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Abstract—License plate recognition (LPR) sensors are embed-
ded camera systems that monitor road traffic. When a vehicle
passes by a sensor, the vehicle’s license plate, the location, and
the time of observation are recorded. Given a stream of such
observations from a collection of sensors spread around the road
network, our goal is to detect convoys: groups of two or more
vehicles traveling with highly correlated trajectories. Some of
the main challenges with modeling and processing data from
LPR sensors include that the data-gathering process is event-
driven, thus data are not regularly sampled in time or space.
Also, an appropriate definition of convoy should be relative to
background traffic patterns which are temporally and spatially
varying. This paper proposes novel models for LPR observations
of traffic which are well-suited for online convoy detection.
Baseline traffic is modeled as following a mixture of semi-Markov
processes, and specific models for temporal and spatial correlation
of observations of vehicles traveling in a convoy are introduced.
These models are used within a sequential hypothesis testing
framework to obtain a system for real-time convoy detection.
The model of baseline traffic may be of independent interest for
forecasting road traffic patterns. Experiments with an extensive
simulated dataset illustrate the performance of the scheme and
offer insights into the tradeoffs between detection rate, false alarm
rate, and the expected number of observations required to detect
a convoy.

I. INTRODUCTION

We consider the problem of detecting convoys of vehicles
in an urban environment using a collection of license plate
recognition (LPR) sensors. Each sensor records data of the
form “vehicle X was observed at location Y at time t”. Given
streams of such observations arriving from a collection of
sensors, a centralized decision maker must identify which, if
any, vehicles are traveling as convoys.

Convoy detection has applications in both law enforcement
and the commercial sector. Law enforcement agents may be
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interested in detecting and tracking convoys for a variety of
reasons [2]. In the commercial sector, the approach developed
in this paper could be used to identify groups of shipping
vehicles traveling along highly correlated routes which may
benefit from forming platoons. Recently there has been in-
terest in designing control laws to allow heavy-duty shipping
vehicles to maintain platoons over long distances in order to
reduce drag on the non-leader vehicles, thereby saving on fuel
costs [3], [4]. In order to exploit this approach one must first
identify potential pairs of vehicles that could form platoons,
and the convoy detection approach we propose could be used
to automate this process.

Defining a concrete notion of what it means to be a
convoy is not as straightforward as it may seem. Intuitively
a convoy comprises two or more vehicles traveling together.
While it may be tempting to particularize this definition to
say that a convoy is two or more vehicles traveling along
the same route over a given distance (e.g., for more than
500 consecutive meters) or for a minimum amount of time
(e.g., at least 5 minutes), without separating by more than a
particular distance (e.g., 50 meters), such a threshold-based
approach has a number of limitations and drawbacks. Setting
the thresholds too tight does not allow for situations where the
convoy vehicles take slightly different routes (e.g., deviating
for a few city blocks before rejoining). Similarly, in dense
urban environments or along stretches of highway during rush
hour it may be expected that arbitrary vehicles will be seen
near each other for a relatively long distance and/or time even
if they are not traveling as a convoy, simply because of the
dense traffic.

Similar to problems of unsupervised novelty/anomaly de-
tection [5]–[7], defining what it means to be a convoy is not
straightforward. One may expect convoys to be relatively rare
events. Still it is not straightforward to obtain a sample of
traffic that is guaranteed to contain no convoys, and it is also
not straightforward to obtain labeled examples of convoys for
training. Intuitively, two vehicles may be called a convoy if
their trajectories are more correlated in space and time than
two typical vehicles in normal traffic. The challenge is in
making precise what is “more correlated” and what are “typical
vehicles in normal traffic”.

Another challenge is due to the fact that measurements
arrive at irregular times. Existing LPR sensors use cameras in
conjunction with computer vision algorithms to identify and
extract vehicle license plates. Consequently, LPR sensors have
a short range, and measurements are obtained in an event-
driven manner, when a vehicle passes within the field of view
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of the camera. Thus, measurement times are arbitrary, and
measurements of any particular vehicle are not obtained at
regular sampling intervals, either in time or space.

The aim of this work is to develop algorithms that detect
convoys in real-time. Our approach is based on sequential
hypothesis testing [8], and the main contribution of this work
is the modeling of observations from such a network of
LPR sensors. Under the independent (non-convoy) hypothesis,
vehicle movement is modeled as following a mixture of
Markov chains, and under the convoy hypothesis a novel
leader/follower observation model is developed.

A. Previous work
The majority of previous work on convoy detection and

tracking in the information fusion literature [9]–[11] focuses
on sensors with a wide field of view, such as ground moving
target indicator radar. Data is collected from one or a few
sensors and provides a tracking indicator based on the physical
characteristics of a vehicle. Each sensor regularly scans and
gathers measurements about the vehicles in its field of view
over an extended period of time and over a large geographic
region. In contrast, the setting considered in this paper is such
that any individual sensor only measures a vehicle when it
is nearby the sensor, and individual vehicles are thus only
measured intermittently (and irregularly) over time when they
pass by a sensor.

Threshold-based approaches have been studied for off-line
identification of convoys in trajectory databases [12]–[15].
Such methods are applicable when entire vehicle trajectories
are available (e.g., all vehicles carry GPS units and regularly
report their location to a central office, as is commonly the
case with taxis and shipping trucks). In such a setting, when
a vehicle is also aware of which other vehicles are nearby,
convoys can be detected using decentralized methods [16].
In contrast to this previous work, the present paper deals
with partially-observed trajectories, sampled when the vehicle
passes by an LPR sensor. In addition, the previous work
mentioned above does not take into account the underlying
traffic patterns and structure of the road network.

Convoy detection based on LPR sensors (a.k.a., automatic
number plate recognition systems) is considered in [2], where
a heuristic approach to detecting vehicle convoys in a database
of LPR records is proposed. The approach, similar to [13], is
based on counting and thresholding co-occurrences of vehicles
observed nearby each other. The convoy model considered
in [2] requires that the vehicles in a convoy follow precisely
the same path, and the method is designed for post-processing
of database records rather than real-time/sequential detection.

B. Contributions and organization
We address the problem of convoy detection using tools

from the statistical signal processing toolbox. Specifically, the
contributions of this work are: 1) posing the problem of convoy
detection using short-range LPR sensors in the framework of
sequential hypothesis testing, and 2) developing models for
LPR observations under convoy and non-convoy hypotheses.
In the non-convoy setting we model vehicle movement using

a mixture of Markov models. In the convoy setting, a novel
leader/follower measurement model is developed. The convoy
model is flexible and does not require all vehicles in the convoy
to travel along precisely the same route; rather they should
travel in the same general direction (following the leader),
and the leader may change over time. The extent to which
their routes deviate can be specified in the model, so that the
scenario where all convoy vehicles follow precisely the same
route is a special case. We evaluate the performance of the
proposed approach using simulated data based on a detailed
model of road traffic in Montréal, Canada.

The rest of the paper is organized as follows. Section II
provides the problem formulation. Generative models for ob-
servations of convoys and independent vehicles are described
in Section III. The proposed sequential hypothesis testing
framework, including implementation details, is described in
Section IV. The results of the experimental performance evalu-
ation are reported in Section V. Additional issues are discussed
in Section VI, and we conclude in Section VII.

II. PROBLEM DESCRIPTION

This section takes steps towards formalizing the problem
of convoy detection. We describe characteristics of the mea-
surement system that make the problem challenging. Then we
discuss assumptions made and describe performance metrics
that will be used to evaluate convoy detection methods.

A. License plate recognition data
Consider a system of urban roads instrumented with license

plate recognition sensors. When a vehicle passes by the sensor
it records the license plate as well as the time and location of
the event. The sensors have a very short range of detection
(e.g., 10 meters). The measurements from many of these
sensors, at different locations in the road network, report their
measurements to a fusion center whose goal is to detect groups
of vehicles that are driving together as a convoy.

Formally, we consider a collection of C sensors, indexed
using the first C natural numbers, 1, . . . , C, and let the set of
sensor indices be Ω = {1, . . . , C}. In this paper we focus on
detecting convoys composed of two vehicles; the extension to
convoys of more than two vehicles is discussed in Section VI.
Let (x1, r1), (x2, r2), . . . , denote a sequence of observations
of one vehicle, where xi ∈ Ω is the index of the sensor
making the ith observation and ri ∈ R+ is the time of the
ith observation.1 Similarly, let (y1, s1), (y2, s2), . . . , denote the
sequence of observations of a second vehicle.

B. Measurement system characteristics and assumptions
Fig. 1 shows a sample path of the measurement process as a

function of time. The horizontal axis corresponds to time; the
labels along the bottom of the figure show observation times
for each vehicle (ri and si), and the labels along the top of the
figure show global observation times. The vertical axis gives

1Without loss of generality we take all times to be non-negative and denote
by R+ the set of non-negative real numbers.
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Fig. 1. Example measurements of two vehicles over time.

the index of the camera making the measurement; this index
should be treated as a categorical variable since the ordering is
arbitrary and does not necessarily reflect, e.g., the geography
of the sensors.

Note that the observation times are not necessarily equally
spaced, and the number of observations is not necessarily the
same for each vehicle. This is because vehicles can leave the
observation area, people drive at different speeds, and traffic
patterns and road conditions vary over time.

Traffic patterns in a large urban environment may also be
quite complex. For example, during rush hour there may be a
significant flow of vehicles heading from the suburbs into the
city and, at the same time, from the city out to the suburbs. This
motivates the need for models that can capture these subtle
aspects of traffic flows and not just the average or majority
flow over the network.

We make the following assumptions about the measure-
ments. First, the sensors are synchronized so that the times-
tamps from different sensors are directly comparable. This is
justified since existing LPR cameras are typically equipped
with GPS receivers that can provide reliable and accurate
synchronization.

Second, we assume that no two vehicle observations are
recorded at precisely the same time instant; this ensures that
the two time sequences {ri}i≥1 and {si}i≥1 can be uniquely
ordered. This is justified when timestamps at each sensor use
a sufficiently high resolution.

Third, we assume that a sensor always records vehicles that
pass by the road segment it is monitoring and that the sensor
does not produce any spurious measurements. Thus, there is
no “noise” in the measurement sequences (missed observations
or erroneously injected observations), and the main source of
uncertainty is in the vehicle trajectories. While it is certainly
of interest to allow for such additional noise sources, we leave
this as an extension for future work.

Fourth, we assume that the sensors are static and that their
locations are known to the fusion center. Thus, the fusion
center can make use of related information, such as the
distance between sensors, when making a decision.

Finally, we assume that the sensors transmit their measure-
ments to the fusion center over a reliable, delay-free channel;
i.e., we consider a traditional centralized decision making
setup. This is reasonable since each individual measurement
can be encoded in a small number of bits (e.g., much smaller

than the size of a typical Ethernet packet) and the inter-
observation time for a given vehicle (i.e., the time between
when it is observed at one sensor and next observed at a
different sensor) is large relative to the time it takes to trans-
mit such a measurement using contemporary communication
technologies.

C. Sequential testing and performance metrics
In this work we consider a typical sequential hypothesis

testing setting [8] where the observations (xi, ri) and (yi, si)
arrive successively at the fusion center. Under the null hy-
pothesis, H0, the vehicles are independent (not a convoy), and
under the alternative hypothesis, H1, the vehicles are moving
as a convoy. After receiving an observation the decision maker
must choose from one of three options: 1) declare that the pair
of vehicles is a convoy (i.e., reject the null), 2) declare that
the pair is not a convoy (i.e., fail to reject the null), or 3) wait
to receive additional observations. As discussed in Section I,
defining what it means to be a convoy is difficult. Ultimately,
the precise definition of convoy adopted in this work is implicit
in the models described in Section III.

The objective is to make accurate decisions without defer-
ring for too long. Accuracy is measured using the standard
metrics for hypothesis testing: the probability of detection and
probability of false alarm. We also study the average number
of observations required to make a decision. Ideally a system
should have high probability of detection, low probability of
false alarm, and a low average number of observations required
to make a decision.

III. MODELING

Our aim is to formulate the problem of convoy detection in
the sequential hypothesis testing framework. The main task is
one of modeling; i.e., to define appropriate distributions for the
observations under the hypotheses that (H1) the two observed
vehicles are a convoy, or (H0) the vehicles are not a convoy.
First we describe a simple Markov model for the observations
of individual vehicles. Then we build on this to develop models
for observations of pairs of vehicles under each hypothesis.

A. Single-vehicle Markov model
To begin, we define a model for the observations of a single

vehicle, {(xi, ri)}ni=1. Our model can be viewed as a semi-
Markov process [17], where the sequence of sensors where the
vehicle is observed, x1, x2, . . . , follows a discrete-time Markov
chain, and the inter-observation times ri − ri−1, i = 2, . . . , n,
are mutually independent and are conditionally independent of
the other variables given the states xi−1 and xi.2

Let (πx)x∈Ω denote the initial state distribution, with∑
x∈Ω

πx = 1,

2If the inter-observation times were assumed to follow an exponential
distribution then the semi-Markov process is equivalent to a continuous-
time Markov chain. In general, the inter-observation times of a semi-Markov
process may follow an arbitrary distribution with support on the positive real
numbers.
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and let Pxi−1,xi
= Pr(xi|xi−1) denote the transition distribu-

tion of a Markov chain, satisfying∑
xi∈Ω

Pxi−1,xi
= 1, ∀xi−1 ∈ Ω .

Furthermore, let f(ri−ri−1|xi−1, xi) denote the density of the
ith inter-observation time given that a vehicle was observed at
sensor xi−1 and then at xi. We require that f(·|xi−1, xi) has
support on R+ for all xi−1, xi ∈ Ω.

Under a semi-Markov model, the likelihood of the observa-
tions {(xi, ri)}ni=1 is

p({(xi, ri)}ni=1) = πx1

n∏
i=2

Pxi−1,xi
f(ri − ri−1|xi−1, xi) .

To capture richer, more complicated traffic patterns, we
modify the model on the sequence of sensors x1, . . . , xn which
observe the vehicle to be a mixture of Markov chains. Let M
be a positive integer. For m = 1, . . . ,M , let π(m)

x denote
the initial state distribution of the mth mixture component
and let P (m)

xi−1,xi denote the transition probabilities of the mth
component. Also let θ(1), . . . , θ(M) be the mixture parameters,
satisfying θm ≥ 0 for all m = 1, . . . ,M and

∑M
m=1 θ

(m) = 1.
We associate a latent variable m with each vehicle, tak-

ing values in the set {1, . . . ,M}, indicating which mixture
component governs the vehicle’s path. The trajectory of any
particular vehicle is governed by only one component of the
mixture model; i.e., each vehicle is a realization of this process
and the particular component governing its trajectory is a
multinomial random variable with parameters θ(1), . . . , θ(M).
Then the likelihood of the observations {(xi, ri)}ni=1 in the
mixture model is given by

p({(xi, ri)}ni=1)

=

(
M∑
m=1

θ(m)π(m)
x1

n∏
i=2

P (m)
xi−1,xi

)
n∏
i=2

f(ri − ri−1|xi−1, xi) .

(1)

Note that the mixture model only applies to the sequence of
states, and the conditional distribution of the inter-observation
times ri − ri−1 given the states xi−1 and xi are independent
of the mixture component m. In a transportation network this
implies that the time to travel from xi−1 to xi is independent
of the process determining the route the vehicle is following.

In order to evaluate the likelihood (1) given observations
{(xi, ri)}i≥1 we need to specify the form of the inter-
observation time density and we need to provide values for
the parameters {θ(m), π

(m)
x , P

(m)
x,x′ : x, x

′ ∈ Ω,m = 1, . . . ,M}
of the Markov chain mixture model. As mentioned above, the
inter-observation time density f(ri−ri−1|xi−1, xi) can be any
density with support on the positive real numbers. Examples
of potential choices include the truncated Gaussian, inverse-
Gaussian, and gamma distributions. Each of these distributions
has additional parameters which would need to be fit from data.
In practice, we fit these parameters and the parameters of the
Markov chain mixture model using data from a training period
taken before the sequential hypothesis test for convoys goes

online. We describe this training procedure in more detail in
Section IV.

B. Notation for observations of two vehicles
Recall that, in the convoy detection problem, we have two

observation sequences {(xi, ri)}i≥1 and {(yi, si)}i≥1 of the
two vehicles, which we will refer to as X and Y , where xi ∈ Ω
is the identifier of the sensor that observes vehicle X at time
ri, and where Ω = {1, . . . , C} denotes the collection of sensor
indices. Also recall that the times ri and si do not coincide;
i.e., the observation times are not regularly sampled. Towards
developing models and a sequential hypothesis test involving
this data, we introduce notation to allow for simultaneously
indexing the observations of both vehicles.

For a given time t ∈ R+, let

nx(t) = max{i : ri ≤ t}

denote the number of observations of vehicle X that have been
collected at time t, let

ny(t) = max{i : si ≤ t}

denote the number of observations of vehicle Y that have been
collected at time t, and let

n(t) = nx(t) + ny(t)

denote the total number of observations of either vehicle that
have been collected at time t. Let

T (t) = {ri}nx(t)
i=1 ∪ {si}

ny(t)
i=1

denote the set of all times when either vehicle is observed.
Based on the assumption that no two observation events occur
simultaneously, the cardinality of T (t) is n(t) and we can write

T (t) = {t0, t2, . . . , tn(t)−1},

where tk < tk+1, k = 1, . . . , n(t)−1; i.e., T (t) can be viewed
as the sequence of observation event times.

We assume that one of the two cases,

{t0 = r1 and t1 = s1} or {t0 = s1 and t1 = r1} ,

holds; i.e., the test begins with one observation of each vehicle.
At each observation time tk, exactly one vehicle is observed.

It will be useful to define the extended observation sequences,

xk =
(
x̃k, r̃k

)
∈ Ω× R+

yk =
(
ỹk, s̃k

)
∈ Ω× R+ ,

for k = 1, . . . , n(t)− 1, where

x̃k = xnx(tk) and r̃k = rnx(tk)

are the sensor and time where vehicle X was last seen as of
observation time tk, and

ỹk = yny(tk) and s̃k = sny(tk)

are the sensor and time where vehicle Y was last seen as
of observation time tk. For example, tk is a time when
vehicle X is observed then r̃k = tk, and s̃k (< r̃k) is the
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most recent time prior to tk when vehicle Y is observed.
We define the extended observation starting only from time
t1 (not t0) so that both vehicles have been observed. Finally,
let x1:n = (x1, . . . ,xn) denote the X-observation sequence at
the first n joint observation times, and let y1:n be defined in
a similar manner.

Note that there is an equivalence between the extended
observation sequence (x1:n(t)−1,y1:n(t)−1) and the per-vehicle
observation sequences, {(xi, ri)}nx(t)

i=1 and {(yi, si)}
ny(t)
i=1 , in

the sense that one can always construct the extended observa-
tion sequence given the per-vehicle observation sequences, and
the per-vehicle sequences can be uniquely extracted from the
extended observation sequence. Hence, the two representations
convey precisely the same information.

C. Two-vehicle likelihood factorization
We assume that under both of the hypotheses, Hj with

j ∈ {0, 1}, the joint likelihood of the extended observation
sequences x1:k and y1:k is first-order Markov; i.e.,

p(x1:n(t)−1,y1:n(t)−1|Hj)

= π(x1,y1)

n(t)−1∏
k=2

p(xk,yk|xk−1,yk−1, Hj) . (2)

This makes it possible to recursively calculate the log-
likelihood ratio, simplifying the implementation of the se-
quential hypothesis test which is discussed further in Sec-
tion IV. We also assume that the initial distribution π(x1,y1)
is independent of the hypothesis. In the following sub-
sections we describe the proposed transition distribution
p(xk,yk|xk−1,yk−1, Hj) under each hypothesis j ∈ {0, 1}.

To simplify the notation, in the sequel we write
pj(xk,yk|xk−1,yk−1) for the transition dynamics under hy-
pothesis j ∈ {0, 1}.

D. Model for vehicles traveling independently (H0)
The null hypothesis (H0) states that the two vehicles are

traveling through the network independent of each other. The
likelihood of the observed paths of the two vehicles under this
null hypothesis is simply the product of the two individual
likelihoods from the previous section,

p0(x1:n(t)−1,y1:n(t)−1)

= p0

(
{(xi, ri)}nx(t)

i=1 , {(yi, si)}
ny(t)
i=1

)
= p

(
{(xi, ri)}nx(t)

i=1

)
p
(
{(yi, si)}

ny(t)
i=1

)
,

where the individual likelihood of each vehicle is given by (1).

E. Markov model for convoys (H1)
As discussed in the introduction, giving a precise definition

of a convoy is not straightforward. We seek a method where
the notion of a convoy encompasses the following elements:

1) At any point in time, one vehicle is following the other,
and which vehicle is leading a convoy may change at
any point in time.

2) The vehicles in a convoy need not take precisely the
same route, but they should remain near each other
(e.g., within a prescribed distance threshold).

3) The distance between the vehicles in a convoy is
roughly proportional to the speed at which they are
traveling, so if the vehicles were to follow exactly
the same route then the time between consecutive
observations of each vehicle at the same sensor would
be roughly constant.

Initially a pair of vehicles is observed close together (possi-
bly by the same camera or a nearby camera, and near in time)
in order to trigger the initialization of a hypothesis test. Then
the subsequent observations of the pair can be used to update
the likelihood of the convoy.

Consider two vehicles, X and Y , moving through the
network as a convoy. Initial observations for both vehicles
will be set to the same likelihood under H1 as under H0.
Specifically, we take the initial state distribution to be equal
under both hypotheses. This is

pj(x1,y1) = max
m

{
π(m)
x1

π(m)
y1

}
, j ∈ {0, 1}

which selects the maximum likelihood mixture component for
the initial distribution for the vehicles.

Under the convoy hypothesis, H1, we model the sequence of
states where the two vehicles are observed as being generated
by the same mixture component in the mixture of Markov
chain model. Given that this is mixture component m, the
likelihood is given by

p1(x1:k,y1:k|m)

= πm(x1)πm(y1)×
n(tk)−1∏
i=2

p1(xi,yi|xi−1,yi−1,m).

Due to the assumption that exactly one observation is made
at any time instant, at any observation time tk either the
observation is of X , in which case r̃k > s̃k, or the observation
is of Y , in which case s̃k > r̃k. Note that if the observation
at time tk was of X (respectively, of Y ), then yk = yk−1

(respectively, xk = xk−1), and thus

p1(xk,yk|xk−1,yk−1,m)

=

{
p1(xk|xk−1,yk−1,m) if r̃k > s̃k
p1(yk|xk−1,yk−1,m) if s̃k > r̃k,

(3)

and so we must define the likelihood function for the two cases
in (3).

Based on the description of a convoy given in Section II,
we desire a model where, under H1, one vehicle will be
leading and the other will be following at any point in time.
If, for example, X is leading, then X transitions first and Y
transitions to a state afterwards which depends on X’s new
location. We do not require that the same vehicle lead the entire
time. The leader can switch shortly after X and Y have been
observed near each other; the idea is that to switch between
leading and following roles the follower must pass the leader.
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Let dist(x, x′) denote the geographic distance between two
sensors x, x′ ∈ Ω, and let L > 0 be a given proximity thresh-
old. To capture the different possible observation scenarios
under this model, we split the description of the transition
distribution (3) into six cases:

1) X and Y are close at time tk−1 (no clear leader) and
X is observed next;

2) X and Y are close at time tk−1 (no clear leader) and
Y is observed next;

3) X is leading and X is observed next;
4) Y is leading and Y is observed next;
5) X is leading and Y is observed next;
6) Y is leading and X is observed next.

Which case applies at a given point in time can be determined
by examining the following three quantities:

i) The distance between the last observations of X and Y ,
dist(x̃k−1, ỹk−1), relative to the threshold L;

ii) Which vehicle was observed at time tk−1,{
X if r̃k−1 > s̃k−1,

Y if s̃k−1 > r̃k−1;

iii) Which vehicle was observed at time tk,{
X if r̃k > s̃k,

Y if s̃k > r̃k.

If X and Y were last observed close together (i.e.,
dist(x̃k−1, ỹk−1) < L) then there is no clear leader, so the
next vehicle to be observed may do so independently of the
last observed location of Y . For example, if the vehicles were
seen near each other at time tk−1 (i.e., the distance between
the two observing cameras is less than the proximity threshold
L), then if the observation at time tk is of X and the vehicles
are following mixture component m we take

p1(xk|xk−1,yk−1,m) = P
(m)
x̃k−1,x̃k

f(r̃k − r̃k−1|x̃k−1, x̃k),

where P (m)
x,x′ and f(·|x, x′) denote the same transition and inter-

observation time distributions used in the model under H0.
If dist(x̃k−1, ỹk−1) ≥ L, then X and Y were not last seen

close together, and one of the two vehicles is leading. If the
previous observation was of X (i.e., r̃k−1 > s̃k−1) then X is
leading, and if the previous observation was of Y then Y is
leading. In this case we further check whether the most recent
observation, at time tk, was of the leader or of the follower.

It can happen that the leader vehicle is observed multiple
times between consecutive observations of the follower. For
example, if X is leading, X and Y are already separated
by a distance larger than L, and X is observed again, then
X is moving further away from Y . This is the case if
dist(x̃k−1, ỹk−1) ≥ L and r̃k−1 > s̃k (i.e., X is observed
again before Y , so we have at least two observations of
X since the last observation of Y ). In this scenario we
again model X’s transition as being independent of the last
observation of Y ,

p1(xk|xk−1,yk−1,m) = P
(m)
x̃k−1,x̃k

f(r̃k − r̃k−1|x̃k−1, x̃k).

The model is similar if Y is leading and it is observed multiple
times between consecutive observations of X .

If dist(x̃k−1, ỹk−1) ≥ L and the observation is of the
follower, then we expect the location and time of the observa-
tion to depend on the last observation of the leader. Towards
modeling dependence of the observed locations, we define

δk =
dist(x̃k−1, ỹk−1)− dist(x̃k, ỹk)

dist(x̃k−1, ỹk−1)
. (4)

Observe that δk, which takes values in the interval (−∞, 1],
measures the relative change in distance between the leader and
follower at time tk. If δk > 0 then the follower was observed
closer to the leader. We model the distribution over where the
follower is observed using δk in the following manner. Suppose
that, at time tk, X is leading and an observation is made of
Y . Then

p1(ỹk|x̃k−1, ỹk−1,m) ∝
{

1 + δk if δk > −1

0 otherwise,
(5)

where3 the constant of proportionality is chosen to ensure we
have a valid distribution. Note that the transition distribution
does not depend on the mixture component m in this case. If
δk ≤ −1 then the distance between the leader and follower has
more than doubled since the last observation of the follower.
This means that the leader and follower and travelling further
apart from each other. In this case, the model above will set
the likelihood of a convoy (hypothesis H1) to zero, and the
hypothesis test will declare that the pair of vehicles is not a
convoy.

When there is a clear follower (i.e., the distance at time
tk−1 is greater than L) and the follower is observed, we also
expect the inter-observation times of the leader and follower
to be dependent. Suppose that X is leading and, at time tk,
we observe Y . Consider the quantity s̃k − r̃k which is strictly
positive and gives the time between this observation of Y ,
the follower, and the last observation of X , the leader. We
postulate that this distribution should be such that values of
s̃k − r̃k closer to zero are more indicative of the pair being
a convoy. A simple way to capture this idea is to model the
leader-follower inter-observation time as following the half-
normal distribution with parameter σ2 > 0,

fHN (s̃k − r̃k) =

√
2√
πσ2

exp

(
−(s̃k − r̃k)2

2σ2

)
. (6)

To summarize, the forms of the transition distribution (3)
for each of the six cases mentioned at the beginning of this
subsection are shown in Table I.

In the convoy model there are still M mixture components
in the terms involving the Markov transition matrices P (m)

x,x′ .
Therefore the likelihood that a pair of vehicles are traveling
as a convoy becomes

p1(x1:k,y1:k) = max
m
{p1(x1:k,y1:k|m)} .

3Note that the above equation is valid even though δk in the right-hand side
depends on x̃k , which appears to be missing from the arguments on the left-
hand side. This is because, for the situation considered where the observation
at time tk is of Y , we have x̃k = x̃k−1, so δk is still computable.
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TABLE I. VALUE OF THE TRANSITION DISTRIBUTION p1(xk,yk|xk−1,yk−1,m) FOR THE DIFFERENT CASES CONSIDERED UNDER H1 . HERE 1{·}
DENOTES THE 0/1-VALUED INDICATOR FUNCTION, AND THE ∝ REFERS TO THE CONSTANT OF PROPORTIONALITY FROM (5).

Vehicle observed at tk No Clear Leader (dist(x̃k−1, ỹk−1) < L) Clear Leader (dist(x̃k−1, ỹk−1) ≥ L)
X leading (r̃k−1 > s̃k−1) Y leading (s̃k−1 > r̃k−1)

X (r̃k > s̃k) P
(m)
x̃k−1,x̃k

f(r̃k − r̃k−1|x̃k−1, x̃k) P
(m)
x̃k−1,x̃k

f(r̃k − r̃k−1|x̃k−1, x̃k) ∝ (1 + δk)fHN (s̃k − r̃k)1{δk > −1}

Y (s̃k > r̃k) P
(m)
ỹk−1,ỹk

f(s̃k − s̃k−1|ỹk−1, ỹk) ∝ (1 + δk)fHN (s̃k − r̃k)1{δk > −1} P
(m)
ỹk−1,ỹk

f(s̃k − s̃k−1|ỹk−1, ỹk)

xi 1 2 4 7 12
ri 0 3 8 14 21
yi 1 3 4 5 7 15
si 1 4 7 10 15 22

Fig. 2. Example of a convoy of two vehicles (X and Y ) on a simple grid
network. The figure shows the trajectories of each vehicle along the locations
of 12 sensors. The table shows the observations (sensor index and observation
time) made of both vehicles, spaced so as to help illustrate the sequence of
observations over time.

This, as in the independent model, denotes the likelihood of a
convoy as the highest likelihood of a convoy for any individual
chain.

F. Convoy example
Fig. 2 shows an example convoy scenario where two vehi-

cles, X and Y , transition through a network. The observations
of each vehicle are shown in the table. In this example X is
leading from times 0 to 4, then Y leads from times 7 to 10, and
X leads again from time 14 until the end of the example. The
routes taken by the two vehicles are highly correlated but not
identical. In addition, the vehicles are not always observed by
exactly the same sensors. Thus the example illustrates some of
the subtleties we aim to capture in our definition of a convoy.

IV. CONVOY DETECTION VIA SEQUENTIAL HYPOTHESIS
TESTING

Next we discuss our approach to detecting convoys in
streams of license plate reads. We consider a typical sequential
hypothesis testing setting [8] where the observations arrive
successively at the fusion center, ordered by the times ri and
si, and after receiving an observation the decision maker must

choose from one of three options: 1) declare that the pair of
vehicles is a convoy, 2) declare that the pair of vehicles is not
a convoy, or 3) wait to receive additional observations. The
aim is to make accurate decisions without deferring too long.

For the models described in the previous section, which
involve mixtures of Markov chains, to perform testing in a
sequential manner we use the sequential generalized likelihood
ratio test [18]. The test statistic after k + 1 total observations
is

Λ(x1:k,y1:k) =
max
m
{p1(x1:k,y1:k|m)}

max
m
{p0(x1:k,y1:k|m)}

. (7)

The test statistic can be updated in a recursive manner since the
individual likelihoods p0(x1:k,y1:k|m) and p1(x1:k,y1:k|m)
factorize according to (2). Thus, M likelihood statistics need
to be stored and updated for each hypothesis, H0 and H1.

Two decision thresholds, η0 and η1, are applied so that the
decision after each update is given by the well-known rules:

Λ(x1:k,y1:k) < η0 decide H0

η0 ≤ Λ(x1:k,y1:k) < η1 decide “need more data”
η1 ≤ Λ(x1:k,y1:k) decide H1.

According to Wald [8], approximate decision regions for the
sequential likelihood ratio test can be derived given specific
performance criteria: the desired probability of false detection,
PF ≤ α, and the desired probability of detection, PD ≥ β, by
taking

η0 ≥
1− β
1− α

and η1 ≤
β

α
. (8)

Using these expressions, with equality, for η0 and η1 results in
upper and lower bounds on PD and PF . This can be used to set
the desired performance limitations on the system. Normally
in sequential hypothesis testing these bounds will be computed
for i.i.d. samples of the two probability densities however the
only requirement to achieve these bounds on the sequential
test’s performance are that the likelihood ratio be able to be
decomposed into components which are only dependent on
the current sample and the previous likelihood. In a Markov
setting the “current” sample is a joint sample of the actual
current sample and the previous sample. Therefore since this
test can still be decomposed into individual components this
analysis still holds.

To evaluate the likelihood models described in this section,
parameters of the Markov chain mixture model need to be
estimated or configured. These issues are discussed next.

A. Estimation of Markov chain mixture model parameters
In order to use a mixture of discrete Markov chains to

more accurately describe the network, the model parameters
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must be estimated from training data. We use the Expectation
Maximization (EM) algorithm [19] for this purpose. Previous
work for estimation of a mixture of Markov chains using EM
addressed the problem in the setting where each observation is
an individual transition that may come from a different mixture
component [20]. For the observations considered here, we
assume that each vehicle’s entire trajectory is associated with
a single (latent) mixture component (rather than each observed
transition of each vehicle potentially coming from a different
mixture component). The number of mixture components can
be determined using standard measures for goodness of fit in
model order selection, such as the Bayes Information Criterion
(BIC) [21].

B. Comments on the leader-follower inter-observation time
distribution under H1

The parameter σ2 of the half-normal distribution appearing
in (6), used in the likelihood model under H1, also needs
to be specified. To consider a pair of vehicles to be driving
as a convoy, one would like that the vehicles do not drift
too far away from each other. We take σ2 = 30 in the
experiments, roughly corresponding to a maximum allowable
time separation of 100 seconds between observations the leader
and follower under H1. To see this correspondence, note that
integrating the half-normal pdf from 0 to 100 is close to 1
when σ2 = 30.

C. Other system parameters

For practical reasons, tracks of pairs of vehicles are only
started when two vehicles are first seen close together in
distance (< L) and in time. This threshold, which is also
used in the statistical test, controls how far apart vehicles can
drive in parallel routes while still being considered a convoy. It
also controls how close together vehicles need to get in order
to start the statistical test. We introduce two additional time
threshold parameters, Ts and Td. The parameter Ts is used
to determine when to begin tracking a given pair of convoy
vehicles (i.e., running the sequential hypothesis test for the
given pair). A test is started if the vehicles are observed at
locations at most a distance of L apart within Ts time units.
The choice of Ts will only control when tests start. A logical
choice for this parameter might be related to the choice of
the 95% confidence interval of the half-normal distribution.
For example, σ2 = 30 results in approximately 100 as the
maximum value for the pdf of the half-normal in the 95%
area. Therefore a logical choice to mimic the convoy sequential
test might be 100 seconds. Setting this value very large would
trigger the start of a lot of unnecessary tests, tracking pairs of
vehicles, which would likely terminate after a few observations
are made. The parameter Td is introduced for practical reasons,
to also limit the number of consecutive sequential likelihood
ratio tests being evaluated; if Td time units have elapsed and
no new observation of either of the vehicles considered in a
test has been received, then that track is terminated. This is the
same as the track of the vehicles getting lost since they likely
have travelled outside the field of view of the sensor network

or at least one vehicle has parked and therefore will not be
observed by the network.

V. EXPERIMENTAL EVALUATION

A. Data description
Next we study the performance of the proposed sequential

hypothesis test using the models described in Section IV
against simulated data. A regional traffic assignment model
for the Montreal metropolitan area is described in Sider et
al. [22]. The model takes as an input the 2008 Origin-
Destination (OD) trip data for the Montreal region provided by
Montreal’s Agence Métropolitaine de Transport and assigns it
on the network using a stochastic assignment in the VISUM
platform [23]. The regional network consists of 127,217 road
links and 90,467 nodes associated with over 1500 traffic
analysis zones. It also contains various road characteristics
such as the type, length, speed limit, capacity, and number of
lanes [22]. Note that this model has been validated using both
traffic counts [24] and speed data collected using GPS [25].

Output from the traffic assignment simulations consists of
an array that contains a detailed description of all paths con-
necting pairs of origin-destination zones for every hour of the
day. Using this load information, we simulate a population of 2
million vehicles (roughly the number of registered vehicles in
the greater Montreal region). These vehicles are sent randomly
from zone to zone at random times during each hour along the
paths from the Sider et al. [22] dataset, with the number of
vehicles per path chosen to match the prescribed loads.

Sensors are placed at the 75 locations shown in Fig. 3(a).
Each sensor records the identification number (license plate)
of the vehicles as they pass by the sensors’ locations. The
data recorded by these sensors constitutes the baseline, normal
traffic used in our experiments.

Two datasets were then simulated on this sensor network.
Each simulation results in 24 hours of data and contains
approximately 500,000 observed vehicles. The first of these
two simulations was used for training, to fit the parameters
of the mixture of Markov chains as well as the parameters
to the distribution describing the time transitions. The second
dataset was then used as a test dataset in which convoys
of varying types were injected along with vehicles traveling
independently. Performing a cursory analysis on each dataset
we note that each vehicle is observed nine times, on average.
This means that any detections which will occur only have
access to a limited amount of data from each vehicle in the
timespan the vehicle is present in the data. This dataset is the
basis for the performance analysis reported later this section.

B. Estimated Transition Matrices
To fit the transition model parameters used in the simula-

tions, multiple iterations of the EM algorithm were run while
varying the number of mixture components in order to estimate
the Markov transition matrices and initial distributions. The
Bayesian Information Criteria (BIC) [21] was used for model
order selection. More specifically, for each possible number of
mixture components in the range {1, 2, . . . , 5}, the EM algo-
rithm was executed from fifty different random initializations.
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Fig. 3. (a) Locations of the 75 simulated sensors along a stretch of Highway 40 in Montreal, Canada. Along this stretch there are two exits, one near the
top-right corner (where sensors are shown perpendicular to the highway) and the other near the bottom-left corner of the figure. Sensors are also located on
the feeder roads that run along side of the highway. The image appears to have less than 75 sensors since many of the points represent 2 sensors (one pointed
in each direction). This is necessary since LPR sensors require that they be monitoring a specified direction so to cover a bi-directional road two sensors are
necessary. A Markov chain mixture model is fit to simulated traffic from a 24-hour training period, and it is determined that a two-component mixture model
provides the best fit as measured using the BIC. The transition matrices of these two mixture components are shown in panels (b) and (c). It can be seen that,
while mixture components capture the flow of traffic along the highway, they capture distinctly different trends in terms of traffic entering/exiting the highway,
and off of the highway.

We did not try more than 5 mixture components since we
noted after multiple trials that the BIC for mixtures with more
components got worse, rapidly. For this network, the model
with the best BIC across all 50 × 5 random initializations is
a mixture with 2 components. The two estimated transition
matrices are visualized in Figs. 3(b) and 3(c). Each of the
estimated components exhibits essentially the same behavior
on the highway between exits. This is reasonable, since a
vehicle traveling down the highway without a possible exit will
continue traveling in the same direction. The differences in the
transition matrices can be more aptly visualized on the side-
roads off the highway. We can see that different traffic patterns
are captured in these small offshoots from the highway.

C. Inter-observation time distribution under H0

In addition to the Markov chain mixture model, the dis-
tribution governing the inter-observation times needs to be
specified. As mentioned in Section III-A, a valid distribution
for inter-observation times should have support on R+. For this
work we estimate a time transition based on the starting state
using various exponential family models. Using the dataset
described above, the normal distribution, inverse-Gaussian, and
gamma distributions were fit to the data. Using the BIC as a
measure of goodness, the heavy-tailed nature of the inverse-
Gaussian distribution provided the best fit to the training data.
Thus, we take f(τ |x, x′), the likelihood that the time between
two consecutive observations of a vehicle is τ time units given
it was observed at sensor x and then at sensor x′ (after τ time
units), to be the inverse-Gaussian distribution,

fIG(τ ;µx,x′ , λx)

=

[
λx

2πτ3

]1/2

exp

[
−λx(τ − µx,x′)2

2µ2
x,x′τ

]
1{τ ≥ 0},

where 1{·} is the 0/1-valued indicator function, µx,x′ is the
mean time to transition from state x to state x′, and λx is the

shape parameter associated with trajectories departing state x.
When viewed as a generalized linear model [26], the inverse-
Gaussian distribution has link function

1

µ2
x,x′

= αx + dist(x, x′)βx

µx,x′ =
1√

αx + dist(x, x′)βx

where, now, αx, βx, and λx are the parameters to be estimated,
and dist(x, x′) is the distance between states x and x′. These
parameters are estimated from the training data using Fisher
scoring [26].

D. Simulating convoys

The simulated dataset described in Section V-A is intended
to represent normal background traffic. While we cannot
guarantee there are no instances of convoys in this dataset,
the appearance of any is unintentional. In order to evaluate
the performance of the proposed sequential hypothesis testing
approach, we inject convoys into the background data. Sim-
ulation of convoys involves determining two main factors: 1)
the trajectories that will be taken by the vehicles, and 2) how
the spacing between them will evolve over time. We consider
two possibilities for each of these factors.

For the trajectories, in one case we simulate a convoy
where the leader remains fixed for the entire trajectory and the
follower takes exactly the same trajectory as the leader, where
the leader’s trajectory is sampled from one of the Markov chain
mixture components. Alternatively, to allow for the leader
and follower to take slightly different paths, we also simulate
convoys where the follower’s trajectory is sampled using the
model described in Section III-E, e.g., using (5).

To determine the timing between when the leader and
follower are observed, we also consider two possibilities. In
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one case, the follower is always observed exactly one second
after the leader. At a typical highway speed of 100 km/h,
separation of 1 second corresponds to a distance of 27.8 meters
between the vehicles, or 5–6 car lengths. Alternatively, we
also simulate convoys where the follower’s observation times
are sampled from the half-normal distribution with parameter
σ2 = 30, following the model proposed in Section III-E. The
value σ2 = 30 was chosen to allow an approximate maximum
of 100 seconds of separation between vehicles in a convoy. If
one solves the equation

1 =

100∫
0

fHN (y|σ2)dy (9)

for σ2, one gets a value of approximately σ2 ≈ 30. This is
a parameter to be chosen which allows for a target allowed
maximum separation time between vehicles which the detec-
tion method will be sensitive to.

Taking all possible combinations of the two trajectory mod-
els and timing models described above leads to four ways in
which convoys may be simulated. These four scenarios are
summarized in Table II, and all four are considered in the
simulation results discussed below. Convoys of the varying
types are simulated for approximately 18 observations (9 of
each vehicle) and last anywhere from a few seconds to about 30
minutes, depending on the road segment they were randomly
started on. Although we simulate such longer-lasting convoys,
in Section V-H we study the average number of observations
required by the sequential hypothesis testing procedure to
make a decision to better understand how many observations
are required and how this number depends on the performance
criteria PF and PD.

To simplify the presentation, for the rest of this section
we only present and discuss results for convoys simulated
according to Scenario 4. Results for the other three scenarios,
which are included in the appendix, are qualitatively very
similar.

E. Probability of detection
To assess the probability of detection of the proposed

sequential test, we simulate 1000 convoys for each of the
four scenarios described in Table II, and we evaluate empirical
probability of detection as a function of the decision thresholds
η0 and η1. Fig. 4 shows the probability of detection at the time
of the first decision for Scenario 4. Varying the threshold η0

has relatively little effect, especially for ln(η0) < −5. Setting
the thresholds according to (8) with design criteria α = 0.0111
and β = 0.9999 gives ln(η0) ≈ −9.20 and ln(η1) ≈ 4.50, for
which the resulting probability of detection is PD = 0.9332.

F. Probability of false detection
We next simulate 1000 pairs of vehicles traveling through

the road network independently. Each pair is simulated ac-
cording to the same mixture component in the mixture of
Markov chains and are sampled, as with the convoy case,
for 18 observations (9 of each vehicle). The spacing of these

Fig. 4. Probability of detection for varying decision boundaries η0 and η1
with convoys simulated by Scenario 4.

Fig. 5. Probability of false detection for varying decision boundaries η0 and
η1 for vehicles simulated following the independent model

observations in time depends on the random starting location
and the network links traveled. We use these to study the
probability of false detection for different values of ln η0 and
ln η1. Fig. 5 shows the empirical probability of false detection
as ln(η0) and ln(η1) are varied. As can be seen, the probability
of false detection quickly drops to an almost negligible amount
with a small increase in ln η1. Using the same decision bounds
mentioned above, ln(η0) = −9.20 and ln(η1) = 4.50, the
probability of false detection is PF = 0.0031.

Fig. 6 shows a scatter plot of PD versus PF , where each
filled point corresponds to a particular choice of η0 and η1. The
color of each point corresponds to the value of η0. As is evident
from the plot, as η0 tends to −∞, the probability of detection
increases. One can also see subsets of points falling in roughly
vertical groups. These correspond to the performance of the
test when η1 is held fixed and η0 is varied, giving similar
values of PF while varying PD.
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TABLE II. SIMULATED CONVOY CONFIGURATIONS

Time separation between X and Y Discrete Transition Model
Scenario 1 Constant separation of 1 second X strictly followed by Y
Scenario 2 Constant separation of 1 second X and Y following model in Section III-E
Scenario 3 ∼ HalfNormal(σ2 = 30s) X strictly followed by Y
Scenario 4 ∼ HalfNormal(σ2 = 30s) X and Y following model in Section III-E
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Fig. 6. Scatter plot of the resulting probability of false detection values
versus the probability of detection values for all combinations of ln(η0) and
ln(η1) where convoys are simulated using the convoy model described in
Section III-E. The vertical coloring denotes changes in η0. Note that the
horizontal axis (PF ) ranges from 0 to 0.2. Overlayed in red are the probability
of detection and false detection rates from the thresholding approach.

G. Comparison to a Simple Thresholding Approach

We compare the proposed method with a simple thresh-
olding approach. A threshold is directly applied to the total
number n(t) of observations of a pair of vehicles, based on
the intuition that the more often a pair of vehicles are observed
near each other, the more likely they are to be a convoy. For
a fair comparison, we apply the same system parameters as
described in Section IV: to first consider a pair of vehicles as a
potential convoy they need to be observed within a distance of
L from each other within Ts time units, and to continue being
considered as a potential convoy the pair must be observed
very subsequent Td time units afterwards.

The empirical detection probability and false alarm proba-
bility of the thresholding approach are also shown in Fig. 6 as
red hollow circles. The threshold on n(t) is varied from 2 to 40.
(Note that n(t) only takes values in the positive integers, so we
only apply integer thresholds.) When a small threshold is used,
the simple thresholding approach achieves a PD comparable
to what can be achieved using the proposed approach, but
with a very high probability of false detection (nearly 0.2).
Increasing the threshold reduces both the probability of false
detection and the probability of detection. In general, for very
low probability of false detection, which is clearly desirable in
applications, the proposed approach has a significantly higher
PD. Moreover, it is evident from Fig. 6 that the performance
of the proposed approach is much less sensitive to the choice

Fig. 7. Expected number of observations to make a decision under H1 for
varying decision boundaries η0 and η1 with convoys simulated by Scenario
4.

of threshold parameters η0 and η1.

H. Expected number of observations to make a decision

In addition to making accurate decisions (low PF and high
PD), it is important to understand how varying the decision
thresholds of the sequential hypothesis test affects the number
of observations required to make a decision. Figs. 7 and 8 show
the average number of observations (n(t), the total number of
observations of either vehicle) to make a decision under H1

and H0, respectively, as a function of the decision thresholds.
A smaller value in this metric is better since it corresponds
to a faster time to detect convoys under H1, and a faster time
to stop tracking non-convoy pairs under H0. In a practical
implementation, discarding non-convoy pairs quickly (without
sacrificing accuracy in terms of PD and PF ) is desirable since
the computational resources used by the sequential hypothesis
test (both memory and CPU cycles) are proportional to the
number of pairs of vehicles being tracked.

As ln(η0)→ −∞ and ln(η1)→∞, the number of observa-
tions required to make a decision for H1 increases. Focusing
on the specific decision threshold values ln(η0) = −9.20
and ln(η1) = 4.50 mentioned before, Figs. 9 and 10 show
histograms of the number of observations required to make
a decision under H1 and H0, respectively. In both cases,
decisions are made, on average, when roughly 10–12 total
observations of the pair of vehicles are available (i.e., 5–6
observations of each vehicle).
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Fig. 8. Expected number of observations to make a decision under H0

for varying decision boundaries η0 and η1 where vehicles are simulated
independent of each other.
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Fig. 9. Histogram of the number of samples to make a decision under
the alternate hypothesis (H1) where convoys were simulated with half-
normally distributed time separation and following the discrete convoy model
in Section III-E.

VI. DISCUSSION

A. Regarding the explicit use of road network data
The sequential detection approach adopted in this paper does

not explicitly make use of knowledge of the road network
topology. Instead, it is implicitly encoded in the transition
matrices of the Markov chain mixture model. Such information
could be used in the models, e.g., when calculating the distance
dist(x, x′), if it is available. Tracking vehicles explicitly over
a state space consisting of the entire road network would be
computationally cumbersome in a large system (which may
observe on the order of tens of thousands of vehicles per hour),
and a system making use of detailed road maps would also

0 10 20 30 40 50 60
Number of Samples

0

1000

2000

3000

4000

5000

6000

C
o
u
n
t

Fig. 10. Histogram of the number of samples to make a decision under the
independent hypothesis (H0) where vehicles are traveling independently.

require updating of the maps when segments are closed (e.g.,
for construction) or changed (e.g., re-zoning). On the other
hand, the proposed approach implicitly models traffic patterns
using the Markov chain mixture model. The parameters of
this model can be estimated directly from the data, and so no
additional input or tuning is required.

B. Detecting convoys of more than two vehicles
In order to detect if a group of vehicles larger than two are

traveling as a convoy a simple post-analysis can be performed.
In order to understand this post-analysis for groups of convoys,
consider a target vehicle X and suppose that we detect N other
vehicles as traveling in a convoy with X at a specific time. We
then simply look at these N vehicles which were detected as in
a convoy with X and look if they were also detected as being
in a convoy with each other. This creates a set of vehicles
where all the pairwise combinations are detected to be in a
convoy in a set timeframe. This is a detected convoy “group”.
We note that the approach just described can be related to the
notion of density-connected sets used in [13].

One may be tempted to view the problem of detecting
convoys of more than two vehicles as a sort-of graph parti-
tioning or community detection problem, with vertices in the
graph corresponding to vehicles and edges placed between two
nodes that belong to a convoy. The pairwise test presented
in this paper identifies where there are likely edges, and one
would hope that a convoy of two or more vehicles would give
rise to dense connections between the vehicles in the convoy.
However this is not necessarily the case since convoys may
be formed by long lines of vehicles (e.g., along a single-lane
road). For example, if three vehicles, X − Y − Z, form a
convoy our test may not detect the correlation between X and
Z directly if they are too far apart. This presents one of the
main challenges we anticipate with detecting convoys of more
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than two vehicles. We leave a more detailed study and in-depth
analysis of detecting larger convoy groups to future work.

C. Using different estimated network properties for different
times of the day

Some other issues which might arise in practice are such
things as accidents or road closures as well as how traffic
patterns behave differently throughout the day (e.g. rush hour).
All of these real-world issues will cause traffic to behave
differently from the network which was originally trained on.
The problem of random events such as accidents and road
closures is difficult to handle due to the unpredictable nature
of it. This will likely cause more anomalies (such as convoys)
to be flagged in the algorithm due to more vehicles taking a
lower-likelihood route.

However the case of a varying traffic pattern throughout
the day is one which is much more simple to mitigate. By
simply swapping out the transition matrices as well as the
properties for the inverse-Gaussian distributions and the initial
distributions, one can in real-time update the detector for more
realistic traffic patterns. This could be done, say, every hour
to mimic changing traffic patterns throughout the day. This
would not change the algorithm’s design since it would say
simply for a specific tracked pair of vehicles “the first n
samples came from the 1 a.m. to 2 a.m. mixture while the
next m samples came from the 2 a.m. to 3 a.m. mixture”.
This allows the algorithm to handle even a continuous-time
distribution for the underlying mixture of Markov chains. An
analytic solution will become much more difficult due to
the addition of many additional chains to estimate (possibly
infinite in the continuous-time mixture case), however it might
be able to drastically improve the detection and false detection
performance by more accurately measuring the nominal traffic
distribution.

VII. CONCLUSION

This paper proposes a novel approach to detecting convoys
in urban environments. Typically long-range sensors are not
applicable in urban environments. This means that only by
using short-range sensors such as LPR can one do many types
of road network analysis including convoy detection. The algo-
rithm presented only uses a small amount of information about
the detected vehicles to perform convoy detection which is an
added benefit for minimizing the computational complexity. It
is also capable of detecting convoys in real time as data arrives.

In the problem formulation of this work we assumed that
measurements are exact; there are no mis-read license plates
and no missed license plate reads. Our future work will
address the case of missing and noisy data using a hierarchical
Bayesian approach by adding one layer, so that the vehicle
trajectory model becomes a hidden mixture of Markov chains.

This paper focused on detecting convoys of vehicles in a
road network. Individual vehicles were modeled as moving
along paths in the network according to a first-order Markov
model, and convoys are two or more vehicles whose paths
are correlated in space and time. An interesting extension of
this approach would be to detect when two or more epidemics

spreading over a network are correlated. First-order Markov
models are also commonly used to model epidemics spreading
over networks, but the resulting patterns are trees rather than
paths. In future work it would be interesting to explore
extensions of the sequential hypothesis testing framework
considered in this paper for detecting correlated epidemics.

APPENDIX

Fig. 11(a) shows PD as a function of the decision thresholds
when convoys are simulated using Scenario 1. This situation is
where a vehicle X moves independently through the network
while vehicle Y follows exactly the same path as X with a
1-second lag. It can be seen here that the detection accuracy
degrades quickly with the increase of the ln η1. This appears
to no longer be the case in the next scenario, Scenario 2, as
shown in Fig. 11(b) where there is still a constant 1-second
time separation but the transitions of Y are following the
convoy model from Section III-E. This is because in scenario
following the model from Section III-E one vehicle can, in
many circumstances, take an alternate, lower likelihood, path
which is close to the leader so the likelihood of H0 drops
faster than the likelihood of H1. For example, consider two
vehicles traveling on parallel paths where one vehicle is on a
high-likelihood path (such as a highway) and another is on a
lower-likelihood path (such as a service road parallel to the
highway). In this case the vehicle on the lower likelihood path
will make the likelihood of H0 lower faster than the likelihood
of H1 decreases.

One can also see that the mitigation of the fast drop in
the shape of the surface in Fig. 11(a) can be likely attributed
to the constant time separation of 1 second as in Figs. 11(c)
and 4. Here the exponential drop in the probability of detection
with the increase of ln(η1) appears to become at worst a
linear relationship. This means that allowing a floating leader
along with a variable distance between vehicles increases our
detection ability. This is very good news since a constant
separation between vehicles of 1 second throughout an entire
observation sequence is very unlikely.

Figs. 12(a), 12(b), and 12(c) show the average number of
observations required to make a decision under H1 when
convoys are simulated according to Scenario 1, 2, and 3,
respectively. These figures exhibit a similar trend to that
presented in Fig. 7. The main difference is in terms of the
rate at which the average number of decisions plateaus with
changes of ln η1.
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