 
stability.  In  the  context of non-hierarchical circuit-switched net- 
works. all of the  analyses so far reported. employ approximate 
static  or  dynamic  models  due  to  the  large  state  space  associated 
with  an  exact  analysis. 

2. Static  Equilibrium  Flow  Analysis 
Three different models have been  considered  to  determine 

the effect of various  system  parameters on stability. Specifically, 
the  models  considered  are  the 1) uniform  symmetric  asymptotic 
network with  trunk  reservation. 2)  uniform  symmetric  network. 
with a finite  number of alternate  routes  and 3) small  non-uniform 
networks.  The first model serves to  confirm  that  the  static equi- 
librillm flow is equivalent  to  the  steady  state give11  by the dy- 
narrlic analysi;  rqmrted in '. It provides  information on the 
effect of trunk  reservation.  group size. arid path  length on sys- 
tem stability.  The  second model s e n w  to show the effect of 

alternate  route  multiplicity  (or flow control  via  route cancella- 
tion)  and traffic  peakedness  on network  stability.  The  last  model 
illustrates  the effect of non-uniformity in trunk  group size and 
traffic distribution  on  system  stability. 
2.1 The  Asymptotic  Network  Analysis 

Here we consider a  complete network consisting of N + 00 

nodes,  where  each  pair of nodes is connected  with  a two-way 
trunk  group of L trunks  capacity.  The exogenous two-way 
traffic demand  between each 0 - D pair is A Erlangs. For each 
trunk  group of size L, there  exists L - r trunks available  only 
to  direct traffic. The  remaining r trunks  are  available  to  both 
direct  and  alternate  routed  traffic. For each alternate  route, 
there  are S trunk  groups in tandem  connecting  the considered 
0 - D pair. Exogenous  traffic is first offered to  the  direct 
group. If it is full.  then  the call is randomly  routed to  the 
set of alternate  paths where all links  on  such paths have an 
occupancy X, less than  the  reservation  threshold, r. This traffic 
distribution  can  also  be  interpreted as that  obtained by scanning 
Shop  paths  sequentially  and  routing on the  first  path were all 
link occupancies X < r .  In this  latter  interpretation we need 
symmetrical  routing  to  assure all links receive the  same offered 
traffic. Assuming link independence.  and Poisson  traffics offered 
to each link,  the  state  dependent  birth  and  death  rates  are 
easily obtained by using the  symmetry  and uniformity. It is 
straightforward  to show that  the  equilibrium flows satisfy  the 
polynomial 

(1 Z i / i ! ) ( Z / A  - 1 )  = SZ'T 
r-1 AL-7 

i = O  

where Z is the link offered traffic. in Erlangs, which  includes 
both  direct  and overflow traffic. Figure 1 .  shows the  relationship 
between the link offered traffic, Z. and  the exogenous  traffic, A ,  
for various levels of trunk  reservation, r .  
Stabilizing  Reservation  Threshold 

An analytic  approach  to  determining  the  system  stability is 
possible, by considering  the flow equation (I), as a  polynomial 
in 2,  given A as the  parameter.  Instability now corresponds  to 
a  multiple  positive  roots, Z(A),  for some  positive A. 

Expanding (1) in  descending  powers of 2 results in 

We observe  that  the coefficient of Zk. k < 7 :  is positive for A < k 
and  negative for .i > k. Defining a  critical traffic level I' by 
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If A > A' the coefficient of 2' 1b negative  while if A < A' it is 
positive. 

An  optima1,reservation  threshold. R', exists  among  the set 
of stable  reservation  thresholds. r* . where 

R' = max{r'} (4) 
t* = { t I A ' ( t )  - t > -1} (5) 

For  an  optimal  reservation,  where L - R' trunks  are reserved 
for direct traffic  only, and all A < R' - 1: there is a single 
sign change in the coefficients implying  at  most  one positive 
real  root. For A in excess of R' - 1? there  are  no positive  real 
solutions.  This implies that  the  throughput is maximized for the 
reservation level R' as defined by equation (4) .  This is also the 
point  at which the  system becomes stable. If r > R* then  two 
sign  changes  occur in the coefficients for A * ( T )  < A < A * ( R * )  
allowing for  multiple positive real  roots  and  instability. 
2.2 Uniform  Networks with  a Finite  Number of 

Alternate  Routes 
The  underlying network may have a  finite  or  an infinite 

number of nodes, provided that all  links have  equal  capacity, 
the  networks  are  complete  and two-link sequential  routing is 
employed.  The  asymptotic  network,  considered in  section 2.1, 
corresponds  to  the  limiting  case of networks  considered in this 
section  when  the  number of alternate  routes increases without 
bound  and S = 2. All results given in this  section  correspond 
to  the case  without  trunk  reservation. As will be  subsequently 
shown,  unstable networks can  be  stabilized by cancelling  a suf- 
ficient number of alternate  routes.  This is a  form of  flow control 
which has long been employed in the public switched network. 

An analysis  was previously made  for  the  stability of such 
networks,  where  the effect of group size, number of alternate 
routes,  and  call  control  procedure  (sequential office control, 
SOC,  and  originating office control,  OOC),  on  network  stability 
was  considered.  Here we summarize  those  results  along  with  the 
effect of traffic peakedness  on  system  stability. 

Figure 2. indicates  that increasing trunk  group sizc L,  
and  number of alternate  routes, k ,  reduces  the  stability  margm 
for the  OOC  call  control  method.  SOC  networks  are  much 
more  stable  than  OOC  networks, which is not  surprising as the 
pocketed calls act as a  form of  flow control.  Peakedness in the 
traffic streams  tends  to  reduce  the  stability  margin  relative  to 
random  traffic. 
2.3 The  Non-uniform  Network 

In  order  to assess the effect of non-uniformity in trunk  group 
size, N;, and traffic demand, Xi, on stability,  a  simple  asym- 
metric  network  was  analyzed.  Here,  the  first offered traffic, Xi, 
offered to  path,  i. i = 1 ,2 ,  overflows to  the  other  group?  with 
the  volume of overflow being  determined by the  Erlang  B for- 
mula. No trunk  reservation  was included in the  model.  The 
overflow streams  are  multiplied by the  gain  factors, gi, which 
can  be  interpretted as the  ratio of the  number of hops in the 
secondary to  the  primary  paths.  Alternate  routed traffic: which 
is blocked, is cleared  from  the  system.  To assess the  stability of 
the  system we derive  an  expression for the link offered traffic to 
path 1, namely, A I ,  in terms of the traffic demand  vector, XI, 
and X p .  This  results in a  polynomial for A1 with AI. and X 2 ,  
as parameters in the coefficients. Multiple  positive real roots of 
this  polynomial  indicate  that  the  system is unstable.  Making 
the  appropriate  substitutions  and  rearrangements we obtain a 
polynomial in A I .  where we have  used the  Binomial  expansion 
formula. 

(A1 - X,) Ai/i! 2 ( ~ ) ( g 2 X , A : Y I / ( N l ! X p ) ) ' ( ~  A ; / i ! ) N z - k  
h'Z 

1 4  k=O 

1% 1 

;dJ 

= o  
Figure 3. shows the regions of multiple  roots for the  uniform 
and  nonuniform  networks. In the  language of catastrophe the- 
ory 7: these regions are  the  bifurcation  sets  associated  with  the 
cusp  catastrophe. A number of conclusions  can be drawn  from 
this  diagram,  the  most  important  being  the  fact  that  instability 
is not  limited  to  large  uniform  networks  with  uniform traffic. 
In fact  the angle subtended  about  the  origin? by the  bifurca- 
tion  set, is larger  for  the  non-uniform  case.  This  implies  that 
instabilities  occur in non-uniform  networks for a  larger  range of 
traffic asymmetries  than is the  case for uniform  capacity  net- 
works.  On  the  other  hand,  the  width of the  bifurcation  set is 
smaller  for  the  non-uniform  case,  suggesting  that  a lower level of 
trunk  reservation will be  needed  to  stabilize  them  than  for uni- 
form  networks.  This  suggests  that  a  conservative  approach  to 
stabilizing  non-uniform  networks, involves using  the  stabilizing 
reservation  threshold, R*. 

3. Conclusions 
The  analyses  have served to  confirm  the  hypothesis  that 

positive feedback  in the  mutual overflow streams is the  cause 
of instability.  The  analysis  demonstrates  the pervasive nature 
of the  instability  phenomenon in systems  with  mutual overflow. 
An  analytic  approach  has been  employed to  ascertain  the effect 
of a  number of parameters on the network stability.  The list 
includes,  the effect of trunk  group  size?  the  number of alternate 
routes,  routing  discipline, call set-up  procedure,  non-uniformity 
of group sizes, offered load,  number of hops/pathl  static  trunk 
reservation levels, and  peakedness in the link offered traffics. 
Generally we find that  instability  can  occur for  sufficiently  large 
trunk  groups  and  number  alternate  routes in mutual overflow 
schemes.  Trunk  reservation  and  route  cancelation  are powerful 
tools  for  stabilizing,  an  otherwise  unstable  network. For the 
asymptotic  symmetric  networks,  a  simple  analytic expression 
has  been derived for  a  stabilizing  reservation  threshold, as a 
function of trunk  group size. It is conjectured  that  this provides 
a  conservative  reservation level for nonuniform  networks.  A 
curve  relating  a  stable  number of alternate  routes  as a function 
of group size has been given for the  uniform  network. We also 
conjecture  that  this will be  a  conservative  rule for stabilizing 
nonuniform  networks  via  route  cancellation. 
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