
Proeedings ITC Speialist Seminar on IP Traffi Measurement, Modeling and Management,September 2000, Monterey, CAMultifratal Cross-TraÆ EstimationVinay Ribeiro, Mark Coates, Rudolf Riedi, Shriram Sarvotham,Brent Hendriks and Rihard Baraniuk �Department of Eletrial and Computer Engineering, Rie University6100 South Main Street, Houston, TX 77005, USAEmail:fvinay, moates, riedi, shri, brentmh, rihbg�rie.edu. URL: www.dsp.rie.edu.AbstratIn this paper we develop a novel model-based tehnique,the Delphi algorithm, for inferring the instantaneousvolume of ompeting ross-traÆ aross an end-to-endpath. By using only end-to-end measurements, Del-phi avoids the need for data olletion within the In-ternet. Unique to the algorithm is an eÆient exponen-tially spaed probing paket train and a parsimoniousmultifratal parametri model for the ross-traÆ thataptures its multisale statistial properties (inludinglong-range dependene) and queuing behavior. The algo-rithm is adaptive; it requires no a priori traÆ statistisand e�etively traks hanges in network onditions. ns(network simulator) experiments reveal that Delphi givesaurate ross-traÆ estimates for higher link utiliza-tion levels while at lower utilizations it over-estimatesthe ross-traÆ. Also, when Delphi's single bottlenekassumption does not hold it over-estimates the ross-traÆ.1 Introdution1.1 Edge-based estimationA better understanding of the dynami properties andbehavior of end-to-end paths would greatly bene�t thedesign and development of future network ontrol al-gorithms and protools. It is unrealisti to expet in-ternal routers to determine and report these proper-ties, beause this would require maintaining overwhelm-ing amounts of per-ow state information. It beomesneessary to infer the properties from edge-based mea-surements, whih are relatively easy and inexpensive tomake. In this light, several authors have proposed edgebased tehniques for ongestion ontrol [1{3℄, estimat-ing the bottlenek bandwidth [4{6℄, inferring multiast�This work was supported by the NSF, grant no. ANI-9979465,by ONR, grant no. N00014-99-10813, by DARPA, grant no. R36400, and by Texas Instruments.

routing trees [6℄, performing admission ontrol [7℄ anddeteting ows with the same ongestion points [8℄.In addition to their pratiality, edge-based estima-tion algorithms also provide a onvenient abstration ofnetwork dynamis. Exatly modeling onnetions thattraverse multiple hops is hopelessly omplex, both interms of overhead and analysis. If inferene tehniquesbased on simplifying assumptions, for example a sin-gle bottlenek assumption, are suessful then it will bepossible to develop redued omplexity models that a-urately reet network behavior.Edge-based analysis and simpli�ed end-to-end pathmodeling are losely interwoven. Aurate estimatesof the volume of ross-traÆ ompeting for the avail-able bandwidth of a path have the potential to impata wide range of appliations. Potential appliations ofsuh estimates inlude (1) new end-to-end based on-gestion ontrol protools, (2) workload balaning onweb servers (\rate based loking"), (3) dynami adjust-ment of transmission rate to maximize quality of voieand video-onferening onnetions, and (4) priing ona onnetion basis aording to the stress a transfer putson the network in its urrent state.1.2 The Delphi algorithmIn this paper we propose and analyze the Delphi al-gorithm, an inferene proedure that uses the queuingdelay experiened by probe pakets to estimate, over arange of time sales, the load indued by ross-traÆon the bottlenek link of an end-to-end path. The al-gorithm is sender based requiring no ollaboration fromthe network and only little feedbak from the reeiveras to when pakets reah it.Inherent in any probing sheme is an unertainty prin-iple or \auray-sparsity" tradeo�. The volume ofross-traÆ entering a queue between two probes anbe omputed exatly (assuming in�nite lok preision)from their delay spread at the reeiver provided thequeue does not empty in between. Unfortunately, this15-1



situation is guaranteed only if the probes are very loselyspaed. However, sending long trains of narrowly spaedprobes will overwhelm the very ross-traÆ we are try-ing to measure. If probes are spaed far apart the queuean empty in between whih results in unertainty in theross-traÆ volume.Delphi di�ers from earlier tehniques for estimatingavailable bandwidth [9,10℄ in that it is model based. Byemploying short bursts of pakets these tehniques arenaturally restrited to estimating ross-traÆ only overshort time periods [9℄. Other methods apable of dealignwith larger time sales use only an indiret measureof the ompeting traÆ load [3℄. Delphi instead usesprobes spaed farther apart and improves the aurayin ross-traÆ estimates by leveraging statistial knowl-edge of network dynamis provided by a versatile traÆmodel, the multifratal wavelet model (MWM) [11℄. Ag-gregated traÆ on a link has been shown to be multi-sale in nature (in a �rst approximation self-similar, orfratal [12℄) and more preisely multifratal [11, 13{15℄.The MWM aptures the multifratal properties of traÆthat give it its bursty harater.Unique to Delphi is an eÆient exponentially spaedprobing paket train that mathes the binary tree stru-ture underlying the MWM. \Chirp paket trains" bal-ane the auray-sparsity tradeo� by being highly a-urate initially and highly sparse at their end. Probingthe path with a series of hirp trains, we use the inter-paket delays at the reeiver to estimate (using Bayesianinferene tehniques) the ross-traÆ load at a range ofsales. The eÆieny of the MWM model and Delphiallows them to be applied on-line, generating estimatesin real-time.A signi�ant advantage of Delphi is that it does notrequire traÆ statistis in advane. Starting with ar-bitrary model parameters, Delphi estimates the ross-traÆ from whih it updates its parameters.To study the Delphi's performane under di�erent lev-els of utilization and its parameter traking apability,we perform ns simulation experiments. Results indiatethat at higher utilization levels Delphi gives aurateestimates of ross-traÆ. Also, Delphi's model parame-ters onverge to that of an MWM trained on the entireross-traÆ trae from initial arbitrary values. At verylow utilization levels, however, Delphi gave less aurateestimates and the model parameters did not onverge tothose of the ross-traÆ trae.A fundamental assumption of Delphi is that most ofthe queuing delay that probe pakets fae is at the bot-tlenek queue. In a situation where the probe paketsare delayed at two queues, Delphi over-estimates theross-traÆ and hene for ongestion ontrol purposesis onservative.

1.3 OverviewWe review the models underpinning the Delphi algo-rithm (the MWM and simpli�ed path model) in Setion2. Setion 3 introdues Delphi by proposing methodsfor dynamially estimating the ritial parameters of theMWM during the operation of the algorithm. We on-dut a series of ns-2 simulations to study the Delphi'sperformane and demonstrate its pratial appliabilityin Setion 4. Setion 4 also explores the validity of thesimpli�ed path model whih lies at the ore of the Del-phi algorithm. Setion 5 loses with a disussion andonlusions.2 Modeling FrameworkIn this setion, we introdue Delphi's intelligent probingmethodology. Its overall goal is the real-time infereneof end-to-end path network properties from measure-ments made at the edge of the network. In partiular,Delphi attempts to estimate the ross-traÆ intensity atthe bottlenek queue in the path, a onept we larifylater in this setion. Delphi is founded on the amalga-mation of a simpli�ed model of the end-to-end path anda statistial model for the ross-traÆ stream. In thissetion, we �rst detail the simpli�ed path model andwhat an be dedued about traÆ behavior on the ba-sis of its adoption. We then explain and motivate thetraÆ model.2.1 Path modelingAfter Bolot [4℄, we employ a simple model for thepath that aptures its essential features (see Figure1). Basially, we redue the path to a single bottle-nek link/router onneted to soure and reeiver by in-�nitely fast links. In addition, we assume that the prop-agation and proessing delay of the path is onstant anduse the onstant D to represent this �xed omponent ofthe overall end-to-end delay; a single-server queue with�nite bu�er and FIFO servie disipline models the vari-able omponent of the delay. Entering this queue is boththe traÆ between soure and reeiver and a ross-traÆstream, whih is the superposition of all the other on-netions that share network resoures utilized by thepath. The servie rate C is related to the slowest linkspeed or queue servie rate along the path; this is thebottlenek queue.We now de�ne some terminology. The intensity BTat time-sale T denotes the number of bytes of ross-traÆ that arrive in time-interval T . We all the av-erage amount of ross-traÆ per seond that ould beinserted by the soure of the path over a time-intervalT the dynami available bandwidth at time-sale T , anddenote it DT . More spei�ally, if we use Q to denote15-2
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Figure 1: Simpli�ed ross-traÆ model for an end-to-end path.the index set of the queues in the path, and Ci and BT (i)to denote, respetively, the bandwidth and ross-traÆintensity of the i-th queue (i 2 Q), then:DT = mini2Q �CiT �BT (i)T � : (1)Generally, we expet that this minimum arises at thebottlenek queue.We use the term virtual ross-traÆ of an end-to-endpath to denote the aggregated ross-traÆ that mustbe inserted in the single queue model so that the dy-nami available bandwidth measured using the simpli-�ed model is the same as that along the entire multi-hoppath obtained from (1). Figure 2 depits the relation-ship between dynami available bandwidth and virtualross-traÆ.The spei� aim of the Delphi algorithm is the dy-nami inferene of the intensity BT of the ross-traÆpresent at the bottlenek queue over a range of di�erenttime sales T . In performing this inferene, the algo-rithm makes a fundamental assumption, namely thatthe delay in exess to the onstant propagation delayobserved on the path is due to the ross-traÆ on thebottlenek link alone. In many ases, this orrespondsto estimating the virtual ross-traÆ of the path andthus allows the development of a pieewise onstant es-timate of the path's dynami available bandwidth. Se-tion 4 explores the behavior of the algorithm when thedelay assumption is not valid. In suh irumstanes,knowledge of the ross-traÆ at the bottlenek queueno longer leads to the dynami available bandwidth; thevirtual ross-traÆ of the path is then the quantity thatmust be estimated.If we transmit two probe pakets of size P bytes attimes t0 and t1 = t0 + T , then provided the queue doesnot empty between the queue-entry times of the �rstand seond probes, the time di�erene between the ar-rival times a0 and a1 at the reeiver is ideally identialwith the inter-departure time at the queue. This timeis proportional to the number of bytes in the queue overthe time-period T :BT = C(a1 � a0)� P: (2)
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Figure 2: Dynami available bandwidth at time-sale T , together with a plot of virtual ross-traÆ of the path.Unfortunately, if the queue does empty between probe-paket arrivals, then the inter-arrival spread an sub-stantially overestimate the ross-traÆ arriving in theperiod T .For probe pakets of size P , we use TNEQ = P=Cto denote the oarsest time-sale that ensures that thequeue annot empty between the probe arrivals. If weould send probe-trains that were this �nely spaed,then there would be no risk of underestimation. Unfor-tunately, suh �ne sale probing is impossible beauseit overwhelms the network after a short period and dis-rupts the measured traÆ. Rather, we propose the useof a paket hirp as a probing devie. The paket hirponsists of probes sent in an exponential ight pattern,with the �rst three probes spaed by a time Tn � TNEQand then the spaing between subsequent probes in-reasing by a fator of two eah time (see Figure 3).The �rst three probes of the paket hirp thus provideinitial �ne sale probing whih an provide exat knowl-edge of BTNEQ .The paket hirp probing strategy balanes the trade-o� between (1) generating reliable and aurate esti-mates and (2) overburdening and disturbing the net-work. The �ne-sale probing anhors ross-traÆ esti-mates made at oarser levels, but the rapid inrease inprobe-spaing makes the probing eÆient.2.2 Multifratal wavelet modelAurate estimation of the ross-traÆ from a relativelyoarsely spaed train of probe pakets is not possiblewithout some form of statistial model for the ross-traÆ. The ross-traÆ stream is the superposition ofmany data ows that share ommon Internet resoureswith the probe onnetion. Suh superpositions havebeen shown to exhibit self-similarity [12℄, burstiness,long-range dependene (LRD), and evenmultifratal be-havior [11,13{15℄, all of whih an have a major impaton network performane. These harateristis an beaptured with an appropriate statistial traÆ model.15-3
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Figure 3: Paket hirp probe train has an expo-nential ight pattern to balane the trade-o� be-tween auray and sparsity.Our model of hoie for the ross-traÆ is the mul-tifratal wavelet model (MWM) [11, 14℄. The MWM isbased on a omputationally eÆient tree struture whihrepresents the ross-traÆ load at multiple aggregationsales on a binary tree (see Figure 4(a)). The MWM'stree is losely related to the Haar wavelet system andhene the term \wavelet" in its name [11℄.We use T0 to denote the time-interval between the�rst and last probes in the paket train. Withinthis interval, the tree oeÆients Uj;k, j � 0, k =0; 1; : : : ; 2j � 1, orrespond to the total sum of ross-traÆ bytes arriving at the model queue in the interval[2�jkT0; 2�j(k + 1)T0℄. Here j denotes the sale of in-terest (see Figure 3). Note that eah parent oeÆientis the sum of its two hildrenUj;k = Uj+1;2k + Uj+1;2k+1: (3)Note that we take a di�erent normalization than in [11,14℄. Thus, we an move up the tree from some �nestsale to obtain all Uj;k at oarser sales. To move downthe tree while ensuring that (3) is preserved, we modelthe parent bytes Uj;k as split between its hildren by arandom fator:Uj+1;2k = Bj;k Uj;k ; Uj+1;2k+1 = (1�Bj;k)Uj;k (4)with Bj;k a random variable distributed between 0 and1 (see Figure 4(b)). The use of symmetri beta randomvariables for the multipliers Bj;k is proposed in [11℄.So the MWM is a parametri model for bursty non-Gaussian traÆ. Its parameters are (1) a global mean-rate parameter (the aggregate at the oarsest sale) and(2) beta multiplier parameters (one for eah sale).To train the MWM to a target traÆ data set, wesimply ow up the tree to form the Uj;k, ollet theirstatistis, and estimate the beta parameters (see [11,14℄for the details). Delphi does not have aess to the Uj;k(indeed, it is a subset of these that we are attempting
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Figure 4: Multifratal wavelet model (MWM). (a)Binary tree struture of aggregated traÆ. (b)Beta multipliers split parent aggregate into twohild aggregates at the next �ner sale.to infer); it beomes neessary to jointly infer the ap-propriate beta parameters and the traÆ. We outlinea sequential adaptive algorithm in Setion 3 that per-forms this estimation. The MWM an math the exatmultisale seond-order statistis of a traÆ trae andprovides a muh loser math of the higher-order statis-tis (non-Gaussianity) that lead to burstiness than otherpossible traÆ models [12, 16℄.Most importantly, the MWM provides a natural andeÆient means to estimate, given the beta parameters,the queuing behavior of a syntheti trae [17℄. The mul-tisale queuing formula (MSQ) approximates the tailqueue probabilities for arbitrary bu�er sizes (not justasymptoti). We use the derivative of the MSQ to ob-tain a probability density funtion for queue sizes. Theomputational eÆieny, and queuing formula approxi-mation of the MWM make it a natural modeling frame-work for our ross-traÆ estimation algorithm.3 MWM-based Inferene Algo-rithmIn this setion, we present the Delphi algorithm itselfwhih estimates the amount of ross-traÆ that arrivesin the time interval between the arrival at the queue inour model (reall Figure 1) of the �rst and last probepakets of a paket hirp. We model the ross-traÆ asan MWM proess with unknown beta parameters. In asimpler form, the Delphi algorithm uses �xed beta pa-rameters that have been estimated from previous mea-surements. In the latter part of this setion we detaila method for adaptively estimating the beta parameter15-4



estimates on the y as traÆ estimates are generated.Delphi attempts to form reliable estimates whilsttransmitting as few pakets as possible. It does this bysending a paket \hirp" oupying the time-interval T0;the interval is partitioned aording to the exponentialspaing of the probes. Figure 3 depits this exponen-tial ight pattern and its natural relationship with theMWM tree. If we send n+2 probes in the paket hirp,then T0 labels the interval between the �rst and lastprobes, T1 the interval between the �rst and seond last,and so on, suh that Tn is the interval between the �rstand seond probes. The probe struture guarantees thatTn � TNEQ, the maximum separation between probesthat ensures that the queue does not empty betweenprobe arrivals. For dynami measurements, Delphi is-sues a new hirp every T0 seonds to obtain a pieewiseonstant estimate of the ross-traÆ load.Estimation of the ross-traÆ arriving in the inter-val T0 requires an estimate for the ross-traÆ that ap-peared in the interval T1, whih in turn needs an esti-mate of the ross-traÆ that appeared in the interval T2and so on. This reursive requirement ows down thetree until it hits Tn�1, at whih point the distane be-tween probes is suh that the queue is guaranteed not toempty (reall (1)), and an exat measurement of ross-traÆ is available. One this point has been reahed,the algorithm ows bak up the tree, alling an infereneproedure to estimate Ui for i = (n� 2); (n� 1); : : : ; 0.See Figure 5 for pseudo-ode detailing the nature of theDelphi algorithm.The inferene proedure (infer in Figure 5) developsan approximate maximum likelihood estimate. Whenwe assume that the bottlenek bandwidth is known, thedelay eah probe experienes ideally provides a instanta-neous measure of the bottlenek queue size, whih we de-note qi for the i-th probe (see Figure 3). This measure-ment is usually noisy due to the granularity of loks,the drift between sender and reeiver loks and addi-tional queuing delays at other queues along the path.At time sale n� 2, we wish to maximize the likelihoodof jointly observing both the measured traÆ over Tn�1and the measured queue size q4:p(un�1; q4jun�2) = p(q4jun�1; un�2) p(un�1jun�2)(5)We approximate the probability of observing q4 giventhe traÆ arriving in Tn�1 and Tn�2 as the probabil-ity of observing q4 given the traÆ arriving only in thelatter half of Tn�2. We are left with the expressionp(un�1; q4jun�2) � p(q4jun�2 � un�1) p(un�1jun�2):The �rst term on the right hand side an be approxi-mately evaluated using the MSQ formula [17℄; the se-

ond term is equal to the appropriate beta distributionin the MWM model. We maximize this likelihood overthe range of possible un�2 values (whih is onstrainedby the queue sizes q3 and q4). Now we have an esti-mate dun�2 that an be used to generate an estimate ofun�3 by maximizing the approximate likelihood fun-tion p(dun�2; q5jun�3). The proess ontinues until anestimate has been formed for u0.Delphi uses the bandwidth C to translate delays intotraÆ volumes. Without C Delphi an still lassify theross-traÆ volumes as high or low but annot salethem to obtain the traÆ in bytes. Also the value TNEQdepends on C. However, Delphi does not require the ini-tial probe pakets to be spaed loser than TNEQ andan estimate ross-traÆ at the �nest time sale in thesame fashion as at oarser sales.In the form proposed above the Delphi algorithm re-lies on prior estimation of the beta multiplier parametersof the MWM that best �ts the traÆ. We now proposea method to adapt the beta parameters on-line whilethe ross-traÆ estimation is onduted. The methodis similar to parameter adaptation tehniques that un-derpin sequential estimation proedures in problems asdiverse as speeh proessing and target traking. At theommenement of the Delphi algorithm, we hoose aninitial estimate of the beta multipliers, whih may bebased on previous measurements or may be ompletelyarbitrary. We then begin to estimate ross-traÆ usingthese initial parameters. After we have made K suh es-timates, we use the sample seond-moments of the ross-traÆ estimates to obtain an instantaneous estimate ofmultiplier varianes usingIE[B2j ℄ = IE[U2j+1℄=IE[U2j ℄: (6)We then update the MWM parameters usingnew variane = �� instantaneous estimate+(1� �)� urrent variane (7)where � 2 [0; 1℄ is a onstant. Smaller values of � giverise to smoother hanges in parameters. We ould alsohoose di�erent values of alpha to update parametersat di�erent time sales depending on the smoothnessrequired. In this paper we set � = 0:2. Figure 8 in Se-tion 4 demonstrates that this method generates multi-plier estimates that onverge to the same values derivedfrom model mathing based on the entire traÆ trae.4 Simulation ExperimentsIn order to test Delphi we ondut several simulationexperiments using the LBNL Network Simulator (ns15-5



Delphi Algorithmproedure main (q,T0,C,n) fu0 = determine traÆ(q,T0,C,n)return u0gproedure determine traÆ(q,T,C,k) fif (T < 2TNEQ)u = qk � qk�1 + TCreturn uelse m = determine traÆ(q,T/2,C,k-1)u = infer(q,T,C,m,k)return uendgproedure infer(q,T,C,m,k)u min =8<: m; qk = 0m+ qk + C�max(qk�1 + C � (T � 1)C; 0); qk>0u max = m+qk-qk�1 -C+TCreturn û 2 [u min,u max℄ that maximizes p(qk;m ju)gFigure 5: The Delphi algorithm: q denotes thevetor of queue measurements, T0 the time in-terval of interest, C the servie rate of the modelqueue, and n the number of probe-pakets sent.The range of possible values of traÆ, that isumax and umin are omputed assuming a disrete-time FIFO queue taking into aount the e�etof the previous probe on the queue size.version 2) [18℄. By varying the utilization, we ob-serve that at higher utilization levels Delphi gives au-rate estimates with little bias while at low utilizationsit over-estimates the ross-traÆ. Over-estimating theross-traÆ orresponds to under-estimating the avail-able bandwidth whih is onservative for ongestion on-trol purposes. In addition, at higher utilization levelsthe Delphi's model parameters onverged to those of anMWM trained on the ross-traÆ while at low utiliza-tion the parameters did not onverge. Experiments withdi�erent bu�er sizes showed little hange in Delphi's per-formane so we do not report their details here.To gain insight into Delphi's performane when theunderlying assumption of a single bottlenek is invalid,we perform trae driven simulations. Results indiatethat in situations where the probe pakets experienesigni�ant delay at links other than the one with thesmallest link speed on the path, Delphi gives onserva-tive estimates for ross traÆ and available bandwidth.

C3

Q

C420

C2

C1

A B D

P

H

G

F

E

S1

S2

S10

S11

S12

S20

S21

S22

S30

S31

S32

S40Figure 6: Network on�guration for ns-2 simula-tions with bottlenek link (A, B).4.1 ns ExperimentsWe simulated a bottlenek network environment whereseveral onurrent onnetions are multiplexed over ashared bottlenek link. Figure 6 shows the networktopology, omprising 420 web lients and 40 web servers.Table 1 gives the link harateristis of all the links inthe network.The lients engage in large-sale web traÆ aross thebottlenek link to the servers. The simulation is arriedout for over 1500 seonds (simulation time) and numberof sessions is varied to obtain di�erent link utilizations.Eah web session has 350 pages whose sizes are hosenfrom a heavy tailed distribution. Node P sends hirpsof probe pakets of size 900 bytes to node Q using theUDP protool.The minimum spaing between probe pakets is set toTNEQ = 2:4 ms whih orresponds to a bottlenek linkapaity of 3 Mbps and probe paket size of 900 bytes.This ensures that the queue does not empty between the�rst three probes in every hirp. We disarded the �rst1000 seonds of the simulation to eliminate transients.The Delphi algorithm assumes that the bottlenek band-width C is known, so we supplied it with the on�gu-ration value; alternatively it ould have been estimatedbeforehand using tehniques outlined in [5℄.Delphi omputes the queuing delay of a probe paketas queuing delay = reeive time� transmit time�onstant delay: (8)The onstant delay equals the sum of propagation delayand servie time. This is set equal to the minimum ofall delays experiened by probe pakets while traversingaross the network. Note that in a simulation environ-ment synhronized loks and error free values of these15-6



Table 1: Link and soure parameters for the net-work on�guration depited in Figure 6 as usedin the ns-2 simulation experiments. U [a; b℄ de-notes a uniform random variable over the range[a; b℄. Link Band Width Lateny(Mbps) (ms)AB 3 20BD 10 20DE 1.5 20DF 1.5 30DG 1.5 40DH 1.5 60DP 1.5 60ES1 to GS10 10 U[10,100℄FS11 to FS20 10 U[10,100℄GS21 to GS30 10 U[10,100℄HS31 to HS40 10 U[10,100℄AC1 to AC420 U[22,32℄ U[10,100℄AQ U[22,32℄ U[10,100℄quantities are available unlike in a real world situation.However, synhronized loks at the sender and reeiverare not neessary in pratie beause the di�erene inloks at the sender and reeiver an be inorporatedinto the onstant delay term. Other problems like lokdrift and resetting an however lead to errors in (8).In all experiments we estimate the ross-traÆ arriv-ing over time-slots of 307:2ms (the 7th aggregation levelin the tree of Figure 4), sending a hirp of 8 probe pak-ets in eah time-slot. The probe traÆ was thus equalto 6:25% of the bandwidth. We set the parameter �of (7) for updating the model parameters to 0:2. Thebu�er size was �xed at 50 pakets.4.2 Utilization e�etsWe hanged the number of web sessions to obtain dif-ferent utilization levels. Variane-time plots [12℄ showthat the ross-traÆ is LRD with Hurst parameters of0:74, 0:73 and 0:61 for the experiments with 39%, 65%and 96% utilization respetively.Delphi performed better with inreasing utilizationas we observe from Figure 7. Notie from Figure 7 thatthe traÆ is more bursty at the �ner time sale thanat the oarse sale. Sine in the proess of estimatingthe traÆ at oarser time sales Delphi gathers statistisat �ner time sales too, it an serve target appliationsthat require information about the burstiness of traÆat multiple time sales.As a measure of auray we use the sample mean

and standard deviation of the the error whih we nor-malize by dividing by the sample mean of the entireross-traÆ. See Table 2 for details. At high utilizationsDelphi gives aurate estimates with little bias while atlow utilizations it performs less aurately. Intuitivelyat lower utilization levels the probe pakets enountersmaller queues more often and the smaller the queue sizethe longer the queue an stay empty between the arrivalof two probe pakets. This implies a greater unertaintyin the ross-traÆ volume.From Table 2, we observe that at low utilization Del-phi gives estimates with a positive bias, that is it over-estimates the ross-traÆ. This orresponds to under-estimating the available bandwidth whih is onserva-tive for ongestion ontrol purposes. Also if ompetingross-traÆ volumes are low, an error of the order ofmagnitude of the ross-traÆ will not signi�antly a�etthe estimated available bandwidth. This result at lowutilization thus does not reet a major short-oming ofDelphi.4.3 Traking apabilityTo test Delphi's adaptive algorithm we initially set thevariane of the beta multipliers at all time sales equalto 0:083. This orresponds to a beta parameter of 1for the multipliers [11℄. Notie from Figure 8(a) thatthe varianes of the multipliers trak the orret val-ues after few iterations. Also observe from Figure 8(b)that the initial estimates of traÆ have larger errors be-ause of inorret model parameters and that the errorredues with improved model parameters. This demon-strates that the Delphi does not require prior knowledgeof ross-traÆ statistis. The utilization for this exper-iment was 65%.The improvement in inferene with orret parame-ter values indiates that the MWM parameters indeedontain valuable statistial information about the ross-traÆ. It also suggests that inorret statistial knowl-edge or oversimpli�ed traÆ models an give erroneousestimates.Delphi uses ross-traÆ estimates to update modelparameters. As a result, in the experiment with 39%utilization the model parameters did not onverge be-ause of less aurate ross-traÆ estimates.4.4 Validity of the modelWe used trae-driven experiments to explore the valid-ity of some of the assumptions underpinning our model.The use of the simpli�ed path model depited in Fig-ure 1 hinges on the bottlenek queue providing the ma-jor queuing delay in the path.This assumption an be invalid if the ross-traÆ at15-7
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Figure 7: (a) Cross-traÆ estimates for utiliza-tion of 65%. Observe that the estimates are a-urate. (b) Cross-traÆ estimates for 39% uti-lization. Observe that the estimates give greatererrors but are generally onservative.another queue in the path is substantially heavier thanthat at the bottlenek queue. Therefore we experi-mented with the two queue system depited in Figure 9.By applying independent ross-traÆ streams (X1 atthe bottlenek queue and X2 at the seond queue) tothe two queues, we were able to examine the e�ets ofheavy ross-traÆ at the seond queue.A somewhat simple-minded view of the system pro-vides valuable intuition. Say we send two probes andneither queue empties between the arrivals of the probes.If we denote the ross-traÆ appearing between the twoprobes at the �rst queue x1 and that at the seond queuex2, then the total delay indued by the system (ignoringpropagation and servie delays) isd = x1=C1 + x2=C2: (9)The Delphi model assumes that this delay is entirelydue to the bottlenek queue; its estimate of ross-traÆis x = x1+C1x2=C2. The seond term is an error term,but beause we assume that C2 > C1, it only has asubstantial e�et on the estimate if x2 is muh largerthan x1.We examined the e�et of the error term by ondut-
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Figure 8: (a) Adaptive estimates of variane ofmultipliers over time. The horizontal lines orre-spond to the sample varianes of the multipliersestimated by mathing the multifratal model tothe entire traÆ trae (i.e., the best model pa-rameters we an ahieve). Observe that from anarbitrary initial value of 0:083, the model param-eters trak the sample varianes (b) Cross-traÆestimates over time. Notie that the error in es-timates derease over time as the model param-eters trak those of the atual ross-traÆ.ing an experiment in whih we set the bandwidth at thetwo ongestion points to C1 = 1 and C2 = 5 bytes/timeunit. We used seond-order self-similar MWM traeswith Hurst parameter H = 0:8 as the ross-traÆ atboth queues [12℄. The mean and standard deviation ofross-traÆ at the �nest time-sale were hosen to equalhalf the bandwidth at their orresponding queues.Using this experimental setup, we applied the Delphialgorithm to generate estimates of the ross-traÆ atthe bottlenek queue. Figure 10(a) plots the estimates(normalized by the true ross-traÆ at the bottlenek)against the ratio of the true ross-traÆs. The linesshow the asymptoti values we antiipate from (9); forlow ratios, the �rst term dominates and for high ratios,the seond term dominates.In Setion 2, we explained that the dynami available15-8



Table 2: The error of inferene dereases withinreasing utilization. A positive mean errorimplies generally onservative estimates at thatlevel of utilization.Utilization Mean Error Std. of Error(%) (normalized) (normalized)39.09 0.27 0.4265.34 0.1 0.2396.04 -0.023 0.044
Probes

X1
X1

Probes

C2C1
X2

Figure 9: A two queue system used to validatemodel assumptions. The �rst queue is the bot-tlenek with bandwidth C1; the seond has band-width C2. The queues experiene independentross-traÆ streams X1 and X2. Probe traÆows through both queues.bandwidth is really related to virtual ross-traÆ ratherthan the ross-traÆ at the bottlenek link. Virtualross-traÆ and bottlenek ross-traÆ are only equiv-alent in our experiment when the ratio x2=x1 is small.Figure 10(b) ompares the dynami available bandwidthestimated using the Delphi algorithm to the true dy-nami available bandwidth. Clearly even as x2 beomessubstantial (640 bytes is the maximum traÆ that anbe sent on the link over the time-sale studied), the Del-phi estimate remains reasonable. Moreover, it beomesinreasingly onservative, whih is desirable behavior intimes of heavy load.5 DisussionThe ability to estimate ross-traÆ loads is key to thedevelopment of a better understanding of Internet dy-namis, and an potentially be used in the design ofbandwidth eÆient transport protools and rate-basedloking methodologies.We have introdued an algorithm (Delphi) that usesa novel probing strategy to dynamially estimate theross-traÆ load onfronted along an end-to-end net-work path. Delphi an adopt an eÆient probing pat-tern (the paket hirp) beause our estimation proe-
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Figure 10: (a) The ratio between the Delphi esti-mate and the true value of the ross-traÆ x1 atthe bottlenek queue of the system in Figure 9as a funtion of the ratio between x1 and theross-traÆ at the seond queue x2. The lines de-pit antiipate asymptotis from (9). (b) The er-ror between Delphi-estimated and true dynamiavailable bandwidth DT (see (1)) as a funtionof x2 with bottlenek bandwidth of 1 byte/timeunit.dure is model-based. This is ritial when we wish toinorporate as muh prior information about networkbehavior as possible so that we an derive aurate es-timates from few measurements. It is fully adaptiveand does not require a priori traÆ statistis, is mainlysender-based requiring minor timing information fromthe reeiver, and does not require synhronized loksat the sender and reeiver.Simulations showed that Delphi gave smaller errorsat higher utilization levels. This is not surprising, sineprobe pakets are likely to enounter larger queues athigh utilization levels. Larger queues imply a smallerhane of the queue emptying between the probes andhene a smaller unertainty in ross-traÆ volume. Atlow utilizations the errors in traÆ estimates preventedDelphi from traking the ross-traÆ statistis. How-ever at low utilization, errors as large as the traÆ itself15-9



may not ause a large error in the estimated availablebandwidth. Moreover, at low utilizations the Delphigenerally over-estimates the ross-traÆ whih impliesthat for ontrol purposes it is onservative.A number of issues must still be addressed, andseveral algorithmi improvements suggest themselves.There are numerous pratial issues we have not dis-ussed in detail here, suh as time-stamping issues andreeiver/soure-side algorithmi struture. Delphi needsto be modi�ed to take dropped probes into aount.At present hirps with dropped pakets are disarded.A number of potential inauraies ould arise, inlud-ing the approximate nature of the multi-sale queuingformula. Our algorithm assumes a knowledge of bot-tlenek apaity; ideally apaity estimation should beperformed in onjuntion with the ross-traÆ estima-tion. Knowledge about bottlenek apaity is howevernot essential for using the algorithm. Delphi an pro-vide estimates of relative ross-traÆ, that is not in ab-solute measure of bytes but as a relative omparisonbetween ross-traÆ volumes over di�erent time inter-vals. There is also the question as to whether it is morenatural to haraterize path behavior by quantities suhas dynami end-to-end ross-traÆ delays rather thanexpliit traÆ estimates. Di�erent haraterizations ofpath behavior require new models portraying alternativespetra of system e�ets. Moreover, other paket probeon�gurations should be examined, inluding randomand protool-determined (ompletely passive) ight pat-terns.Referenes[1℄ J. P. J. W. S. Floyd, M. Handley, \Equation basedongestion ontrol for uniast appliations," Pro.of SIGCOMM, 2000.[2℄ M. Mathis, J. Semkeand, J. Mahdavi, and T. Ott,\The marosopi behavior of the TCP ongestionavoidane algorithm," Computer CommuniationReview, vol. 27, pp. 67{82, July 1997.[3℄ T. Tuan and K. Park, \Multiple time sale on-gestion ontrol for self-similar network traÆ," inPerformane evaluation, vol. 36, pp. 359{386, 1999.[4℄ J. C. Bolot, \End-to-end paket delay and lossbehavior in the internet," Pro. SigComm '93,pp. 289{298, 1993.[5℄ V. Paxson, \End-to-end Internet paket dynam-is," IEEE/ACM Trans. Networking, vol. 7,pp. 277{292, June 1999.[6℄ S. Ratnasamy and S. MCanne, \Inferene of mul-tiast routing trees and bottlenek bandwidths us-
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