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Abstract—Detecting groups of vehicles travelling together as a
convoy is an important problem in military and law enforcement
applications. License plate recognition sensors provide discrete,
irregularly sampled, time series information about where vehicles
are travelling. With this irregular time series, we would like to
determine when vehicles travel as a convoy.

We construct a semi-Markov process to model network traffic
and utilize the Markov property to develop a sequential hypothe-
sis test. This requires defining two models for how vehicles travel
through the network and testing the likelihood between them. The
main contribution of this work is the modeling of the alternate
hypothesis of when two vehicles are traveling as a convoy.

We present performance results based on simulated data
showing the tradeoff between false-positives and true detections.
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I. INTRODUCTION

Detecting groups of vehicles traveling together as a convoy
is an emerging problem in law enforcement. License plate
recognition (LPR) cameras are a new technology which can
facilitate this task. License plate recognition cameras are static
short-ranged sensors which can detect when a vehicle passes
in front of them and record the license plate, observation
time, latitude and longitude of the observation. Together this
information forms an irregularly sampled time-series of obser-
vations of vehicles.

This paper devises a method for translating the locations
of these sensors into the states of a semi-Markov process
which one can then observe the vehicles as traveling through.
We then propose a new model for defining how vehicles
transition through this semi-Markov process dependent on one
another, in other words in a convoy. Finally we devise a
statistical hypothesis testing method [2] for determining if the
pair of vehicles being tracked are traveling as a convoy versus
traveling independent of each other.

A. Related Work
The problem of tracking groups or pairs of vehicles together

as a convoy has received limited attention. The majority of
the existing literature on convoy detection/tracking use long-
range sensors such as Ground Moving Target Indicator (GMTI)
sensors [3], [4]. However this type of sensor provides regularly
sampled, continuous information about the vehicles that are
being tracked. This makes these methods not applicable for

two reasons in this context. The first is that using GMTI data is
not suitable for urban environments where long line-of-sight is
not available and would result in an overly expensive solution.
Secondly the methods used with GMTI tracking and detection
are not directly transferable to LPR sensors with the irregular
time series samples.

II. CONVOY DETECTION VIA SEQUENTIAL HYPOTHESIS
TESTING

Given a set of short-ranged sensors, this paper defines a
method to model vehicles’ movements through the network
and then detect which of the vehicles are moving following
similar paths, therefore defining a convoy.

A. Problem Formulation

Assume there are C static short-ranged sensors with known
locations placed around a network of links which vehicles can
travel around. These sensors have no regular sampling rate,
they simply record when an vehicle passes by it.

As vehicles move throughout this network, they can only
be observed at one of these C sensors. Therefore the only
information available are the discrete samples of vehicles when
they pass by a sensor. These samples include the time at which
the observation occurred, the location of the observation (i.e.
the capturing sensor id), and label of the vehicle which was
observed.

We would like to detect when pairs of vehicles traveling
through this network appear more correlated versus acting
independently.

When one tries to analyze this data, it appears as though the
vehicles are moving between sensors after some delay. There
is no knowledge of the path from sensor x to sensors y, just
that the vehicle is now at sensor y after being at x after some
time. This looks very similar to a first-order Markov model
where the vehicles are transitioning from state to state in a
state space S = {1...C}.

Now consider two vehicles, labeled as X and Y , moving
through this state space, following unknown routes. Each
vehicle can be visualized following a sample route in Figure
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Fig. 1. An example sample path of vehicles X and Y through the state
space, S.

1 and result in the following sample path observations

X(t) = {X(tx0) = x0, X(tx1) = x1, ..., X(txnx(t)
) = xnx(t)}

= {(xk, txk)}nx(t)
k=0 (1)

and
Y (t) = {Y (ty0) = y0, Y (ty1) = y1, ..., Y (tyny(t)

) = yny(t)}

= {(yk, tyk)}ny(t)

k=0
(2)

where txk is the time of the kth sample of X and similarly for
Y . Also nx(t) and ny(t) are defined as

nx(t) = max{k : txk ≤ t}
ny(t) = max{k : tyk ≤ t} (3)

or equivalently the number of samples of X and Y up to time
t. The inter-arrival times for vehicles X and Y are represented
by τxi = (txi − txi−1) and τyi = (tyi − t

y
i−1), respectively.

B. Markov Model for a Single vehicle

Before we can define any model which describes how the
pair of vehicles travels together through the network, we first
define the standard model for how they travel as a single,
independent vehicle. In order to better model this process,
we need to be able to model the vehicle at any time t,
not just at the observation time. At time t there are nx(t)
observations of X . The elapsed time since the last observation
is τxnx(t)

:= t− tnx(t).

The likelihood of the observations X(t) of a single vehicle

is

pt(X(t))

=π(x0)

nx(t)∏
k=1

Pr(xk|xk−1)ft
(
txk|txk−1, xk, xk−1

)
× Pr(txk+1 > t|txk, xk)

=π(x0)

nx(t)∏
k=1

Pr(xk|xk−1)fτ
(
txk − txk−1|xk, xk−1

)
× (1− Fτ (t− txk|xk)) , (4)

which is the Markov path probability of X following its
observed path at the transition intervals described by fτ
multiplied by the CDF of the interval waiting time for state
xk. The CDF in this equation is the probability that X is still
waiting at state xk at time t. This can alternately be expressed
as

pt(X(t)) = pt

(
{xt}nx(t)

k=0

)
· pt
(
{txk}

nx(t)
k=0 |{xk}

nx(t)
k=0

)
where

pt

(
{xt}nx(t)

k=0

)
= π(x0)

nx(t)∏
k=1

Pr(xk|xk−1)

and

pt({txk}
nx(t)
k=0 |{xk}

nx(t)
k=0 )

=
(

1− Fτ
(
t− txnx(t)

|xnx(t)

))
×
nx(t)∏
k=1

fτ (t− tk|xk, xk−1) .

C. Markov Model for Two Independent vehicles

Now that there is a defined model for a single vehicle
traveling through the Markov chain at any time, we can extend
this to two vehicles moving independently of each other.
This will form the distribution which describes the null (H0)
hypothesis in the hypothesis test defined later. The likelihood
of the observed path for both X and Y under H0 is

pt(X(t), Y (t)|H0) = pt(X(t))pt(Y (t)) (5)

which is simply the product of the two independent likelihoods
defined in Equation 4. Utilizing this definition for the null
hypothesis we can now define a model for the alternate
hypothesis for our sequential hypothesis test.

D. Markov Model for Two Dependent vehicles

Next we define the joint observation model under the
hypothesis that vehicles are moving together as a convoy. This
model makes the assumption that the transition times which X
and Y make from their current states is independent from the
vehicles which are traveling as a convoy. With this assumption,
we can see that the waiting times (including the time either
vehicle remains at its current state) will factor out leaving the
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likelihood as

pt(X(t), Y (t)|H1)

= pt

(
{txk}

nx(k)
k=1 | {xk}

nx(k)
k=1

)
× pt

(
{tyk}

ny(k)

k=1
| {yk}

ny(k)
k=1

)
× (1− Fτ (t− txk|xk))× (1− Fτ (t− tyk|yk)) (6)
× pt (xk, yk,mk|(xj , yj ,mj)j<k, H1) ,

where we introduce a new variable mi which can take
one of two values {X,Y } and indicates either that vehicle
X or vehicle Y transitioned at instance i. The probability
pt (xk, yk,mk|(xj , yj ,mj)j<k, H1) also satisfies the Markov
property in that it can be expressed as

pt (xk, yk,mk|(xj , yj ,mj)j<k, H1)

= pt (xk, yk,mk|xk−1, yk−1,mk−1, H1)

where the current probability only depends on the previous
observation. Now all that remains to define is this density
pt (xk, yk,mk|xk−1, yk−1,mk−1, H1) which we call the lag
density.

1) Lag Density: The lag density,

pt (xk, yk,mk|xk−1, yk−1,mk−1, H1) ,

is only described under the alternate hypothesis. This term
needs to be designed to capture the correlation between ve-
hicles X and Y under H1. This density is described by the
changes in physical distances between the states in S between
observations of X and Y under H1.

Let dist(xi, yi) denote the physical distance between states
xi and yi at instant i. We assume the sensor positions are
known.

Now one can look at how this distance property changes
between observations of either X or Y with

δi =
dist(xi−1, yi−1)− dist(xi, yi)

dist(xi−1, yi−1)
. (7)

The term δi describes the change in the lag property between
observations i − 1 and i and is a signed value in the range
(−∞, 1]. We then introduce a new parameter L which is the
maximum allowable lag. Based on this parameter, this density
will be able to capture when two vehicles are close together
and one transitions away from the pair. Now if the previous
distance dist(xi−1, yi−1) is less than some quantity L then
this means that at instance i − 1, vehicles X and Y were
close together, or at least within L distance of each other.
Then at instance i, either vehicle X or Y will transition away
and the current distance will change. In this case, we consider
that whoever transitions away when the previous distance was
less than L is assumed traveling independent of the pair. This
introduces a notion of “leading” since whoever transitions
away first will lead the other.

Now in the alternate case, when the previous distance is at
least L large, we look at the new distance to see if it has shrank
or grown. If it has grown larger than 2×dist(xi−1, yi−1) then
the likelihood is forced to the null, i.e. the probability that the
pair travels as a convoy goes to 0, since that would mean that
the other vehicle in the pair has moved further away from the

“leader”.
Otherwise the probability of a convoy is set proportional to

the distance covered by the transition. This translates to

pt (xk, yk|xk−1, yk−1,mk−1,mk = X,H1)

= pt (xk|xk−1, yk−1,mk−1,mk = X,H1) (8)

∝

 Pr(xk|xk−1) , dist(xk−1, yk−1) < L
1+δi
2 , (−1 ≤ δi) ∧ (dist(xk−1, yk−1) ≥ L)

0 , (−1 > δ) ∧ (dist(xk−1, yk−1) ≥ L)

if mk = X and

pt (xk, yk|xk−1, yk−1,mk−1,mk = Y,H1)

= pt (yk|xk−1, yk−1,mk−1,mk = Y,H1) (9)

∝

 Pr(yk|yk−1) ,dist(xk−1, yk−1) < L
1+δi
2 , (−1 ≤ δi) ∧ (dist(xk−1, yk−1) ≥ L)

0 , (−1 > δ) ∧ (dist(xk−1, yk−1) ≥ L)

if mk = Y . The first of the two cases in these expressions,
when dist(xi−1, yi−1) < L, is already a valid discrete density
since it is just the likelihood of the previous transition, however
the alternate piece will need to be normalized so that it sums
to one. This density is discrete because it can take one of |S|3
values since it can only be a transition of X or Y given X and
Y ’s previous states. This linear density transformation states
that if the previous lag was large, then the smaller the new lag
is the more likely the pair is a convoy.

E. Formulation of a Likelihood Ratio

Now that both probabilities are defined under the null and
alternate hypothesis, one can formulate a hypothesis test be-
tween the two. This is formulated with the following likelihood
ratio

Λ (Z(ti)|Z(ti−1)) (10)

=
Pr (Z(ti) = zi|Z(ti−1) = zi−1, H1)

Pr (Z(ti) = zi|Z(ti−1) = zi−1, H0)
.

Transforming Equation 10 into the log-domain and expanding
the inner probabilities this simplifies to

ln Λ(Z(ti)|Z(ti−1))

= ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))

− ln Pr(xnx(ti)|xnx(ti−1))− ln Pr(yny(ti)|yny(ti−1))

where it can be noted that the waiting times have canceled out
due to the model definition. Now the likelihood ratio definition
only depends on the actual transitions and not the time of the
transition. Given a vector of Zn observations the ratio becomes

lnΛ(Zn) = lnπ(z0|H1)− lnπ(z0|H0)

+

n∑
i=1

ln Pr(xnx(ti), yny(ti)|xnx(ti−1), yny(ti−1))

−
n∑
i=1

[
ln Pr(xnx(ti)|xnx(ti−1)) + ln Pr(yny(ti)|yny(ti−1))

]
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where π(z0|Hh) is the initial probability of z0 under the
hypothesis Hh, h ∈ 0, 1. In this model it is assumed that the
initial probabilities under the null and alternate hypothesis are
both equal and therefore cancel out as well.

1) Recursive Definition of the Likelihood Ratio: In order for
this model to make decisions as quickly as possible, we would
like to translate the standard hypothesis test of

Λ(X(t), Y (t)) =
pt(X(t), Y (t)|H1)

pt(X(t), Y (t)|H0)

into a sequential hypothesis test which receives data as it
becomes available. In order to define a sequential hypothesis
test, there needs to be a definition of the likelihood ratio
without all the data available. The likelihood ratio can be
defined recursively using the previous sample of the likelihood
ratio as

ln Λ(xk, yk) = ln Λ(xk−1, yk−1)

+ ln pt(xk, yk,mk|xk−1, yk−1,mk−1, H1)

− ln pt(xk|xk−1, H0)− ln Pr(yk|yk−1, H0)

where the likelihood ratio at time tk only depends on the
current observation of xk and yk and the previous observation
and likelihood ratio at time tk−1. One can further simplify
this into two separate cases depending on the observation. The
cases appear as

lnΛ(xk, yk) = ln Λ(xk−1, yk−1)+
ln Pr(xk|xk−1, yk−1, H1)

− ln Pr(xk|xk−1, H0)
, mk = X

ln Pr(yk|xk−1, yk−1, H1)
− ln Pr(yk|yk−1, H0)

, mk = Y.

(11)

This simplification shows that since only one vehicle (either
X or Y ) can transition at any time, the update rules for the
likelihood ratios are easy and fast to compute with only the
previous likelihood ratio being necessary in order to compute
the current likelihood ratio. It also shows how the lag property
is related to individual path probabilities for observations of
each random vehicle.

F. Sequential Hypothesis Test
Now that a recursive definition of the log likelihood ratio

is available from Equation 11 a sequential hypothesis test
can be defined. As per the standard literature on sequential
hypothesis testing [2] two boundaries need to be defined,
ln η0 and ln η1, which define the decision regions for the test.
The following equation defines how the boundaries define the
decision regions.

ln Λ(xk, yk) < ln η0 decide H0

ln η0 ≤ ln Λ(xk, yk) < ln η1 decide “need more data”
ln η1 ≤ ln Λ(xk, yk) decide H1

. (12)

III. SIMULATIONS AND RESULTS

A simulated dataset where real traffic patterns are modelled
was created to test the performance of this algorithm. In this

dataset the number of convoys was controllable as well as the
decision bounds in order to determine the performance of the
algorithm accurately. With simulated data the false detection
and detection probabilities are able to be analysed along with
the computational performance.

A. Dataset Creation

The simulated dataset was created by selecting 48 sensors
at random locations in the borough of LaSalle in Montreal,
Quebec, Canada. These locations constitute the state locations
for the underlying sensor network which was created. When
simulated vehicles pass by these locations we can simulate a
detection of that vehicle and record it.

Then using the Visum [6] simulator, which simulates traffic
load across all roads in Montreal, a random population of
vehicles was created equal to the number of registered cars
in Montreal. The cars selected were sent traveling through the
network for 1 day and when a vehicle was reported to have
passed a simulated sensor location it was recorded into the
dataset.

This created a sample dataset of base data where no convoys
were known. From this a set of simulated convoys were
injected into this dataset following the proposed alternate
hypothesis joint state transition model. There are 1000 convoy
pairs which were simulated and injected. In each pair, times
between observations were randomly generated from a uniform
distribution between -60 seconds and 60 seconds. If this
random observation time is negative, it means that vehicle Y
was observed prior to vehicle X and therefore X is following
Y . Each pair was simulated for 18 samples of the convoy.

B. Algorithm Analysis on Simulated Data
Utilizing the simulated dataset with 1000 convoys injected

as described, the algorithm was run with the decision bound-
aries being swept for values 0 ≤ ln η1 ≤ 22 and 0 ≥ ln η0 ≥
−16. The number of detections of pairs of vehicles from H1,
false detections (pairs of vehicles reported to be from H1 but
truly from H0), as well as non-decisions (pairs of vehicles
likelihood ratios whose value never moved into either decision
boundary) were recorded. From this information, Figure 2
relates how the percent of detection for convoys changes with
the changes in ln η0 and ln η1.

Similarly Figure 3 demonstrates how for all combinations
of ln η0 and ln η1 the resulting combination of PD and PFD
is produced. Taking the largest output for PD, which occurs at
ln η0 = −17.5 and ln η1 = 0, one can see that there is still only
PFD = 0.0383 which is quite low in order to attain a PD =
0.8550. This proves to be one of the most useful comparisons
when choosing decision boundaries for the system. In order to
minimize the number of inaccurate decisions of convoys and
maximizing the number of detected real convoys, this chart
helpfully displays the trade-off and can allow an operator to
choose ln η0 and ln η1 for the target performance they wish to
achieve.

One can also view the amount of data which is not a decision
for H0 nor H1. This means that the tracked pair of vehicles
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Fig. 2. ROC surface plot demonstrating how the choice of ln η0 and ln η1
changes the detection accuracy of the system.
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Fig. 3. Plot of the values showing the probability of detection PD versus the
probability of false detection PFD for this system in the simulated dataset.

was lost when there were no more samples before the track
time window expired.

Figure 4 demonstrates this parameter through changing val-
ues of ln η0 and ln η1. As one pushes the boundary parameters
further from 0 (ln η0 → −∞ and ln η1 →∞) one can see that
the percent of data which is no-decision tends towards 100%.
This makes sense where data is not infinite since any single
pair will only have a finite log likelihood.

Lastly Figure 5 shows a heat map which demonstrates how
the average number of observations until a decision of vehicles
changes with the boundaries ln η0 and ln η1. The average
number of observations is how many samples of the pair of
vehicles must be observed before a decision for the alternate
case H1 can be declared. As can be seen in the heat map as
the boundaries move farther from 0 the number of observations
required to make a decision increases.

Fig. 4. ROC surface plot demonstrating how the choice of ln η0 and ln η1
changes the percent of non-detections in the system.
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Fig. 5. Heatmap demonstrating how the average number of decisions required
to make a decision for “convoy” changes with boundaries ln η0 and ln η1.

IV. CONCLUSIONS AND FUTURE WORK

The algorithm presented here utilizes standard sequential
hypothesis testing techniques [2] in order to create a method
for detecting pairs of vehicles traveling in a convoy versus
traveling independently through a network of nodes. The main
contribution for this work is the definition of a model which
describes how vehicles move co-dependently with each other
through a network of states of a Markov chain. Analysis over
a real dataset is demonstrated showing that a real convoy was
detected. However no performance analysis could be done
since the ground truth is unknown in this dataset. Therefore a
simulated dataset where the exact convoy pairs are known was
created and the algorithm was evaluated on that dataset. The
results of this analysis were presented showing that the algo-
rithm has the ability to detect convoys with varying success
depending on the acceptable percentage of false detections for
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the specific application.
In the future, the model will be extended in order to take

into account the transition times of vehicles. Since the current
model assumes that all transition times are independent of
the underlying distribution H1 or H0. Extending this model
to include the transition times would hopefully make it more
accurate and help push the performance closer to the optimal
PD = 1 and PFD = 0.
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