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Abstract

We propose a novel approach using active probing
and learning techniques to track minimum delay paths
for real-time applications in service overlay networks.
Stochastic automata are used to probe paths in a de-
centralized, scalable manner. We propose four varia-
tions on active probing and learning strategies. It can
be proved that our approach converges to the user equi-
librium for minimum delay routing. The performance
of these strategies is studied via fluid simulations of a
model of AT&Ts backbone network. The simulation re-
sults show that the proposed strategies converge to the
minimum delay paths rapidly. We also observe, via sim-
ulation, that our approach scales well in the size of the
service overlay network.

1. Introduction

With the trend of service convergence in next genera-

tion networks, real-time applications such as voice over
IP (VoIP), video streaming, and IPTV are drawing sig-

nificant interest from industry and consumers. However,

the current best-effort Internet routing cannot satisfy the

strict quality of service (QoS) requirements for real-time

applications, such as low delay.

Service overlay networks (SONs) have been em-

ployed as a cost effective way of improving quality of

service over the current best-effort Internet. Service

overlay gateways in a SON are connected via virtual

overlay links above the transportation layer. These ser-

vice overlay gateways can be used to provide alternative

routes with better quality of service characteristics than

the direct path determined by underlying internet routing

protocols. This paper studies the problem of identifying

minimum delay paths in a service overlay network.

Low end-to-end delay is one of the most important

quality of service requirements for real-time applica-

tions. For example, VoIP requires the mouth-to-ear de-

lay to be less than 150ms. In many cases, the minimum

delay path provides the best quality for VoIP and other

real time streaming applications. However, the mini-

mum hop path, as determined by the underlying network

routing protocols, does not guarantee minimum delay.

In [11], minimum delay paths are learned based on end-

to-end delay estimation. In our work, no delay estima-

tion is involved. The papers [8, 9] are very close to our

work. The paper [9] studied the LRI algorithm where

environment feedback is either 0 or 1, while in this pa-

per the network delays are continuous values [7] where

cross-correlation algorithm is applied. This paper is an

extension of the paper [8], i.e. learning automata control

only the probing process rather than the routing for all

flows as in [8].

Our main contribution is to propose, analyze and sim-

ulate an active probing and learning algorithm using dis-

tributed learning automata to find the minimum mean

delay paths in service overlay networks. In a service

overlay network, where the performance of the under-

lying network is random and unknown to the overlay

nodes, it is beneficial to actively probe the network per-

formance to find the minimum delay overlay paths. In

order to determine minimum delay routes we must probe

the current network state. However, we desire a prob-

ing scheme that 1) does not inject an excessive amount

of traffic just for probing, 2) that scales well to large

overlay networks, and 3) that can adapt to changing net-

work conditions. In order to address these three goals

we adopt a reinforcement learning technique: the cross-

correlation learning algorithm [7]. The basic idea is that,

at each probing epoch, the path probed is chosen ran-

domly according to a distribution over a set of possible

paths between a given source and destination. The ob-

served delay for this probe is then used to reinforce this

path by increasing the probability of probing it again,
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and simultaneously decreasing the probability of prob-

ing the other paths. Precise details of the probing al-

gorithm are given below. Because paths with poor per-

formance receive little reinforcement, they are probed

less frequently, and consequently, excessive probing re-

sources are not wasted on paths that will likely yield low

quality of service. Moreover, because each service over-

lay node locally runs independent learning automata, the

algorithm scales gracefully to larger overlay networks.

The remainder of the paper is organized as follows.

Section 2 presents the proposed active probing and op-

timal path learning strategies. The experiment set up

and simulation results are presented in Section 3, and

we conclude in Section 4.

2. Optimal routing with active probing and
learning

In an autonomous system, minimum hop routing [3]

cannot guarantee the optimal performance in terms of

the mean network delays. This section describes an ac-

tive probing and learning framework to determine the

paths with minimum mean delay in a stationary dynamic

network environment. The optimal paths between all

sources and destinations are learned using distributed

learning automata. Specifically, we adapt the cross-

correlation learning algorithm, described in [7], to probe

paths through a service overlay network.

Given a full mesh service overlay network modeled

as a graph G = (V,E), where V = {1, ...,m} is the

set of nodes in the graph, E is the set of directed links

in the graph, we introduce one learning automaton for

each source-destination pair (i, k), i, k ∈ V, k �= i.
Let πk

ij(t), i, j, k ∈ V, denote the probability of send-

ing a probe from node i to destination k via next hop

j at time t. The automaton’s state probability vector

for source-destination pair (i, k) at time t is π̄k
i (t) =

[πk
i1(t), ..., π

k
ij(t), ..., π

k
im(t)], and it satisfies πk

ii(t) = 0
and

∑
j πk

ij(t) = 1. Probes arriving at node i destined

for k �= i at time t are forwarded to a next hop selected

randomly according to the distribution π̄k
i (t). When a

probe arrives at the destination a reply is transmitted

back to the originating node, and the round-trip delay

is measured. Let u denote the next hop node probed.

Then, the learning automata probabilities π̄k
i (t) (main-

tained at the source node, i) are updated using the cross-

correlation learning algorithm [7], for j = 1, . . . , m,

πk
ij(t + 1) = πk

ij(t) + G z(u, t) (δju − πk
ij(t)) (1)

where G is the learning gain of the algorithm, z(u, t) is

the reward for this probe, and δju = 1 if j = u was

the node probed and δju = 0 otherwise. Let d(u, t)
denote the measured delay, and let dmax be a pre-defined

maximum delay. The normalized feedback function (or

reward strength [7]) is given by z(u, t) = 1 − d(u,t)
dmax

.

Theorem 2.1 When the learning gain G is sufficiently
small, πk

ij(t) in the cross-correlation learning algo-
rithm converges to the user equilibrium θk

ij with ε-
optimality for the minimum delay routing problem, i.e.
limt→∞ P{|πk

ij(t) − θk
ij | > ε} = 0, where θk

ij = 1 if
node k is the optimal next hop for node i to reach node
j, otherwise, θk

ij = 0.

An outline of the proof is as follows. By setting G
sufficiently small, the stochastic approximation speci-

fied by the cross-correlation learning algorithm satisfies

the conditions for Kushner’s weak convergence method

[5] and converges to an Ordinary Differential Equation

(ODE). The solution to the ODE is proved to be globally

stable by finding a Lyapunov function for the end-to-end

delays. Please refer to [6] for detailed proof.

Table 1. Active probing and learning
Input: G = (V, E)
Initialization: t = 0, ∀k �= i, initialize π̄k

i (0);
Iteration:

At time t:

(1) Node i send a probe to the destination node k,

through a next hop node u selected randomly

according to distribution π̄k
i (t);

(2) Get feedback d(u, t) from the probe, compute

z(u, t) = 1 − d(u,t)
dmax

;

(3) update π̄k
i (t), for j = 1, ...,m,

πk
ij(t + 1) = πk

ij(t) + G ∗ z(u, t) ∗ (δju − πk
ij(t));

(4) t=t+1;

The active probing and learning algorithm is given

in table 1. The probability of sending a probe from the

source node i to the destination node k through a node

j is determined by πk
ij(0). The initialization, πk

ij(0) can

be thought of as representing our prior knowledge on

the probability of node j being the optimal path next

hop from i to k. Assuming no prior knowledge, we uni-

formly initialize the probability vector π̄k
i (0) to ensure

that all possible paths are explored, as given in equation

(2).

{
πk

ij(0) = 1
m−1 , j �= i, j ∈ {1, ...,m}

πk
ii(0) = 0

(2)

This method introduces random loops in the probing

path. It can be shown that there is high probability

of random loops on the probing path at the starting
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stage, and the probability increases with the network

size. However, because routes with loops will always

have higher delay than loop-free paths, the learning au-

tomata will automatically learn to avoid these loops [8].

In order to avoid these initial random loops, a ge-

ographical location aware initialization method can be

used. Let D(i, k) be the Euclidean distance (or the great

circle distance on a sphere) between nodes i and k. Geo-

graphical location aware initialization, for j = 1, ...,m,

as given by,

πk
ij(0) =

ID(j,k)<D(i,k)∑
j ID(j,k)<D(i,k)

(3)

where ID(j,k)<D(i,k) is an indicator function, guarantees

only the nodes whose distances to the destination node

k are less than that from the origin node i are probed.

We propose two approaches to actively probe and

learn the minimum delay paths: hop-by-hop learning

and end-to-end learning. In hop-by-hop learning, as il-

lustrated in Fig. 1, each intermediate node on the for-

ward path from a probe’s source node S to its destination

node D also receives feedback and performs learning

updates. In end-to-end learning, only the source node S
of the probe can learn from the end-to-end performance

measured by the probe, which is easier to implement at

the cost of slower learning speed. Please refer to the

technical report [6] for more detail.
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Figure 1. Hop-by-hop learning of the opti-
mal path from node S to destination node
D. barπk

i at each node is initialized uni-
formly.

The hop-by-hop learning allows all the intermediate

nodes on the forward path of a probe to get feedback

from the probe. As shown in Fig. 1, the forward path

of a probe is randomly chosen. On the forward path

of the probe sent from S to D, each intermediate node

i chooses its next hop node randomly according to its

state probability vector π̄D
i . The probe is required to

record all the intermediate nodes it goes through until it

reaches the destination node D. When the probe reaches

its destination node D, it has to follow the exact reverse

path of the forward path to go back to S. For example,

as shown in Fig. 1, the nodes on the forward path of the

probe with source-destination (S,D) are S, 4, 2, D. The

reverse path from D to S is then D, 2, 4, S. At each node

i on the reverse path, the state probability vector π̄D
i is

updated according to the round trip time from node i to

D.

3. Experiments

In the paper, a fractional Brownian motion (fBm)

process is used to model the Internet traffic [10]. The

gravity model is used to model the mean network traf-

fic demand between ingress and egress points of a net-

work [2, 13]. We also consider the time difference in

different time zones so that the number of active users at

each time zone varies with the GMT (Greenwich Mean

Time) [2].

The network topology under study is derived from

AT&T’s backbone network [1, 12]. It includes 50 nodes

located in the major cities in the United States.Our sim-

ulations are conducted in a fluid network [4] at time-

scale τ = 5ms. We simulated the probing and learning

process for a full mesh 10-node overlay network above

the 50 PoP (Point of Presence) node model of AT&T’s

backbone network, as shown in Fig. ??. The 10 overlay

nodes are chosen randomly from the 50 PoP nodes. Each

overlay node sends active probes periodically to all other

overlay nodes every 5 ms. For a source-destination pair,

the learned path is the path decided by the stochastic

automata; the optimal path is the minimum mean delay

path.

Let n denote the probe number, d̄(n) be the aver-

age delay on the learned paths. The mean delay on

the learned paths for probe number n is computed as

d̄(n) = 1
|V |(|V |−1)

∑
i,j∈V,i�=j dn(i, j), where dn(i, j)

is the delay measured by probe number n between node

i and j. The mean delays d̄(n) on the learned paths with

a learning gain of 0.001 and 0.01 are shown in Fig. 2. As

can be seen, the learning speed increases proportionally

with the learning gain for the simulated overlay network.

We also simulated the hop-by-hop learning method

for larger overlay network. Fig. 3 shows the learning

speed for hop-by-hop learning with uniform initializa-

tion in 10, 15, 20, 25 node overlay network. It can be

seen that the convergence speed does not change much

as the network size increases. Also note that larger over-

lay networks (20 or 25 nodes) converge at a slightly

slower rate, but that in general, the size of the over-

lay network does not dramatically impact the number

of probes required to learn minimum delay paths.
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Figure 2. Mean delays on the learned
paths (hop-by-hop learning) versus the
mean delays on the optimal paths and
those on the minimum hop paths.

4. Conclusion

In the paper, we proposed a novel method to learn

the minimum delay paths for each source-destination

pair in service overlay networks. Based on the cross-

correlation learning automata, we proposed four ac-

tive probing and learning strategies to learn the optimal

paths, which are uniformly initialized hop-by-hop learn-

ing, geographical location aware initialized hop-by-hop

learning, uniformly initialized end-to-end learning, and

the geographical location aware initialized end-to-end

learning. The performance of the proposed active prob-

ing and learning strategies is simulated in service over-

lay networks over a model of the AT&T’s network. The

simulation results show that the learning method con-

verges to the minimum mean delay paths very quickly

(around 5 seconds for hop-by-hop learning in a 10-node

overlay network), and the convergence speed scales well

with the overlay network size. The cross-correlation

learning algorithm can be proved to converge to the user

equilibrium. Future work will focus on applying the pro-

posed learning method for voice over IP packet routing

in service overlay networks.
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