Seventh IEEE International Symposium on Network Computing and Applications

Learning Minimum Delay Paths in Service Overlay Networks

Hong Li, Lorne Mason and Michael Rabbat
Electrical and Computer Engineering Department
McGill University, Montreal, Canada
hong.li2@mail.mcgill.ca, {lorne.mason,michael.rabbat} @mcgill.ca

Abstract

We propose a novel approach using active probing
and learning techniques to track minimum delay paths
for real-time applications in service overlay networks.
Stochastic automata are used to probe paths in a de-
centralized, scalable manner. We propose four varia-
tions on active probing and learning strategies. It can
be proved that our approach converges to the user equi-
librium for minimum delay routing. The performance
of these strategies is studied via fluid simulations of a
model of AT&Ts backbone network. The simulation re-
sults show that the proposed strategies converge to the
minimum delay paths rapidly. We also observe, via sim-
ulation, that our approach scales well in the size of the
service overlay network.

1. Introduction

With the trend of service convergence in next genera-
tion networks, real-time applications such as voice over
IP (VoIP), video streaming, and IPTV are drawing sig-
nificant interest from industry and consumers. However,
the current best-effort Internet routing cannot satisfy the
strict quality of service (QoS) requirements for real-time
applications, such as low delay.

Service overlay networks (SONs) have been em-
ployed as a cost effective way of improving quality of
service over the current best-effort Internet. Service
overlay gateways in a SON are connected via virtual
overlay links above the transportation layer. These ser-
vice overlay gateways can be used to provide alternative
routes with better quality of service characteristics than
the direct path determined by underlying internet routing
protocols. This paper studies the problem of identifying
minimum delay paths in a service overlay network.

Low end-to-end delay is one of the most important
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quality of service requirements for real-time applica-
tions. For example, VoIP requires the mouth-to-ear de-
lay to be less than 150ms. In many cases, the minimum
delay path provides the best quality for VoIP and other
real time streaming applications. However, the mini-
mum hop path, as determined by the underlying network
routing protocols, does not guarantee minimum delay.
In [11], minimum delay paths are learned based on end-
to-end delay estimation. In our work, no delay estima-
tion is involved. The papers [8, 9] are very close to our
work. The paper [9] studied the LRI algorithm where
environment feedback is either O or 1, while in this pa-
per the network delays are continuous values [7] where
cross-correlation algorithm is applied. This paper is an
extension of the paper [8], i.e. learning automata control
only the probing process rather than the routing for all
flows as in [8].

Our main contribution is to propose, analyze and sim-
ulate an active probing and learning algorithm using dis-
tributed learning automata to find the minimum mean
delay paths in service overlay networks. In a service
overlay network, where the performance of the under-
lying network is random and unknown to the overlay
nodes, it is beneficial to actively probe the network per-
formance to find the minimum delay overlay paths. In
order to determine minimum delay routes we must probe
the current network state. However, we desire a prob-
ing scheme that 1) does not inject an excessive amount
of traffic just for probing, 2) that scales well to large
overlay networks, and 3) that can adapt to changing net-
work conditions. In order to address these three goals
we adopt a reinforcement learning technique: the cross-
correlation learning algorithm [7]. The basic idea is that,
at each probing epoch, the path probed is chosen ran-
domly according to a distribution over a set of possible
paths between a given source and destination. The ob-
served delay for this probe is then used to reinforce this
path by increasing the probability of probing it again,
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and simultaneously decreasing the probability of prob-
ing the other paths. Precise details of the probing al-
gorithm are given below. Because paths with poor per-
formance receive little reinforcement, they are probed
less frequently, and consequently, excessive probing re-
sources are not wasted on paths that will likely yield low
quality of service. Moreover, because each service over-
lay node locally runs independent learning automata, the
algorithm scales gracefully to larger overlay networks.

The remainder of the paper is organized as follows.
Section 2 presents the proposed active probing and op-
timal path learning strategies. The experiment set up
and simulation results are presented in Section 3, and
we conclude in Section 4.

2. Optimal routing with active probing and
learning

In an autonomous system, minimum hop routing [3]
cannot guarantee the optimal performance in terms of
the mean network delays. This section describes an ac-
tive probing and learning framework to determine the
paths with minimum mean delay in a stationary dynamic
network environment. The optimal paths between all
sources and destinations are learned using distributed
learning automata. Specifically, we adapt the cross-
correlation learning algorithm, described in [7], to probe
paths through a service overlay network.

Given a full mesh service overlay network modeled
as a graph G = (V, E), where V' = {1,...,m} is the
set of nodes in the graph, E is the set of directed links
in the graph, we introduce one learning automaton for
each source-destination pair (i,k),i,k € V) k # i.
Let ﬂf'j(t), i,j,k € V, denote the probability of send-
ing a probe from node i to destination k via next hop
7 at time ¢t. The automaton’s state probability vector
for source-destination pair (i, k) at time ¢ is ¥ (t)
[ (), ooy T (), oy 7y, (8], and it satisfies ) (t) = 0
and ), ﬂfj(t) = 1. Probes arriving at node ¢ destined
for k # ¢ at time ¢ are forwarded to a next hop selected
randomly according to the distribution 7%(¢). When a
probe arrives at the destination a reply is transmitted
back to the originating node, and the round-trip delay
is measured. Let u denote the next hop node probed.
Then, the learning automata probabilities 7 () (main-
tained at the source node, ¢) are updated using the cross-
correlation learning algorithm [7], for j = 1,...,m,

—75(t) (D)

where G is the learning gain of the algorithm, z(u,t) is
the reward for this probe, and d;, = 1if j = u was

i (t+1) = 75 (1) + G 2(u,t) (65u
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the node probed and ¢;, = 0 otherwise. Let d(u,t)
denote the measured delay, and let d,,,,x be a pre-defined
maximum delay. The normalized feedback function (or
reward strength [7]) is given by z(u,t) =1 — dlwt)

dmax *

Theorem 2.1 When the learning gain G is sufficiently
small, ij(t) in the cross-correlation learning algo-
rithm converges to the user equilibrium ij with -
optimality for the minimum delay routing problem, i.e.
limy oo P{|7f;(t) — 05| > €} = 0, where 0F, = 1 if
node k is the optimal next hop for node 1 to reach node
j, otherwise, Hfj =0.

An outline of the proof is as follows. By setting G
sufficiently small, the stochastic approximation speci-
fied by the cross-correlation learning algorithm satisfies
the conditions for Kushner’s weak convergence method
[5] and converges to an Ordinary Differential Equation
(ODE). The solution to the ODE is proved to be globally
stable by finding a Lyapunov function for the end-to-end
delays. Please refer to [6] for detailed proof.

Table 1. Active probing and learning
Input: G = (V, E)
Initialization: ¢ = 0, Vk # 1, initialize 7¥(0);
Iteration:
At time t:
(1) Node 7 send a probe to the destination node k,
through a next hop node u selected randomly
according to distribution 7 (¢);
(2) Get feedback d(u, t) from the probe, compute
z(u,t) =1— %;tx);
(3) update 7¥(t), for j = 1, ..., m,
ij(t +1)= ij(t) + G z(u, t) * (§ju, — ij(t));
4) t=t+1;

The active probing and learning algorithm is given
in table 1. The probability of sending a probe from the
source node ¢ to the destination node %k through a node
j is determined by ﬂfj (0). The initialization, ﬂfj (0) can
be thought of as representing our prior knowledge on
the probability of node j being the optimal path next
hop from ¢ to k. Assuming no prior knowledge, we uni-
formly initialize the probability vector 7¥(0) to ensure
that all possible paths are explored, as given in equation

Q).

7£(0) = 0 @

1

{ m5(0) = 5y, d # 6,5 € {1,.,m}

This method introduces random loops in the probing
path. It can be shown that there is high probability
of random loops on the probing path at the starting



stage, and the probability increases with the network
size. However, because routes with loops will always
have higher delay than loop-free paths, the learning au-
tomata will automatically learn to avoid these loops [8].

In order to avoid these initial random loops, a ge-
ographical location aware initialization method can be
used. Let D(4, k) be the Euclidean distance (or the great
circle distance on a sphere) between nodes 7 and k. Geo-
graphical location aware initialization, for j = 1, ...,m,
as given by,

Ipky<D(ik)

= 3)
> Ip ik <Dik)

where Ip(; k)< D(i,k) 18 an indicator function, guarantees
only the nodes whose distances to the destination node
k are less than that from the origin node ¢ are probed.

We propose two approaches to actively probe and
learn the minimum delay paths: hop-by-hop learning
and end-to-end learning. In hop-by-hop learning, as il-
lustrated in Fig. 1, each intermediate node on the for-
ward path from a probe’s source node S to its destination
node D also receives feedback and performs learning
updates. In end-to-end learning, only the source node S
of the probe can learn from the end-to-end performance
measured by the probe, which is easier to implement at
the cost of slower learning speed. Please refer to the
technical report [6] for more detail.

Figure 1. Hop-by-hop learning of the opti-
mal path from node S to destination node
D. barm? at each node is initialized uni-
formly.

The hop-by-hop learning allows all the intermediate
nodes on the forward path of a probe to get feedback
from the probe. As shown in Fig. 1, the forward path
of a probe is randomly chosen. On the forward path
of the probe sent from S to D, each intermediate node
1 chooses its next hop node randomly according to its
state probability vector @D. The probe is required to
record all the intermediate nodes it goes through until it
reaches the destination node D. When the probe reaches
its destination node D, it has to follow the exact reverse
path of the forward path to go back to S. For example,
as shown in Fig. 1, the nodes on the forward path of the
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probe with source-destination (S,D) are S, 4, 2, D. The
reverse path from D to S'is then D, 2,4, S. Ateach node
i on the reverse path, the state probability vector 77 is

updated according to the round trip time from node % to
D.

3. Experiments

In the paper, a fractional Brownian motion (fBm)
process is used to model the Internet traffic [10]. The
gravity model is used to model the mean network traf-
fic demand between ingress and egress points of a net-
work [2, 13]. We also consider the time difference in
different time zones so that the number of active users at
each time zone varies with the GMT (Greenwich Mean
Time) [2].

The network topology under study is derived from
AT&T’s backbone network [1, 12]. It includes 50 nodes
located in the major cities in the United States.Our sim-
ulations are conducted in a fluid network [4] at time-
scale 7 = bms. We simulated the probing and learning
process for a full mesh 10-node overlay network above
the 50 PoP (Point of Presence) node model of AT&T’s
backbone network, as shown in Fig. ??. The 10 overlay
nodes are chosen randomly from the 50 PoP nodes. Each
overlay node sends active probes periodically to all other
overlay nodes every 5 ms. For a source-destination pair,
the learned path is the path decided by the stochastic
automata; the optimal path is the minimum mean delay
path.

Let n denote the probe number, d(n) be the aver-
age delay on the learned paths. The mean delay on
the learned paths for probe number 7 is computed as
d(n) = v Lijeviizg dn (i 1), where dy (i, j)
is the delay measured by probe number n between node
i and j. The mean delays d(n) on the learned paths with
a learning gain of 0.001 and 0.01 are shown in Fig. 2. As
can be seen, the learning speed increases proportionally
with the learning gain for the simulated overlay network.

We also simulated the hop-by-hop learning method
for larger overlay network. Fig. 3 shows the learning
speed for hop-by-hop learning with uniform initializa-
tion in 10, 15, 20, 25 node overlay network. It can be
seen that the convergence speed does not change much
as the network size increases. Also note that larger over-
lay networks (20 or 25 nodes) converge at a slightly
slower rate, but that in general, the size of the over-
lay network does not dramatically impact the number
of probes required to learn minimum delay paths.
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Figure 2. Mean delays on the learned
paths (hop-by-hop learning) versus the
mean delays on the optimal paths and
those on the minimum hop paths.

4. Conclusion

In the paper, we proposed a novel method to learn
the minimum delay paths for each source-destination
pair in service overlay networks. Based on the cross-
correlation learning automata, we proposed four ac-
tive probing and learning strategies to learn the optimal
paths, which are uniformly initialized hop-by-hop learn-
ing, geographical location aware initialized hop-by-hop
learning, uniformly initialized end-to-end learning, and
the geographical location aware initialized end-to-end
learning. The performance of the proposed active prob-
ing and learning strategies is simulated in service over-
lay networks over a model of the AT&T’s network. The
simulation results show that the learning method con-
verges to the minimum mean delay paths very quickly
(around 5 seconds for hop-by-hop learning in a 10-node
overlay network), and the convergence speed scales well
with the overlay network size. The cross-correlation
learning algorithm can be proved to converge to the user
equilibrium. Future work will focus on applying the pro-
posed learning method for voice over IP packet routing
in service overlay networks.
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