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e.edu.Abstra
tIn this paper we develop a novel model-based te
hnique,the Delphi algorithm, for inferring the instantaneousvolume of 
ompeting 
ross-traÆ
 a
ross an end-to-endpath. By using only end-to-end measurements, Del-phi avoids the need for data 
olle
tion within the In-ternet. Unique to the algorithm is an eÆ
ient exponen-tially spa
ed probing pa
ket train and a parsimoniousmultifra
tal parametri
 model for the 
ross-traÆ
 that
aptures its multis
ale statisti
al properties (in
ludinglong-range dependen
e) and queuing behavior. The algo-rithm is adaptive; it requires no a priori traÆ
 statisti
sand e�e
tively tra
ks 
hanges in network 
onditions. ns(network simulator) experiments reveal that Delphi givesa

urate 
ross-traÆ
 estimates for higher link utiliza-tion levels while at lower utilizations it over-estimatesthe 
ross-traÆ
. Also, when Delphi's single bottlene
kassumption does not hold it over-estimates the 
ross-traÆ
.1 Introdu
tion1.1 Edge-based estimationA better understanding of the dynami
 properties andbehavior of end-to-end paths would greatly bene�t thedesign and development of future network 
ontrol al-gorithms and proto
ols. It is unrealisti
 to expe
t in-ternal routers to determine and report these proper-ties, be
ause this would require maintaining overwhelm-ing amounts of per-
ow state information. It be
omesne
essary to infer the properties from edge-based mea-surements, whi
h are relatively easy and inexpensive tomake. In this light, several authors have proposed edgebased te
hniques for 
ongestion 
ontrol [1{3℄, estimat-ing the bottlene
k bandwidth [4{6℄, inferring multi
ast�This work was supported by the NSF, grant no. ANI-9979465,by ONR, grant no. N00014-99-10813, by DARPA, grant no. R36400, and by Texas Instruments.

routing trees [6℄, performing admission 
ontrol [7℄ anddete
ting 
ows with the same 
ongestion points [8℄.In addition to their pra
ti
ality, edge-based estima-tion algorithms also provide a 
onvenient abstra
tion ofnetwork dynami
s. Exa
tly modeling 
onne
tions thattraverse multiple hops is hopelessly 
omplex, both interms of overhead and analysis. If inferen
e te
hniquesbased on simplifying assumptions, for example a sin-gle bottlene
k assumption, are su

essful then it will bepossible to develop redu
ed 
omplexity models that a
-
urately re
e
t network behavior.Edge-based analysis and simpli�ed end-to-end pathmodeling are 
losely interwoven. A

urate estimatesof the volume of 
ross-traÆ
 
ompeting for the avail-able bandwidth of a path have the potential to impa
ta wide range of appli
ations. Potential appli
ations ofsu
h estimates in
lude (1) new end-to-end based 
on-gestion 
ontrol proto
ols, (2) workload balan
ing onweb servers (\rate based 
lo
king"), (3) dynami
 adjust-ment of transmission rate to maximize quality of voi
eand video-
onferen
ing 
onne
tions, and (4) pri
ing ona 
onne
tion basis a

ording to the stress a transfer putson the network in its 
urrent state.1.2 The Delphi algorithmIn this paper we propose and analyze the Delphi al-gorithm, an inferen
e pro
edure that uses the queuingdelay experien
ed by probe pa
kets to estimate, over arange of time s
ales, the load indu
ed by 
ross-traÆ
on the bottlene
k link of an end-to-end path. The al-gorithm is sender based requiring no 
ollaboration fromthe network and only little feedba
k from the re
eiveras to when pa
kets rea
h it.Inherent in any probing s
heme is an un
ertainty prin-
iple or \a

ura
y-sparsity" tradeo�. The volume of
ross-traÆ
 entering a queue between two probes 
anbe 
omputed exa
tly (assuming in�nite 
lo
k pre
ision)from their delay spread at the re
eiver provided thequeue does not empty in between. Unfortunately, this15-1



situation is guaranteed only if the probes are very 
loselyspa
ed. However, sending long trains of narrowly spa
edprobes will overwhelm the very 
ross-traÆ
 we are try-ing to measure. If probes are spa
ed far apart the queue
an empty in between whi
h results in un
ertainty in the
ross-traÆ
 volume.Delphi di�ers from earlier te
hniques for estimatingavailable bandwidth [9,10℄ in that it is model based. Byemploying short bursts of pa
kets these te
hniques arenaturally restri
ted to estimating 
ross-traÆ
 only overshort time periods [9℄. Other methods 
apable of dealignwith larger time s
ales use only an indire
t measureof the 
ompeting traÆ
 load [3℄. Delphi instead usesprobes spa
ed farther apart and improves the a

ura
yin 
ross-traÆ
 estimates by leveraging statisti
al knowl-edge of network dynami
s provided by a versatile traÆ
model, the multifra
tal wavelet model (MWM) [11℄. Ag-gregated traÆ
 on a link has been shown to be multi-s
ale in nature (in a �rst approximation self-similar, orfra
tal [12℄) and more pre
isely multifra
tal [11, 13{15℄.The MWM 
aptures the multifra
tal properties of traÆ
that give it its bursty 
hara
ter.Unique to Delphi is an eÆ
ient exponentially spa
edprobing pa
ket train that mat
hes the binary tree stru
-ture underlying the MWM. \Chirp pa
ket trains" bal-an
e the a

ura
y-sparsity tradeo� by being highly a
-
urate initially and highly sparse at their end. Probingthe path with a series of 
hirp trains, we use the inter-pa
ket delays at the re
eiver to estimate (using Bayesianinferen
e te
hniques) the 
ross-traÆ
 load at a range ofs
ales. The eÆ
ien
y of the MWM model and Delphiallows them to be applied on-line, generating estimatesin real-time.A signi�
ant advantage of Delphi is that it does notrequire traÆ
 statisti
s in advan
e. Starting with ar-bitrary model parameters, Delphi estimates the 
ross-traÆ
 from whi
h it updates its parameters.To study the Delphi's performan
e under di�erent lev-els of utilization and its parameter tra
king 
apability,we perform ns simulation experiments. Results indi
atethat at higher utilization levels Delphi gives a

urateestimates of 
ross-traÆ
. Also, Delphi's model parame-ters 
onverge to that of an MWM trained on the entire
ross-traÆ
 tra
e from initial arbitrary values. At verylow utilization levels, however, Delphi gave less a

urateestimates and the model parameters did not 
onverge tothose of the 
ross-traÆ
 tra
e.A fundamental assumption of Delphi is that most ofthe queuing delay that probe pa
kets fa
e is at the bot-tlene
k queue. In a situation where the probe pa
ketsare delayed at two queues, Delphi over-estimates the
ross-traÆ
 and hen
e for 
ongestion 
ontrol purposesis 
onservative.

1.3 OverviewWe review the models underpinning the Delphi algo-rithm (the MWM and simpli�ed path model) in Se
tion2. Se
tion 3 introdu
es Delphi by proposing methodsfor dynami
ally estimating the 
riti
al parameters of theMWM during the operation of the algorithm. We 
on-du
t a series of ns-2 simulations to study the Delphi'sperforman
e and demonstrate its pra
ti
al appli
abilityin Se
tion 4. Se
tion 4 also explores the validity of thesimpli�ed path model whi
h lies at the 
ore of the Del-phi algorithm. Se
tion 5 
loses with a dis
ussion and
on
lusions.2 Modeling FrameworkIn this se
tion, we introdu
e Delphi's intelligent probingmethodology. Its overall goal is the real-time inferen
eof end-to-end path network properties from measure-ments made at the edge of the network. In parti
ular,Delphi attempts to estimate the 
ross-traÆ
 intensity atthe bottlene
k queue in the path, a 
on
ept we 
larifylater in this se
tion. Delphi is founded on the amalga-mation of a simpli�ed model of the end-to-end path anda statisti
al model for the 
ross-traÆ
 stream. In thisse
tion, we �rst detail the simpli�ed path model andwhat 
an be dedu
ed about traÆ
 behavior on the ba-sis of its adoption. We then explain and motivate thetraÆ
 model.2.1 Path modelingAfter Bolot [4℄, we employ a simple model for thepath that 
aptures its essential features (see Figure1). Basi
ally, we redu
e the path to a single bottle-ne
k link/router 
onne
ted to sour
e and re
eiver by in-�nitely fast links. In addition, we assume that the prop-agation and pro
essing delay of the path is 
onstant anduse the 
onstant D to represent this �xed 
omponent ofthe overall end-to-end delay; a single-server queue with�nite bu�er and FIFO servi
e dis
ipline models the vari-able 
omponent of the delay. Entering this queue is boththe traÆ
 between sour
e and re
eiver and a 
ross-traÆ
stream, whi
h is the superposition of all the other 
on-ne
tions that share network resour
es utilized by thepath. The servi
e rate C is related to the slowest linkspeed or queue servi
e rate along the path; this is thebottlene
k queue.We now de�ne some terminology. The intensity BTat time-s
ale T denotes the number of bytes of 
ross-traÆ
 that arrive in time-interval T . We 
all the av-erage amount of 
ross-traÆ
 per se
ond that 
ould beinserted by the sour
e of the path over a time-intervalT the dynami
 available bandwidth at time-s
ale T , anddenote it DT . More spe
i�
ally, if we use Q to denote15-2
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Figure 1: Simpli�ed 
ross-traÆ
 model for an end-to-end path.the index set of the queues in the path, and Ci and BT (i)to denote, respe
tively, the bandwidth and 
ross-traÆ
intensity of the i-th queue (i 2 Q), then:DT = mini2Q �CiT �BT (i)T � : (1)Generally, we expe
t that this minimum arises at thebottlene
k queue.We use the term virtual 
ross-traÆ
 of an end-to-endpath to denote the aggregated 
ross-traÆ
 that mustbe inserted in the single queue model so that the dy-nami
 available bandwidth measured using the simpli-�ed model is the same as that along the entire multi-hoppath obtained from (1). Figure 2 depi
ts the relation-ship between dynami
 available bandwidth and virtual
ross-traÆ
.The spe
i�
 aim of the Delphi algorithm is the dy-nami
 inferen
e of the intensity BT of the 
ross-traÆ
present at the bottlene
k queue over a range of di�erenttime s
ales T . In performing this inferen
e, the algo-rithm makes a fundamental assumption, namely thatthe delay in ex
ess to the 
onstant propagation delayobserved on the path is due to the 
ross-traÆ
 on thebottlene
k link alone. In many 
ases, this 
orrespondsto estimating the virtual 
ross-traÆ
 of the path andthus allows the development of a pie
ewise 
onstant es-timate of the path's dynami
 available bandwidth. Se
-tion 4 explores the behavior of the algorithm when thedelay assumption is not valid. In su
h 
ir
umstan
es,knowledge of the 
ross-traÆ
 at the bottlene
k queueno longer leads to the dynami
 available bandwidth; thevirtual 
ross-traÆ
 of the path is then the quantity thatmust be estimated.If we transmit two probe pa
kets of size P bytes attimes t0 and t1 = t0 + T , then provided the queue doesnot empty between the queue-entry times of the �rstand se
ond probes, the time di�eren
e between the ar-rival times a0 and a1 at the re
eiver is ideally identi
alwith the inter-departure time at the queue. This timeis proportional to the number of bytes in the queue overthe time-period T :BT = C(a1 � a0)� P: (2)

T 2T 3T 4T time

mean traffic over T
dynamic available bandwidth

cross-traffic
virtual

b
yt

es
/s

ec

C

Figure 2: Dynami
 available bandwidth at time-s
ale T , together with a plot of virtual 
ross-traÆ
 of the path.Unfortunately, if the queue does empty between probe-pa
ket arrivals, then the inter-arrival spread 
an sub-stantially overestimate the 
ross-traÆ
 arriving in theperiod T .For probe pa
kets of size P , we use TNEQ = P=Cto denote the 
oarsest time-s
ale that ensures that thequeue 
annot empty between the probe arrivals. If we
ould send probe-trains that were this �nely spa
ed,then there would be no risk of underestimation. Unfor-tunately, su
h �ne s
ale probing is impossible be
auseit overwhelms the network after a short period and dis-rupts the measured traÆ
. Rather, we propose the useof a pa
ket 
hirp as a probing devi
e. The pa
ket 
hirp
onsists of probes sent in an exponential 
ight pattern,with the �rst three probes spa
ed by a time Tn � TNEQand then the spa
ing between subsequent probes in-
reasing by a fa
tor of two ea
h time (see Figure 3).The �rst three probes of the pa
ket 
hirp thus provideinitial �ne s
ale probing whi
h 
an provide exa
t knowl-edge of BTNEQ .The pa
ket 
hirp probing strategy balan
es the trade-o� between (1) generating reliable and a

urate esti-mates and (2) overburdening and disturbing the net-work. The �ne-s
ale probing an
hors 
ross-traÆ
 esti-mates made at 
oarser levels, but the rapid in
rease inprobe-spa
ing makes the probing eÆ
ient.2.2 Multifra
tal wavelet modelA

urate estimation of the 
ross-traÆ
 from a relatively
oarsely spa
ed train of probe pa
kets is not possiblewithout some form of statisti
al model for the 
ross-traÆ
. The 
ross-traÆ
 stream is the superposition ofmany data 
ows that share 
ommon Internet resour
eswith the probe 
onne
tion. Su
h superpositions havebeen shown to exhibit self-similarity [12℄, burstiness,long-range dependen
e (LRD), and evenmultifra
tal be-havior [11,13{15℄, all of whi
h 
an have a major impa
ton network performan
e. These 
hara
teristi
s 
an be
aptured with an appropriate statisti
al traÆ
 model.15-3
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Figure 3: Pa
ket 
hirp probe train has an expo-nential 
ight pattern to balan
e the trade-o� be-tween a

ura
y and sparsity.Our model of 
hoi
e for the 
ross-traÆ
 is the mul-tifra
tal wavelet model (MWM) [11, 14℄. The MWM isbased on a 
omputationally eÆ
ient tree stru
ture whi
hrepresents the 
ross-traÆ
 load at multiple aggregations
ales on a binary tree (see Figure 4(a)). The MWM'stree is 
losely related to the Haar wavelet system andhen
e the term \wavelet" in its name [11℄.We use T0 to denote the time-interval between the�rst and last probes in the pa
ket train. Withinthis interval, the tree 
oeÆ
ients Uj;k, j � 0, k =0; 1; : : : ; 2j � 1, 
orrespond to the total sum of 
ross-traÆ
 bytes arriving at the model queue in the interval[2�jkT0; 2�j(k + 1)T0℄. Here j denotes the s
ale of in-terest (see Figure 3). Note that ea
h parent 
oeÆ
ientis the sum of its two 
hildrenUj;k = Uj+1;2k + Uj+1;2k+1: (3)Note that we take a di�erent normalization than in [11,14℄. Thus, we 
an move up the tree from some �nests
ale to obtain all Uj;k at 
oarser s
ales. To move downthe tree while ensuring that (3) is preserved, we modelthe parent bytes Uj;k as split between its 
hildren by arandom fa
tor:Uj+1;2k = Bj;k Uj;k ; Uj+1;2k+1 = (1�Bj;k)Uj;k (4)with Bj;k a random variable distributed between 0 and1 (see Figure 4(b)). The use of symmetri
 beta randomvariables for the multipliers Bj;k is proposed in [11℄.So the MWM is a parametri
 model for bursty non-Gaussian traÆ
. Its parameters are (1) a global mean-rate parameter (the aggregate at the 
oarsest s
ale) and(2) beta multiplier parameters (one for ea
h s
ale).To train the MWM to a target traÆ
 data set, wesimply 
ow up the tree to form the Uj;k, 
olle
t theirstatisti
s, and estimate the beta parameters (see [11,14℄for the details). Delphi does not have a

ess to the Uj;k(indeed, it is a subset of these that we are attempting

(a) j+2,4k+3j+2,4k+2j+2,4k+1

j+1,2k+1

U

U

U

Uj,k
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j+1,2k

Uj+2,4k

(b) U

U

B 1-B
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j+1,2k+1j+1,2k

j,k

Figure 4: Multifra
tal wavelet model (MWM). (a)Binary tree stru
ture of aggregated traÆ
. (b)Beta multipliers split parent aggregate into two
hild aggregates at the next �ner s
ale.to infer); it be
omes ne
essary to jointly infer the ap-propriate beta parameters and the traÆ
. We outlinea sequential adaptive algorithm in Se
tion 3 that per-forms this estimation. The MWM 
an mat
h the exa
tmultis
ale se
ond-order statisti
s of a traÆ
 tra
e andprovides a mu
h 
loser mat
h of the higher-order statis-ti
s (non-Gaussianity) that lead to burstiness than otherpossible traÆ
 models [12, 16℄.Most importantly, the MWM provides a natural andeÆ
ient means to estimate, given the beta parameters,the queuing behavior of a syntheti
 tra
e [17℄. The mul-tis
ale queuing formula (MSQ) approximates the tailqueue probabilities for arbitrary bu�er sizes (not justasymptoti
). We use the derivative of the MSQ to ob-tain a probability density fun
tion for queue sizes. The
omputational eÆ
ien
y, and queuing formula approxi-mation of the MWM make it a natural modeling frame-work for our 
ross-traÆ
 estimation algorithm.3 MWM-based Inferen
e Algo-rithmIn this se
tion, we present the Delphi algorithm itselfwhi
h estimates the amount of 
ross-traÆ
 that arrivesin the time interval between the arrival at the queue inour model (re
all Figure 1) of the �rst and last probepa
kets of a pa
ket 
hirp. We model the 
ross-traÆ
 asan MWM pro
ess with unknown beta parameters. In asimpler form, the Delphi algorithm uses �xed beta pa-rameters that have been estimated from previous mea-surements. In the latter part of this se
tion we detaila method for adaptively estimating the beta parameter15-4



estimates on the 
y as traÆ
 estimates are generated.Delphi attempts to form reliable estimates whilsttransmitting as few pa
kets as possible. It does this bysending a pa
ket \
hirp" o

upying the time-interval T0;the interval is partitioned a

ording to the exponentialspa
ing of the probes. Figure 3 depi
ts this exponen-tial 
ight pattern and its natural relationship with theMWM tree. If we send n+2 probes in the pa
ket 
hirp,then T0 labels the interval between the �rst and lastprobes, T1 the interval between the �rst and se
ond last,and so on, su
h that Tn is the interval between the �rstand se
ond probes. The probe stru
ture guarantees thatTn � TNEQ, the maximum separation between probesthat ensures that the queue does not empty betweenprobe arrivals. For dynami
 measurements, Delphi is-sues a new 
hirp every T0 se
onds to obtain a pie
ewise
onstant estimate of the 
ross-traÆ
 load.Estimation of the 
ross-traÆ
 arriving in the inter-val T0 requires an estimate for the 
ross-traÆ
 that ap-peared in the interval T1, whi
h in turn needs an esti-mate of the 
ross-traÆ
 that appeared in the interval T2and so on. This re
ursive requirement 
ows down thetree until it hits Tn�1, at whi
h point the distan
e be-tween probes is su
h that the queue is guaranteed not toempty (re
all (1)), and an exa
t measurement of 
ross-traÆ
 is available. On
e this point has been rea
hed,the algorithm 
ows ba
k up the tree, 
alling an inferen
epro
edure to estimate Ui for i = (n� 2); (n� 1); : : : ; 0.See Figure 5 for pseudo-
ode detailing the nature of theDelphi algorithm.The inferen
e pro
edure (infer in Figure 5) developsan approximate maximum likelihood estimate. Whenwe assume that the bottlene
k bandwidth is known, thedelay ea
h probe experien
es ideally provides a instanta-neous measure of the bottlene
k queue size, whi
h we de-note qi for the i-th probe (see Figure 3). This measure-ment is usually noisy due to the granularity of 
lo
ks,the drift between sender and re
eiver 
lo
ks and addi-tional queuing delays at other queues along the path.At time s
ale n� 2, we wish to maximize the likelihoodof jointly observing both the measured traÆ
 over Tn�1and the measured queue size q4:p(un�1; q4jun�2) = p(q4jun�1; un�2) p(un�1jun�2)(5)We approximate the probability of observing q4 giventhe traÆ
 arriving in Tn�1 and Tn�2 as the probabil-ity of observing q4 given the traÆ
 arriving only in thelatter half of Tn�2. We are left with the expressionp(un�1; q4jun�2) � p(q4jun�2 � un�1) p(un�1jun�2):The �rst term on the right hand side 
an be approxi-mately evaluated using the MSQ formula [17℄; the se
-

ond term is equal to the appropriate beta distributionin the MWM model. We maximize this likelihood overthe range of possible un�2 values (whi
h is 
onstrainedby the queue sizes q3 and q4). Now we have an esti-mate dun�2 that 
an be used to generate an estimate ofun�3 by maximizing the approximate likelihood fun
-tion p(dun�2; q5jun�3). The pro
ess 
ontinues until anestimate has been formed for u0.Delphi uses the bandwidth C to translate delays intotraÆ
 volumes. Without C Delphi 
an still 
lassify the
ross-traÆ
 volumes as high or low but 
annot s
alethem to obtain the traÆ
 in bytes. Also the value TNEQdepends on C. However, Delphi does not require the ini-tial probe pa
kets to be spa
ed 
loser than TNEQ and
an estimate 
ross-traÆ
 at the �nest time s
ale in thesame fashion as at 
oarser s
ales.In the form proposed above the Delphi algorithm re-lies on prior estimation of the beta multiplier parametersof the MWM that best �ts the traÆ
. We now proposea method to adapt the beta parameters on-line whilethe 
ross-traÆ
 estimation is 
ondu
ted. The methodis similar to parameter adaptation te
hniques that un-derpin sequential estimation pro
edures in problems asdiverse as spee
h pro
essing and target tra
king. At the
ommen
ement of the Delphi algorithm, we 
hoose aninitial estimate of the beta multipliers, whi
h may bebased on previous measurements or may be 
ompletelyarbitrary. We then begin to estimate 
ross-traÆ
 usingthese initial parameters. After we have made K su
h es-timates, we use the sample se
ond-moments of the 
ross-traÆ
 estimates to obtain an instantaneous estimate ofmultiplier varian
es usingIE[B2j ℄ = IE[U2j+1℄=IE[U2j ℄: (6)We then update the MWM parameters usingnew varian
e = �� instantaneous estimate+(1� �)� 
urrent varian
e (7)where � 2 [0; 1℄ is a 
onstant. Smaller values of � giverise to smoother 
hanges in parameters. We 
ould also
hoose di�erent values of alpha to update parametersat di�erent time s
ales depending on the smoothnessrequired. In this paper we set � = 0:2. Figure 8 in Se
-tion 4 demonstrates that this method generates multi-plier estimates that 
onverge to the same values derivedfrom model mat
hing based on the entire traÆ
 tra
e.4 Simulation ExperimentsIn order to test Delphi we 
ondu
t several simulationexperiments using the LBNL Network Simulator (ns15-5



Delphi Algorithmpro
edure main (q,T0,C,n) fu0 = determine traÆ
(q,T0,C,n)return u0gpro
edure determine traÆ
(q,T,C,k) fif (T < 2TNEQ)u = qk � qk�1 + TCreturn uelse m = determine traÆ
(q,T/2,C,k-1)u = infer(q,T,C,m,k)return uendgpro
edure infer(q,T,C,m,k)u min =8<: m; qk = 0m+ qk + C�max(qk�1 + C � (T � 1)C; 0); qk>0u max = m+qk-qk�1 -C+TCreturn û 2 [u min,u max℄ that maximizes p(qk;m ju)gFigure 5: The Delphi algorithm: q denotes theve
tor of queue measurements, T0 the time in-terval of interest, C the servi
e rate of the modelqueue, and n the number of probe-pa
kets sent.The range of possible values of traÆ
, that isumax and umin are 
omputed assuming a dis
rete-time FIFO queue taking into a

ount the e�e
tof the previous probe on the queue size.version 2) [18℄. By varying the utilization, we ob-serve that at higher utilization levels Delphi gives a

u-rate estimates with little bias while at low utilizationsit over-estimates the 
ross-traÆ
. Over-estimating the
ross-traÆ
 
orresponds to under-estimating the avail-able bandwidth whi
h is 
onservative for 
ongestion 
on-trol purposes. In addition, at higher utilization levelsthe Delphi's model parameters 
onverged to those of anMWM trained on the 
ross-traÆ
 while at low utiliza-tion the parameters did not 
onverge. Experiments withdi�erent bu�er sizes showed little 
hange in Delphi's per-forman
e so we do not report their details here.To gain insight into Delphi's performan
e when theunderlying assumption of a single bottlene
k is invalid,we perform tra
e driven simulations. Results indi
atethat in situations where the probe pa
kets experien
esigni�
ant delay at links other than the one with thesmallest link speed on the path, Delphi gives 
onserva-tive estimates for 
ross traÆ
 and available bandwidth.
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on�guration for ns-2 simula-tions with bottlene
k link (A, B).4.1 ns ExperimentsWe simulated a bottlene
k network environment whereseveral 
on
urrent 
onne
tions are multiplexed over ashared bottlene
k link. Figure 6 shows the networktopology, 
omprising 420 web 
lients and 40 web servers.Table 1 gives the link 
hara
teristi
s of all the links inthe network.The 
lients engage in large-s
ale web traÆ
 a
ross thebottlene
k link to the servers. The simulation is 
arriedout for over 1500 se
onds (simulation time) and numberof sessions is varied to obtain di�erent link utilizations.Ea
h web session has 350 pages whose sizes are 
hosenfrom a heavy tailed distribution. Node P sends 
hirpsof probe pa
kets of size 900 bytes to node Q using theUDP proto
ol.The minimum spa
ing between probe pa
kets is set toTNEQ = 2:4 ms whi
h 
orresponds to a bottlene
k link
apa
ity of 3 Mbps and probe pa
ket size of 900 bytes.This ensures that the queue does not empty between the�rst three probes in every 
hirp. We dis
arded the �rst1000 se
onds of the simulation to eliminate transients.The Delphi algorithm assumes that the bottlene
k band-width C is known, so we supplied it with the 
on�gu-ration value; alternatively it 
ould have been estimatedbeforehand using te
hniques outlined in [5℄.Delphi 
omputes the queuing delay of a probe pa
ketas queuing delay = re
eive time� transmit time�
onstant delay: (8)The 
onstant delay equals the sum of propagation delayand servi
e time. This is set equal to the minimum ofall delays experien
ed by probe pa
kets while traversinga
ross the network. Note that in a simulation environ-ment syn
hronized 
lo
ks and error free values of these15-6



Table 1: Link and sour
e parameters for the net-work 
on�guration depi
ted in Figure 6 as usedin the ns-2 simulation experiments. U [a; b℄ de-notes a uniform random variable over the range[a; b℄. Link Band Width Laten
y(Mbps) (ms)AB 3 20BD 10 20DE 1.5 20DF 1.5 30DG 1.5 40DH 1.5 60DP 1.5 60ES1 to GS10 10 U[10,100℄FS11 to FS20 10 U[10,100℄GS21 to GS30 10 U[10,100℄HS31 to HS40 10 U[10,100℄AC1 to AC420 U[22,32℄ U[10,100℄AQ U[22,32℄ U[10,100℄quantities are available unlike in a real world situation.However, syn
hronized 
lo
ks at the sender and re
eiverare not ne
essary in pra
ti
e be
ause the di�eren
e in
lo
ks at the sender and re
eiver 
an be in
orporatedinto the 
onstant delay term. Other problems like 
lo
kdrift and resetting 
an however lead to errors in (8).In all experiments we estimate the 
ross-traÆ
 arriv-ing over time-slots of 307:2ms (the 7th aggregation levelin the tree of Figure 4), sending a 
hirp of 8 probe pa
k-ets in ea
h time-slot. The probe traÆ
 was thus equalto 6:25% of the bandwidth. We set the parameter �of (7) for updating the model parameters to 0:2. Thebu�er size was �xed at 50 pa
kets.4.2 Utilization e�e
tsWe 
hanged the number of web sessions to obtain dif-ferent utilization levels. Varian
e-time plots [12℄ showthat the 
ross-traÆ
 is LRD with Hurst parameters of0:74, 0:73 and 0:61 for the experiments with 39%, 65%and 96% utilization respe
tively.Delphi performed better with in
reasing utilizationas we observe from Figure 7. Noti
e from Figure 7 thatthe traÆ
 is more bursty at the �ner time s
ale thanat the 
oarse s
ale. Sin
e in the pro
ess of estimatingthe traÆ
 at 
oarser time s
ales Delphi gathers statisti
sat �ner time s
ales too, it 
an serve target appli
ationsthat require information about the burstiness of traÆ
at multiple time s
ales.As a measure of a

ura
y we use the sample mean

and standard deviation of the the error whi
h we nor-malize by dividing by the sample mean of the entire
ross-traÆ
. See Table 2 for details. At high utilizationsDelphi gives a

urate estimates with little bias while atlow utilizations it performs less a

urately. Intuitivelyat lower utilization levels the probe pa
kets en
ountersmaller queues more often and the smaller the queue sizethe longer the queue 
an stay empty between the arrivalof two probe pa
kets. This implies a greater un
ertaintyin the 
ross-traÆ
 volume.From Table 2, we observe that at low utilization Del-phi gives estimates with a positive bias, that is it over-estimates the 
ross-traÆ
. This 
orresponds to under-estimating the available bandwidth whi
h is 
onserva-tive for 
ongestion 
ontrol purposes. Also if 
ompeting
ross-traÆ
 volumes are low, an error of the order ofmagnitude of the 
ross-traÆ
 will not signi�
antly a�e
tthe estimated available bandwidth. This result at lowutilization thus does not re
e
t a major short-
oming ofDelphi.4.3 Tra
king 
apabilityTo test Delphi's adaptive algorithm we initially set thevarian
e of the beta multipliers at all time s
ales equalto 0:083. This 
orresponds to a beta parameter of 1for the multipliers [11℄. Noti
e from Figure 8(a) thatthe varian
es of the multipliers tra
k the 
orre
t val-ues after few iterations. Also observe from Figure 8(b)that the initial estimates of traÆ
 have larger errors be-
ause of in
orre
t model parameters and that the errorredu
es with improved model parameters. This demon-strates that the Delphi does not require prior knowledgeof 
ross-traÆ
 statisti
s. The utilization for this exper-iment was 65%.The improvement in inferen
e with 
orre
t parame-ter values indi
ates that the MWM parameters indeed
ontain valuable statisti
al information about the 
ross-traÆ
. It also suggests that in
orre
t statisti
al knowl-edge or oversimpli�ed traÆ
 models 
an give erroneousestimates.Delphi uses 
ross-traÆ
 estimates to update modelparameters. As a result, in the experiment with 39%utilization the model parameters did not 
onverge be-
ause of less a

urate 
ross-traÆ
 estimates.4.4 Validity of the modelWe used tra
e-driven experiments to explore the valid-ity of some of the assumptions underpinning our model.The use of the simpli�ed path model depi
ted in Fig-ure 1 hinges on the bottlene
k queue providing the ma-jor queuing delay in the path.This assumption 
an be invalid if the 
ross-traÆ
 at15-7
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Figure 7: (a) Cross-traÆ
 estimates for utiliza-tion of 65%. Observe that the estimates are a
-
urate. (b) Cross-traÆ
 estimates for 39% uti-lization. Observe that the estimates give greatererrors but are generally 
onservative.another queue in the path is substantially heavier thanthat at the bottlene
k queue. Therefore we experi-mented with the two queue system depi
ted in Figure 9.By applying independent 
ross-traÆ
 streams (X1 atthe bottlene
k queue and X2 at the se
ond queue) tothe two queues, we were able to examine the e�e
ts ofheavy 
ross-traÆ
 at the se
ond queue.A somewhat simple-minded view of the system pro-vides valuable intuition. Say we send two probes andneither queue empties between the arrivals of the probes.If we denote the 
ross-traÆ
 appearing between the twoprobes at the �rst queue x1 and that at the se
ond queuex2, then the total delay indu
ed by the system (ignoringpropagation and servi
e delays) isd = x1=C1 + x2=C2: (9)The Delphi model assumes that this delay is entirelydue to the bottlene
k queue; its estimate of 
ross-traÆ
is x = x1+C1x2=C2. The se
ond term is an error term,but be
ause we assume that C2 > C1, it only has asubstantial e�e
t on the estimate if x2 is mu
h largerthan x1.We examined the e�e
t of the error term by 
ondu
t-
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Figure 8: (a) Adaptive estimates of varian
e ofmultipliers over time. The horizontal lines 
orre-spond to the sample varian
es of the multipliersestimated by mat
hing the multifra
tal model tothe entire traÆ
 tra
e (i.e., the best model pa-rameters we 
an a
hieve). Observe that from anarbitrary initial value of 0:083, the model param-eters tra
k the sample varian
es (b) Cross-traÆ
estimates over time. Noti
e that the error in es-timates de
rease over time as the model param-eters tra
k those of the a
tual 
ross-traÆ
.ing an experiment in whi
h we set the bandwidth at thetwo 
ongestion points to C1 = 1 and C2 = 5 bytes/timeunit. We used se
ond-order self-similar MWM tra
eswith Hurst parameter H = 0:8 as the 
ross-traÆ
 atboth queues [12℄. The mean and standard deviation of
ross-traÆ
 at the �nest time-s
ale were 
hosen to equalhalf the bandwidth at their 
orresponding queues.Using this experimental setup, we applied the Delphialgorithm to generate estimates of the 
ross-traÆ
 atthe bottlene
k queue. Figure 10(a) plots the estimates(normalized by the true 
ross-traÆ
 at the bottlene
k)against the ratio of the true 
ross-traÆ
s. The linesshow the asymptoti
 values we anti
ipate from (9); forlow ratios, the �rst term dominates and for high ratios,the se
ond term dominates.In Se
tion 2, we explained that the dynami
 available15-8



Table 2: The error of inferen
e de
reases within
reasing utilization. A positive mean errorimplies generally 
onservative estimates at thatlevel of utilization.Utilization Mean Error Std. of Error(%) (normalized) (normalized)39.09 0.27 0.4265.34 0.1 0.2396.04 -0.023 0.044
Probes

X1
X1

Probes

C2C1
X2

Figure 9: A two queue system used to validatemodel assumptions. The �rst queue is the bot-tlene
k with bandwidth C1; the se
ond has band-width C2. The queues experien
e independent
ross-traÆ
 streams X1 and X2. Probe traÆ

ows through both queues.bandwidth is really related to virtual 
ross-traÆ
 ratherthan the 
ross-traÆ
 at the bottlene
k link. Virtual
ross-traÆ
 and bottlene
k 
ross-traÆ
 are only equiv-alent in our experiment when the ratio x2=x1 is small.Figure 10(b) 
ompares the dynami
 available bandwidthestimated using the Delphi algorithm to the true dy-nami
 available bandwidth. Clearly even as x2 be
omessubstantial (640 bytes is the maximum traÆ
 that 
anbe sent on the link over the time-s
ale studied), the Del-phi estimate remains reasonable. Moreover, it be
omesin
reasingly 
onservative, whi
h is desirable behavior intimes of heavy load.5 Dis
ussionThe ability to estimate 
ross-traÆ
 loads is key to thedevelopment of a better understanding of Internet dy-nami
s, and 
an potentially be used in the design ofbandwidth eÆ
ient transport proto
ols and rate-based
lo
king methodologies.We have introdu
ed an algorithm (Delphi) that usesa novel probing strategy to dynami
ally estimate the
ross-traÆ
 load 
onfronted along an end-to-end net-work path. Delphi 
an adopt an eÆ
ient probing pat-tern (the pa
ket 
hirp) be
ause our estimation pro
e-
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Figure 10: (a) The ratio between the Delphi esti-mate and the true value of the 
ross-traÆ
 x1 atthe bottlene
k queue of the system in Figure 9as a fun
tion of the ratio between x1 and the
ross-traÆ
 at the se
ond queue x2. The lines de-pi
t anti
ipate asymptoti
s from (9). (b) The er-ror between Delphi-estimated and true dynami
available bandwidth DT (see (1)) as a fun
tionof x2 with bottlene
k bandwidth of 1 byte/timeunit.dure is model-based. This is 
riti
al when we wish toin
orporate as mu
h prior information about networkbehavior as possible so that we 
an derive a

urate es-timates from few measurements. It is fully adaptiveand does not require a priori traÆ
 statisti
s, is mainlysender-based requiring minor timing information fromthe re
eiver, and does not require syn
hronized 
lo
ksat the sender and re
eiver.Simulations showed that Delphi gave smaller errorsat higher utilization levels. This is not surprising, sin
eprobe pa
kets are likely to en
ounter larger queues athigh utilization levels. Larger queues imply a smaller
han
e of the queue emptying between the probes andhen
e a smaller un
ertainty in 
ross-traÆ
 volume. Atlow utilizations the errors in traÆ
 estimates preventedDelphi from tra
king the 
ross-traÆ
 statisti
s. How-ever at low utilization, errors as large as the traÆ
 itself15-9



may not 
ause a large error in the estimated availablebandwidth. Moreover, at low utilizations the Delphigenerally over-estimates the 
ross-traÆ
 whi
h impliesthat for 
ontrol purposes it is 
onservative.A number of issues must still be addressed, andseveral algorithmi
 improvements suggest themselves.There are numerous pra
ti
al issues we have not dis-
ussed in detail here, su
h as time-stamping issues andre
eiver/sour
e-side algorithmi
 stru
ture. Delphi needsto be modi�ed to take dropped probes into a

ount.At present 
hirps with dropped pa
kets are dis
arded.A number of potential ina

ura
ies 
ould arise, in
lud-ing the approximate nature of the multi-s
ale queuingformula. Our algorithm assumes a knowledge of bot-tlene
k 
apa
ity; ideally 
apa
ity estimation should beperformed in 
onjun
tion with the 
ross-traÆ
 estima-tion. Knowledge about bottlene
k 
apa
ity is howevernot essential for using the algorithm. Delphi 
an pro-vide estimates of relative 
ross-traÆ
, that is not in ab-solute measure of bytes but as a relative 
omparisonbetween 
ross-traÆ
 volumes over di�erent time inter-vals. There is also the question as to whether it is morenatural to 
hara
terize path behavior by quantities su
has dynami
 end-to-end 
ross-traÆ
 delays rather thanexpli
it traÆ
 estimates. Di�erent 
hara
terizations ofpath behavior require new models portraying alternativespe
tra of system e�e
ts. Moreover, other pa
ket probe
on�gurations should be examined, in
luding randomand proto
ol-determined (
ompletely passive) 
ight pat-terns.Referen
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