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Time-Varying Mixtures of Markov Chains:
An Application to Road Traffic Modeling
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Abstract—Time-varying mixture models are useful for rep-
resenting complex, dynamic distributions. Components in the
mixture model can appear and disappear, and persisting compo-
nents can evolve. This allows great flexibility in streaming data
applications where the model can be adjusted as new data arrives.
Fitting a mixture model with computational guarantees which
can meet real-time requirements is challenging with existing
algorithms, especially when the model order can vary with time.
Existing approximate inference methods may require multiple
restarts to search for a good local solution. Monte-Carlo methods
can be used to jointly estimate the model order and model
parameters, but when the distribution of each mixand has a
high-dimensional parameter space, they suffer from the curse
of dimensionality and and from slow convergence. This paper
proposes a generative model for time-varying mixture models,
tailored for mixtures of discrete-time Markov chains. A novel,
deterministic inference procedure is introduced and is shown to
be suitable for applications requiring real-time estimation, and
the method is guaranteed to converge at each time step. As a
motivating application, we model and predict traffic patterns in
a transportation network. Experiments illustrate the performance
of the scheme and offer insights regarding tuning of the algorithm
parameters. The experiments also investigate the predictive
power of the proposed model compared to less complex models
and demonstrate the superiority of the mixture model approach
for prediction of traffic routes in real data.

I. INTRODUCTION

Mixture models are a useful tool for modelling complex
distributions. Allowing a mixture model to be dynamic, with
a varying number of components as well as time-varying
mixand parameters, allows for a very flexible model which
can be applied to many forms of streaming data. In this paper
we develop a procedure for fitting time-varying mixtures of
discrete-time finite-state Markov chains.

We are motivated by the application of traffic modelling
using streams of automatic vehicle identification data [1]. A
model of traffic patterns can be used for a variety of traffic
analysis applications [2]. Potential applications include vehicle
path prediction, visualization of the difference in traffic flows
between varying time-spans, and other forms of statistical
detection and estimation such as convoy detection [3]. Models
for traffic routes, and traffic flow, are commonly used in law
enforcement, city planning, private for-profit parking industry,
and other applications [4].
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A. Automatic Vehicle Identification Data

Traditionally, road traffic is measured and monitored using
sensors such as inductive loops embedded in the roadway
that provide counts of the number of vehicles passing by a
particular location. Increasingly, traffic can also be measured
and estimated using data from automatic vehicle identification
(AVI) sensors, such as bluetooth sensors or cameras perform-
ing license plate recognition. Bluetooth sensors record the
MAC address of the in-vehicle entertainment/communications
system. License plate recognition cameras recognize and
record the license plate of vehicles which pass in their field
of view. Sensors that read the highway toll-pass ID of an
equipped vehicle when it passes nearby (such as E-ZPass in
northeastern U.S.A. [5]) provide similar information. While
each of these three types of sensors has different strengths
and weaknesses (e.g., reliability, detection rate), in all cases
the resulting data can be leveraged in the same fashion for
traffic modelling. Each AVI observation includes the ID of the
vehicle observed, the time, and the location of the observation.

In typical monitoring systems, AVI sensors report their data
in a streaming manner to a fusion center. Since observations
are made in an event-driven manner (with events correspond-
ing to a vehicle passing near a sensor), the sequence of
observations of a particular vehicle at different sensors can be
viewed as an irregularly sampled time series. Since vehicles
may come and go freely within the coverage area of the sensor
network, the observation sequence of a vehicle can start or stop
at any point and the number of observations (the length of the
observation sequence) of a vehicle is variable.

This paper considers the case where a region has been
instrumented with a collection of static AVI sensors. The
sensors are treated as the states of a Markov process, and the
trajectories of individual vehicles are modeled as realizations
of this process. The observation times are only used to order
the sequence of locations where a vehicle is observed, leading
to a discrete-time model for the sequence of AVI sensors.

B. Previous Work

1) Time-Varying Mixture Models: In this paper we propose
to model a network of AVI sensors as a time-varying mixture
of discrete-time Markov chains. Previous work on parameter
estimation in time-varying mixture models typically adopts a
Bayesian non-parametric perspective and focuses on mixtures
of Dirichlet processes [6]. However these works perform infer-
ence using Monte-Carlo based methods, where computational
performance guarantees are difficult to achieve. Stephens [7]
proposes a Bayesian representation of a mixture model using a
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marked point-process. However MCMC-based inference meth-
ods have challenges in high-dimensional parameter spaces
(e.g, the entries of a transition matrix), especially in the
streaming setting. Work on deterministic inference methods of
these types of models, where computational timing guarantees
are more feasible, is limited. Also much of the previous
work on time-varying mixture models focuses on mixtures of
Gaussian distributions [8] which do not directly apply to AVI
data because of the discrete nature of the observations.

The algorithm proposed in this work includes a novel
automatic selection of the mixture model order. The early
literature on model order selection includes approaches using
model selection criteria such as the Akaike information crite-
rion (AIC) [9], Bayes information criterion (BIC) [10], and
model description length (MDL) criterion [11]. These criteria
are used to score potential candidate models and require
computing all of the candidate models before selecting one,
which can be computationally intensive. Models which require
only computing a single or small set of candidate models are
better suited to this class of problems, in which we would like
to track traffic patterns as they evolve.

More recent work on automatic model order selection is
performed by Corduneanu and Bishop [12] where a Bayesian
specification of the mixture model is made. Variational meth-
ods are used to anneal the number of components from some
maximum number down to a number which specifies the
model most accurately. Another important work in annealing a
maximum number of components is the CEM2 algorithm [13].
This class of work continues with Chen et al. [14] which
replaces the variational estimation schemes of [12] with an
EM approach using unique penalty terms in the likelihood
specification of the mixture model. These penalty terms allow
for components to disappear if they are deemed unnecessary.

We opt for an alternate approach which does not require pre-
specification of the maximum number of components. Verbeek
et al. [15] explore this by taking a greedy approach of adding
clusters as deemed necessary. At each iteration their algorithm
fits a model with k components using the EM algorithm and
then searches over a set of possible candidate models for a
suitable new component to insert (if necessary), then fitting the
new model with k + 1 components using the EM algorithm.
This repeats until no new components are inserted.

2) Traffic Modelling: Previous approaches to modelling
road network traffic typically use other sensors such as road
counters, induction loops, cell phone data, and manual count-
ing to estimate traffic patterns [16], [17].

Typically in traffic estimation research, estimation of traf-
fic flow is done through the estimation of an origin-
destination (OD) matrix. Peterson [18] provides an overview
of many methods and estimation techniques typically applied
to the OD-matrix estimation problem. Most of the methods are
initialized using manually-collected traffic survey data, which
is time-consuming and labor-intensive to gather, and then they
use data from count sensors such as inductive loops to update
or refine the OD matrix. An OD matrix is a helpful tool in city
planning, but it only quantifies the volume of vehicles traveling
between each origin and destination. Estimation of the OD
matrix using AVI data is also addressed in [19]. The path

which traffic takes, however, is not estimated in traditional OD
matrix estimation schemes. The model proposed in this paper
goes one step further and estimates the paths that vehicles take
to move from one location to another.

A preliminary version of this work appears in [20]. There
we introduced the idea of modelling traffic using a mixture of
Markov chains. This paper expands on that work in a number
of ways: 1) the inference algorithm described here differs from
the one in [20] and admits a simpler analysis of convergence
and computational complexity; 2) the performance evaluation
is greatly expanded; 3) the issue of tuning algorithm param-
eters is investigated and a procedure for determining suitable
choices is described.

C. Contribution

This work proposes a new method for the estimation of
a time-varying mixture of Markov chains. The proposed
algorithm extends the Classification EM algorithm [21] so
components of the mixture can be greedily added as neces-
sary. It also proposes novel penalization methods on model
complexity to automatically choose a more appropriate model.
A discussion of how the choice of the threshold on the
proposed penalization method based on the Kullback-Leibler
(KL) divergence influences is also provided. The accuracy of
the parameter estimates and estimated model order generated
by this algorithm are analyzed and it is shown that the selection
of the correct model order and estimation of the component pa-
rameters is well solved by this method. Experiments illustrate
that the proposed time-varying mixture model representation
of traffic is more accurate than an approach using a single
Markov chain (i.e., a model of order one) for predicting vehicle
routes when predictions must be made from a small number
of initial observations.

D. Paper Organization

The rest of the paper is organized as follows. Section II gives
a detailed description of the problem setup and assumptions.
Section III proposes a generative time-varying mixture model.
Section IV discusses maximum a posteriori (MAP) inference
for the proposed model and motivates the need to use approx-
imate inference schemes for this class of models. Section V
describes a novel approximate algorithm for parameter infer-
ence of time-varying mixture models. The proposed method
involves two tuning parameters, and Section VI investigates
the proper choice of these parameters. Section VII presents
experimental results, including a comparison to an alternative
MCMC-based approach, and we conclude in Section VIII.

II. PROBLEM DESCRIPTION

This section gives a more detailed description of the prob-
lem of modelling traffic using AVI data. We describe charac-
teristics of the measurement system that make the problem
challenging. Then we discuss the assumptions made and
describe performance metrics which will be used to evaluate
the proposed model and estimation algorithm.
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A. Vehicle Identification Data

Consider a system of urban roads instrumented with AVI
sensors. When a vehicle passes within range of a sensor, the
sensor records the vehicle’s unique identifier as well as the
time and location. AVI sensors typically have a short range of
detection (e.g., 10 meters). The measurements from many of
these sensors, at different locations in the road network, are
transmitted to a fusion center whose goal is to estimate the
traffic patterns, or flows, through the network of sensors.

More formally we consider a collection of C sensors. Let
the set of sensor indices be Ω = {1, ..., C}. The sequence
of observations of vehicle i produced by the network is
xi = {xi0, xi1, xi2, ..., xini

} where xij ∈ Ω is the sensor
that captured the jth observation of vehicle i. In this paper
we focus on modelling the routes present in the transition
sequences between sensors and therefore ignore the transition
times it takes to move from one sensor to another.

B. Measurement system characteristics and assumptions

We make the following assumptions about the measure-
ments made by the system. First the sensors are synchronized
so that the timestamps from different sensors are directly
comparable. This is justified since existing AVI sensors are
typically equipped with GPS receivers that provide reliable
and accurate synchronization. This allows us to properly time-
order observation sequences of vehicles so there are no errors
in the order of vehicle observations.

Second, we assume that a vehicle cannot be observed by two
sensors at exactly the same time. This ensures that the order
of observations of a vehicle is well-defined, and it is justified
when the timestamps at each sensor are of a sufficiently high
resolution and sensors have non-overlapping fields of view.

Third, we assume that the vehicle identifiers (e.g. license
plate of the vehicle) recorded by the sensors do not contain
errors and that there are no missed detections (i.e., a vehicle is
always detected when it passes within range of a sensor). This
is reasonable for license plate recognition cameras, which have
a very low error rate and high detection probability, but it is
less reasonable for other AVI sensors (e.g., Bluetooth-based).
Extending the model and inference method to accommodate
errors and missed detections is a subject of future work.

Fourth, we assume that the sensors are static and their
locations are known to the fusion center. Thus, the structure
of the network of AVI sensors does not change over time.

Finally, we assume that the sensors transmit their observa-
tions to the fusion center over a transmission channel with
negligible delays and errors so that ordering errors due to
delayed data is impossible. This assumption can be justified
since the number of bits required to encode an individual
measurement is very small, so transmission delay should
be significantly smaller than the time between successive
observations of a vehicle.

C. Sequential modeling

In this work we consider a sequential setting where the
observations arrive in time windows t ∈ {1, 2, ...}. To simplify

the presentation, we take all time windows to be the same
length. For example, in a typical urban deployment, a time
window may be one hour long. A typical vehicle trip may
last 20–30 minutes, and the number of observations of the
vehicle (which depends on the number and density of cameras
deployed) may be between five and ten. We assume that the
distribution governing vehicle routes is stationary within a time
window, and it may vary from one time window to the next.
The number of vehicles observed in time window t is N(t).
The collection of all AVI observations in time window t are
organized into the set of per-vehicle observation sequences,
X(t) = {x1, ..., xN(t)}. In each time window a model is
created to describe the data observed within that time window.
This model uses the model estimated in the previous time
window as a prior on the current model. This enforces the
notion of the model evolving. The details of the model used
to estimate traffic patterns are described in Section III.

Our goal is to model vehicle routes, as given by the
sequence of locations where the vehicle is observed. One pos-
sible application is to predict vehicle trajectories through the
network. In Section VII we report the results of experiments
where, after fitting the model with training data, we test the
accuracy of predicting the next location where a vehicle will
be observed, xin, given the history xi0, . . . , x

i
n−1.

Note that we do not model the observation times (or inter-
observation times) in this work, since the focus is on modelling
vehicle routes. Such information could be incorporated, if it is
of interest in a given application, following the approach de-
scribed in [22]. There a probability density function f(t|x, x′)
is associated with each pair of sensors (x, x′) ∈ Ω×Ω, and it
is used to express the probability that a vehicle is observed by
sensor x′ no more than t seconds after having been observed
at sensor x. These densities can be estimated while also fitting
other route-related model parameters; see [22] for details.

III. THE MODEL

Observations from automatic vehicle identification (AVI)
sensors result in timestamped and location-tagged observations
of vehicles identified by their unique identifier. If one groups
the observations by vehicle, then each vehicle has a location
(state) where it was initially observed at and then a sequence
of following observations. Each following observation can be
viewed as a transition from the previously observed state. We
can then model these observations as transitions between the
states of a Markov chain where the states of the chain are
the AVI sensors. In order to capture more complex traffic
patterns we propose to use a mixture of Markov chains, since
a single Markov chain may be unable to properly summarize
the multiple traffic patterns present.

We model the sequence of sensors observing a particular
vehicle i as following a first-order discrete-time Markov chain.
Under the first-order Markov assumption, sufficient statistics
for the sequence xi = (xi0, x

i
1, . . . , x

i
ni

) of observations of
vehicle i are the initial state xi0 and a matrix1 Xi ∈ Z|Ω|×|Ω|≥0

of transition counts, where Xi
j,k is the number of times the

1We denote the set of non-negative integers by Z≥0.
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vehicle i was observed at sensor k immediately after having
been observed at sensor j.

If one considers a single Markov chain at time window t
with initial state distribution π(t) and transition matrix P (t),
which we group together and write as φ(t) = (π(t), P (t)) for
convenience, the likelihood of the observations of vehicle i is

p(xi|φ(t)) = πxi
0
(t)

|Ω|∏
j=1

|Ω|∏
k=1

(Pj,k(t))
Xi

j,k . (1)

Using only one Markov chain to describe all of the traffic
observations in time-window t provides limited predictive
capacity. For example, envision a large volume of traffic
moving from the suburbs into the downtown core of a city
during the morning rush-hour. At the same time, traffic may
be moving from the downtown core into the suburbs at a
much smaller volume. If this behavior was modelled using
a single Markov chain, the small traffic volume moving from
downtown to the suburbs may get lost. Modelling this as a
mixture model may allow us to identify these inter-twined
traffic flows occurring within the same time-window (e.g.,
with one component capturing each “direction” or “flow”).
Therefore, in order to capture more traffic patterns present in
the data, we propose to use a mixture of Markov chains. This
mixture model contains M(t) mixture components at time-
window t, and the mth mixture component has parameters
φ(m)(t) = {π(m)(t), P (m)(t)}, m = 1, . . . ,M(t). The likeli-
hood for a vehicle xi under each individual component is then
p(xi|φ(m)(t)) as in (1).

Each vehicle’s path is assumed to be generated by one of
the components in the mixture model. In order to model this,
we follow the standard approach of using the binary random
variables z(m)

i for each vehicle i and mixture component m,
with z(m)

i equal to one if and only if the movement of vehicle
i is governed by mixture component m, and

∑M(t)
m=1 z

(m)
i = 1.

Further let α(t) = (α(1)(t), ..., α(M(t))) denote the distribu-
tion of z(m)

i with Pr(z
(m)
i = 1) = α(m)(t) for a vehicle i

observed during time-window t.
Since the assignment variable zi is not observed, one typi-

cally works with the marginalized complete-data likelihood,

p(xi|α(t),φ(t)) =

M(t)∑
m=1

α(m)(t)p
(
xi|φ(m)(t)

)
(2)

where φ(t) is the collection of all mixture component parame-
ters φ(m)(t) in time-window t. Finally, assuming that the paths
of different vehicles are i.i.d., the likelihood of N(t) vehicles
generating the observations X(t) in time-window t is

p(X(t)|α(t),φ(t)) =

N(t)∏
i=1

M(t)∑
m=1

α(m)(t)p
(
xi|φ(m)(t)

)
. (3)

In our previous work [22] we considered the problem of
detecting when two or more vehicles were traveling along
correlated routes (i.e., detecting convoys), and non-convoy
traffic was modelled as independent samples from a (static)
mixture of Markov chains.

The remainder of this section defines the model dynamics.

A. Mixture Component Death

Consider the mixture model in time-window t − 1 with
M(t − 1) components. This mixture model can be described
by the vector of mixture weights α(t − 1) and parameters
for each component φ(m)(t − 1),m = 1, ...,M(t − 1). Let
Θ(t) = (α(t),φ(t)) denote the complete set of model
parameters at time t.

Existing components either persist or die between time-
windows, and they die with probability

pd(φ
(m)(t), α(m)(t)). (4)

This probability can be constant or could be related to the rate
at which α(m)(t) is decreasing signifying that the component
is “dying”. It could also be related to a rate of decrease
in the Kullback-Leibler (KL) divergence between a pair of
components signifying they may be “merging”. The notions
of a component dying on its own or merging with another are
handled by the algorithm in a following section.

For each component death, the mixture weight assigned
to that component is distributed proportionally among the
remaining components which is similar to the generative
model of Stephens [7].

B. Persisting Component Evolution

If a component persists from time-window t − 1 to t its
parameters evolve according to the dynamics

φ(m)(t) ∼ H(φ(m)(t− 1)), (5)

where H(·) is a distribution parametrized by the previous iter-
ation’s component’s parameters with pdf h(φ(m)(t)|φ(m)(t−
1)). In order to easily compute the MAP estimate, this
distribution would ideally be conjugate to the distribution
parametrized by φ(m)(t). In the traffic model considered here,
with a time-varying mixture model (TVMM) of discrete-time
Markov chains (DTMC), we adopt the model that

P (m)(t) ∼


Dir(P

(m)
(1,:)(t− 1))

Dir(P
(m)
(2,:)(t− 1))

...
Dir(P

(m)
(|Ω|,:)(t− 1))

 := Dir
(
P (m)(t− 1)

)

(6)
and

π(m)(t) ∼ Dir(π(m)(t− 1)) (7)

where Dir(·) is the Dirichlet distribution.

C. Mixture Component Birth

The number of mixture components born at each time-
window follows a Poisson distribution with parameter λ(t) as
nb ∼ Pois(λ(t)). This allows for a countably infinite number
of components to be born in each time-window. Each new
component which is born in time-window t has parameters
distributed according to some distribution, φ(m)(t) ∼ H(G),
which has a density h(φ(m)(t)|G). Here G are the parameters,
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or set of parameters, of the base distribution of the model. In
our TVMM DTMC these distributions are

P (m)(t) ∼ Dir(Gp) and π(m)(t) ∼ Dir(Gπ) (8)

where G = {Gp, Gπ} are the base distribution parameters.
Each new component which is born has a mixture weight

distributed according to a Beta distribution so that

α(M(t)+1)(t) ∼ Beta(1,M(t)). (9)

Following [7], for each new component added, the weights
of previously existing components are scaled down by(
1− α(M(t)+1)

)
. This model for component birth can be

related to the notion that components are “born from the prior”
so they have some shared knowledge between all components
but are independent from all other existing components. In
this model new components also receive progressively smaller
weights which helps in that no new component can appear and
take the majority of the weight in one iteration. It will be born
small and, if necessary, will grow through its dynamics. This
notion of a curbed mixture weight with additional births is also
adopted from [7] and differs from the typical non-parametric
Dirichlet process mixture models in that the parameter of the
Beta distribution varies, depending on the number of existing
components, over time.

D. Mixture Weight Dynamics

The fully dynamic model is now defined, save for the
evolution of the vector of mixture weights, α, between time
windows t−1 and t. The dimension of this vector can change
between time-windows and it is modelled as following a
multinomial distribution. Consequently, it is natural to model
these weights as evolving according to a Dirichlet distribution
because the Dirichlet distribution is conjugate to the multino-
mial distribution [23]. However the parameter to the Dirichlet
must be the same dimension as the variable output from the
distribution. Therefore we propose that one considers that the
model first determines the component births and deaths, where
the mixture weights are adjusted for each birth and death, and
then the dimension of the mixture weight vector is known.
After the births and deaths are established, we have a resized
and rescaled weight vector for time t−1 called α′(t−1). With
this rescaled mixture weight vector the next mixture weight
vector is distributed according to

α(t) ∼ Dir(α′(t− 1)). (10)

IV. MAP INFERENCE FOR A MIXTURE OF MARKOV
CHAINS

In the ideal case we would estimate the parameters of a
time-varying mixture model at time t via Bayes’ Rule and get
a maximum a posteriori (MAP) estimate of the parameters.
Given the data from time-windows 1, ..., t, denoted X(1 :
t) = {X(1), ..., X(t)}, we want to estimate the parameters

that maximize the posterior p(Θ(t)|X(1 : t)) which can be
rewritten as

p(Θ(t)|X(1 : t)) =
p (X(t),Θ(t)|X(1 : t− 1))

p(X(t))

∝ p (X(t)|Θ(t))p (Θ(t)|X(1 : t− 1)) (11)

= p (X(t)|Θ(t))

∫
p (Θ(t)|Θ(t− 1))

× p (Θ(t− 1)|X(1 : t− 1)) dΘ(t− 1)

by application of Bayes’ theorem where the denominator in
the first equation is simply a scaling factor so it does not affect
the maximization. The map estimate is then given by

Θ̂MAP (t) = arg max
Θ(t)

p (X(t)|Θ(t)) (12)

×
∫
p (Θ(t)|Θ(t− 1)) p (Θ(t− 1)|X(1 : t− 1)) dΘ(t− 1).

As the dimensionality of the model grows, computing the
integral over the entire parameter space Θ(t − 1) quickly
becomes intractable. We can however further develop the terms
appearing in the MAP objective.

In order to solve this maximization, we need expressions
for p(X(t)|Θ(t)) and p(Θ(t)|Θ(t − 1)) in (12). The like-
lihood p(X(t)|Θ(t)) is given by (3). The transition density
p(Θ(t)|Θ(t − 1)) is governed by the model dynamics de-
scribed in Sec. III. The term p(Θ(t − 1)|X(1 : t − 1)) is
the recursive posterior from time window t− 1, acting as the
current time-window’s prior.

In order to express the parameter transition density we need
to match the persisting mixture components in time window
t−1 with those in time window t. If nd components die from
t− 1 to t then M(t− 1)− nd components persist.

Consider the set of choices of size M(t− 1)−nd from the
set {1, ...,M(t−1)}. Furthermore consider all permutations of
each resulting choice in this set of choices. The concatenation
of all permutations of all possible choices from this set is
denoted by A(t). This is the set of all possible mappings of
the components at time-window t−1 to those which persisted
to time-window t. In the definition of p(Θ(t)|Θ(t − 1)) we
need to marginalize over all the possible mappings in A(t). We
can note that incorrect mappings will likely have very small
probability, and there will likely only be one mapping which
results in a reasonably large probability. Now if one further
assumes that the probability of death for any component is pd
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for all t, then we can define p(Θ(t)|Θ(t− 1)) to be2

p( Θ(t)|Θ(t− 1)) (13)

=

M(t−1)∑
nd(t)=max(0,M(t−1)−M(t))

{
fd(nd(t)|pd,M(t− 1))×

fb(M(t)−M(t− 1) + nd(t)|λ(t))× ∑
A∈A(t)

M(t−1)−nd(t)∏
m=1

g(φ(m)(t)|φ(Am)(t− 1))

×
 M(t)∏
nb(t)=M(t−1)−nd(t)+1

g(φ(m)(t)|G)fα(α(m)(t)|M(t− 1))


× fα(α(t)|α′(t− 1))

}
where

fd(x|pd,M(t− 1)) = pxd (1− pd)M(t−1)−x (14)

fb(k|λ(t)) =
λ(t)ke−λ(t)

k!
(15)

fα(x|M(t)) =
(1− x)M(t)−1

B(1,M(t))
(16)

fα(x|α′(t− 1)) =
1

B(α′(t− 1))

|x|∏
m=1

x
α′

m(t−1)
m (17)

and where B(·) is the Beta function and fα() controls the
evolution of the rescaled mixture component weights (α′)
defined in (10).

In order to do inference on this model, one could resort
to a Monte-Carlo based method, such as Gibbs Sampling.
However, due to the high-dimension of the model parameter
space the number of burn-in and sampling iterations of the
MCMC method quickly goes to infinity in order to sample
reasonable candidates. As a simple example, consider the
TVMM DTMC model again with a state space of |Ω| = 25
representing a network of 25 nodes. If the current model in
time-window t is comprised of 3 DTMCs, one needs to esti-
mate the mixture weights (α(t)), the initial state distributions
(π(t)), and transition matrices (P (t)) for each component
resulting in

(|α| − 1) + |α| × [(|Ω| − 1) + |Ω|(|Ω| − 1)]

= 2 + 3(24 + 25× 24) = 1874

free parameters which need to be estimated. In addition to the
number of free parameters which need to be estimated, there is
the issue that random samples from the posterior distribution
in a MCMC method will be candidate mixture models which
have a varying number of components. Therefore determining
a method of averaging the posterior samples or choosing the
best candidate model in order to obtain the best parameter
estimate is not a straightforward task as well.

Now since MCMC-based methods result in unreasonable
sampling times, the question becomes how does one estimate

2We adopt the convention that
0∏
i=1

x = 1.

the parameters of this type of model? An alternate might be to
try and derive an exact Maximum a Posteriori (MAP) estimate
based on the probability definitions in eqs. (12) to (17). If one
excludes the definition of p(Θ(t)|Θ(t−1)) for a moment and
only focuses on p(X(t)|Θ(t)) this would result in a maximum
likelihood (ML) estimate of the mixture model which we can
show is still intractable to compute.

To demonstrate the infeasibility of a ML solution in the
mixture model, consider the hidden assignment variable z(m)

i

for vehicle i outlined in Section III again. This variable z(m)
i =

1 when vehicle i’s path is distributed according to mixture
component m and 0 otherwise. Now the updated likelihood
function using this hidden variable definition is

f(X(t)|Θ(t)) =

N(t)∏
i=1

∑
zi∈Z

M(t)∏
m=1

f(xi, z
(m)
i |φ(m)(t)) (18)

=

N(t)∏
i=1

∑
zi∈Z

M(t)∏
m=1

π(m)

xi
0

(t)

|Ω|∏
j=1

|Ω|∏
k=1

(
P

(m)
j,k (t)

)Xi
j,k

z
(m)
i

(19)

where the marginalization over all possible zi’s make comput-
ing the ML estimate quickly go to infinity. The actual number
of iterations to marginalize over Z is M(t)|X(t)| which one
can see is dependent on the mixture-model order in time-
window t and the number of vehicles observed in time-window
t. This marginalization requirement is true of all types of
mixture models, not only a TVMM of DTMCs. These types
of models are traditionally estimated using the Expectation-
Maximization algorithm [24] which replaces the hidden as-
signments zi from binary random variables with weighted
probabilities by stating that vehicle i has probability α

(m)
i

of being distributed according to component m. This greatly
simplifies the computation of the marginal likelihood and it
then becomes possible to maximize the expected complete log-
likelihood via a simple recursive algorithm. It proceeds by
choosing the component mixture probabilities based on the
ratio of the likelihood of the data being distributed according
to each individual component. This is performing a form of
clustering, which can motivate the need to first cluster the
data into groups and then updating the individual component
parameters based on the data membership to each component.
We propose the automatic hard EM algorithm defined in the
following section to address the clustering and estimation
problem in a time-varying mixture model.

V. AUTOMATIC HARD EM ESTIMATION FOR
TIME-VARYING MIXTURE MODELS

When the true number of underlying components in a
mixture model is unknown a priori, then a mixture model
estimation scheme needs to estimate the number of mixture
components as well as the parameters of the individual mixture
model components and the mixing weights for each compo-
nent. Traditional Expectation-Maximization (EM), Classifica-
tion EM (CEM), and k-Means algorithms require that the
number of mixture components be known beforehand [24],
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[21], [25]. This means that a modification to these types of
estimation schemes is necessary.

We propose an approach to model order estimation similar
to that described in [15], which progressively adds compo-
nents. However, the proposed approach eliminates the search
over candidate models by simply adding the same base candi-
date model G at each iteration. This reflects the generative
model where new components born at each iteration are
generated according to this global prior.

A. Modified Hard EM Clustering

The EM algorithm [24] can be viewed as performing a
form of clustering where the cluster assignments are soft:
for each datapoint we get a likelihood that the datapoint
came from each of the possible clusters. Then the cluster
parameter estimates are updated to the weighted average of
the data assigned to the cluster. Once the weighted cluster
assignments and component parameters stop changing, to
within some tolerance, the algorithm is considered to have
converged. By modifying the EM algorithm to make hard
assignments instead of weighted assignments, one obtains an
alternate method commonly referred to as Hard EM. This is
a reasonable approximation when the mixture components are
well-separated, and it is generally much faster to compute.
Hard EM algorithms can be considered to have converged
once the component assignments stop changing since, once
this occurs, the component parameter estimates will be exactly
the same in subsequent iterations.

Since we assume that vehicles follow a single DTMC in the
mixture model, we use Hard EM to estimate the DTMC that
generated the observed vehicle path. We then use the paths of
the group of vehicles assigned to a component to compute a
simple MAP estimate of the component’s parameters.

B. The Proposed Algorithm

For each time-window t, the proposed inference algorithm
is divided into three phases. The first phase is a modification of
the Hard EM algorithm to jointly estimate model parameters
and the model order. The phase is initialized with the mixture
model parameters estimated in the previous time-window, and
it allows for an arbitrary number of new components to be
created. In the second phase, components that have fewer
than Lα data points assigned to them are trimmed from the
model. In the last phase, pairs of the remaining components
are merged if the KL divergence between them falls below a
threshold LKL. These last two phases simplify the resulting
model, reducing the storage requirements and simplifying
future evaluations of the model, while also acting as a sort-of
regularizer to avoid overfitting. Pseudocode is shown in Alg. 1
and each phase is described in more detail next.

1) Modified Hard EM: The modification that we propose
to the standard hard EM algorithm allows the algorithm to
greedily add new components as necessary, so the number
of components does not need to be specified in advance.
The first phase begins by adding a new component with
parameters G (line 3). It then finds the component which
achieves the maximum likelihood for each observed path (line

Algorithm 1 Automatic Hard EM algorithm for T time-
windows

1: Θ(0) = {}
Require: Data X(1 : T ) = {X(1), ...,X(T )}

2: for t ∈ 1..T do
3: φ̂0 = {φ(m)(t− 1)}∀m

⋃
{G}

4: while |SM(t)| > 0 do
5: i = 1
6: repeat
7: for m ∈ {1, ...,M(t)} do
8: Sm =

{
xj : p(xj |φ̂(m)

i−1) > p(xj |φ̂(m′)
i−1 )∀m′ 6= m

}
9: φ̂

(m)
i = arg max

φ̂
(m)
i

f(Sm|φ̂(m)
i )h(φ̂

(m)
i |φ̂(m)

0 )

10: end for
11: i = i+ 1
12: until |φ̂(m)

i − φ̂(m)
i−1| = 0,∀m

13: α(m)(t)← |Sm|
|X(t)| ,∀m

14: if |SM(t)| > 0 then
15: φ̂i(t) = {φ̂(m)

i (t)}∀m
⋃
{G}

16: φ̂0(t) = {φ̂(m)
0 (t)}∀m

⋃
{G}

17: end if
18: end while
19: Θ(t)←

{
(α(1)(t), φ̂

(1)
i (t)), ..., (α(M(t)), φ̂

(M(t))
i (t))

}
20: Trim components in Θ(t) with α(m) < Lα
21: Merge components in Θ(t) with
22: DKL(φ(m)(t)||φ(m′)(t)) < LKL
23: end for

8). From the vehicle paths assigned to each component, the
MAP estimate of the parameters is computed (line 9). In the
MAP estimate computation, f(Sm|φ̂(m)

i ), is the likelihood of
the data assigned to component m, and h(φ̂

(m)
i |φ̂(m)

0 ) is the
same as in (5). By adding components with initial parameters
of G, this is equivalent to setting the parameters of the prior
over the component parameter distribution to the same values.
This means that the distribution over the components, h(·|·),
is the same for all newly added components. These steps are
repeated until the assignments no longer change from one
iteration to then next (line 12). Then (line 13), the algorithm
updates the mixture weights α(m)(t) based on the number of
observations assigned to each component.

Next (line 14), the algorithm checks if any data has been
assigned to the most-recently appended component. Since this
component was initialized as the base distribution G, it is
more vague (i.e. it has higher variance or spread) than the
components propagated from the previous time-window. If
paths are assigned to this component, then at least one new
cluster is deemed to have formed, and another component is
added (lines 14–17). Then the Hard EM algorithm is executed
again with this new, larger, model order. This process repeats
until another instance of the base component G is added and
no data points are assigned to it. In the worst case scenario
where all observed paths in a time-window are well-separated,
one could end up with a number of components equal to the
number of observed paths. However in the empirical studies
discussed in Section VII, we did not observe this extreme, and
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typically M(t) � |X(t)|. This estimation technique allows
new component creation and existing component movement.

If this were the only phase of the algorithm, the number
of components would continuously grow without limit since
we only add new components in this phase of each time-
window. Therefore we next need a method of annealing the
number of components to those which are necessary, both for
computational considerations and to avoid over-fitting.

2) Trimming Weak Components: The most basic way of
trimming components that do not describe the data is to
remove components that are associated with a small proportion
of data; these are precisely the components with small weights
α(m)(t). This is implemented in line 20. The threshold, Lα,
could be constant, a time-window dependent value, or a data
size-dependent value. One might wish to keep all components
which are sufficiently well-separated from the rest, in which
case Lα would be set to zero.

3) Merging Similar Components: A more complex notion
is examining when two components become very close to
each other (meaning they are essentially the same distribution).
After the clustering has converged and weak components are
deleted, we compute the KL divergence between all pairs of
components and merge pairs if the KL divergence from one to
the other is below a threshold, LKL, starting from the smallest
difference and proceeding sequentially. To merge components
m and m′ we take the weighted average of their parameters,

αmerged(t) = α(m)(t) + α(m′)(t)

φmerged(t) =
α(m)(t)φ(m)(t)

α(m)(t) + α(m′)(t)
+

α(m′)(t)φ(m′)(t)

α(m)(t) + α(m′)(t)
.

This is implemented in line 21 of Alg. 1. The choice of an
appropriate threshold LKL is discussed in Section VI.

C. Intuitive Explanation of the Automatic Hard EM Algorithm

Next we provide an intuitive explanation to help understand
the function of the Automatic Hard EM algorithm. Suppose
that the mixture model estimated at time-window t−1 has two
components, and 500 data points are observed in time-window
t. In the first pass through the CEM algorithm (lines 6–12),
each data point will be assigned to one of three components:
the two from the previous time-window, and the additional one
added in line 3.

After this first pass of the CEM has converged, if no data
points were assigned to the third mixture component then
the algorithm determines that the original two components
were sufficient to model the data, and the while loop exists.
Otherwise, if at least one data point was assigned to the third
mixture component, then the algorithm allows for the possi-
bility of increasing the model order further. Another generic
component is added in lines 15–16, and another pass of the
CEM algorithm is performed. This repeats until no data points
are assigned to the most recently added component, at which
point it is determined there is no need to further increase the
model order. Thus this first phase involves greedily increasing
the model order as long as the CEM continues to associate
data points to new mixture components.

To be concrete, suppose that this phase finishes with a model
of order M(t) = 4, and the number of data points associated
to each component are as follows:
• Component 1 has 200 data points;
• Component 2 has 0 data points;
• Component 3 has 300 data points;
• Component 4 has 0 data points.

Recall that the first two components were propagated forward
from the previous time step, and components 3 and 4 were
added in this time-window.

At this stage the last two algorithm steps (trimming and
merging) are executed. The trimming phase deletes compo-
nents to which no (or only a few) data points have been
assigned; in our example, component 2 from the previous
time-window has died, since it no longer explains any of the
observations, and component 4 is eliminated because it was
added unnecessarily.

The last step is the merging step. Following our example, if
the KL divergence between the remaining two components, 1
and 3, is smaller than the threshold LKL, then the initial state
distributions and transition matrices of these two components
are deemed too similar, and so they will be merged, resulting
in a final model with a single component. If the KL divergence
between the two components is larger than LKL then the two
components are deemed to be sufficiently different that they
both remain and propagate forward to the next time-window.

D. On the Convergence of the Algorithm per Time-Window

For a fixed model order, Wu [26] shows that convergence
of the EM algorithm to a local maximum is guaranteed by
demonstrating that the EM iterations monotonically increase
the likelihood. Convergence of the CEM algorithm to a local
maximum, in the case of a fixed model order, is shown by
Celeux and Goavert [21]. They accomplish this by introducing
the classification maximum likelihood (CML) criterion,

C2(Z(t),Θ(t)) =

M(t)∑
m=1

∑
xi∈Z(m)(t)

log
(
α(m)(t)p(xi|φ(m)(t))

)
(20)

where Z(m)(t) ⊂ X(t) is the subset of data in X(t) which is
associated with component m. Then they show that each CEM
iteration increases this criterion. Since it is bounded above, it
follows that the algorithm converges to a local maximum.

Now we discuss why the Automatic Hard EM algorithm is
guaranteed to converge within each time window. Specifically,
we explain why the while loop spanning lines 4–18 in Algo-
rithm 1 is guaranteed to converge. First, observe that the inner
loop spanning lines 6–12 correspond precisely to the CEM
algorithm with fixed model order M(t). Convergence of this
inner loop is guaranteed by the results of [21], and the value to
which it converges is a local maximum of the CML criterion.

It remains to be shown that the outer loop terminates—
specifically, that the conditional in line 4 eventually evaluates
to false. Recall that M(t) is the number of components in the
mixture model. Within the loop spanning lines 4–18, M(t)
is strictly increasing. Specifically, if the condition in line 14
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is true then M(t) is incremented in lines 15 and 16, and
the condition in line 14 is true if the most recently added
component has at least one observation sequence assigned to
it. Under the assumption that there are a finite number of
observations in each time window, the maximum number of
components is also finite; it is at most equal to the number
of observations N(t), in which case every component has
exactly one datapoint assigned to it. Since M(t) is monotonic
increasing and bounded above during the execution of lines 4–
18, this portion of the algorithm is guaranteed to converge. The
last two steps evaluated in each time window (lines 20 and 21)
both strictly decrease the number of components in the mixture
model, and so they also are guaranteed to converge. Hence,
the Automatic Hard EM algorithm is guaranteed to converge
at each time step.

Although the algorithm is deterministic and is guaranteed
to converge, we note that there are no guarantees about the
quality of the estimate to which the algorithm converges.
Recall that the CEM iterations monotonically increase the
CML criterion given in (20). The loop spanning lines 4–18
involves repeatedly executing CEM iterations while progres-
sively increasing the model order each time CEM converges.
Consequently, lines 4–18 indeed monotonically increase the
CML criterion, and so when this loop converges the algorithm
is at a local maximum of the CML criterion. However, the
trimming and merging steps in lines 20 and 21 will generally
result in a decrease of the CML.

VI. THRESHOLD FOR MERGING SIMILAR COMPONENTS

Before proceeding to numerical experiments, we discuss
how to choose LKL, the limit at which two estimated com-
ponents are merged. Since the parameters of the DTMCs in
the mixture model are random variables, the KL divergence
between pairs of estimated DTMCs can also be considered a
random variable parametrized by the hyper-parameters φ(m)(t)
and φ(m′)(t). The KL divergence in time-window t between
two DTMCs is non-symmetric and is defined as

DKL(m||m′; Θ(t)) =

|Ω|∑
i=1

π
(m)
i (t)

|Ω|∑
j=1

P
(m)
i,j (t) log

P
(m)
i,j (t)

P
(m′)
i,j (t)

.

The KL divergence test in Alg. 1 aims to identify when
two estimated component distributions are sufficiently close
to be merged into one. This means that the hyper-parameters
which govern φ(m)(t) and φ(m′)(t) should be the same hyper-
parameters. In this TVMM setting, this set of shared hyper-
parameters is either {Gπ, GP } or {π(m)(t− 1), P (m)(t− 1)}
for some m.

Due to the complexity of this expression, a closed-form
expression for the distribution of the KL divergence function
between two random DTMCs is not available. Therefore we
propose an experimental evaluation which investigates the
distribution of sampled KL divergences from mixture models
with a mis-specified model order [27].

A. Simulated dataset 1

In order to perform an experimental evaluation of the dis-
tribution of the KL divergence, we first introduce a simulated
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Fig. 1. An example random Delaunay graph with 25 nodes

dataset which will be used in the evaluation. The simulated
dataset is created using a random network of 25 nodes gener-
ated as a random Delaunay graph: nodes are placed uniformly
and independently in the unit square, and edges are obtained
from the Delaunay triangulation of these points. The resulting
graph is planar, similar to many road networks. An example
random Delaunay graph is shown in Fig. 1. This dataset con-
tains 100 time-windows where in each time-window a mixture
model (as defined in the generative model of Sec. III) governs
the sampled data. We refer to this as Simulated Dataset 1
(SDS1), and it is generated from a mixture-model with a model
order that varies between one and three components during
the 100 time-windows. The probability of component death
in the model is pd = 0.1 and the parameter of the Poisson
distribution controlling component birth is λ(t) = 1 for all t.
The mixture model order over the 100 time-windows is shown
in Fig. 3(a). Vehicle observations in SDS1 have a path length
that is sampled uniformly between 13 and 23.

B. Fitting a mis-specified model

Using the TVMM in SDS1, we sample 50 datasets, each
containing observations of 5000 vehicles per time-window.
For each of these datasets, we fit a model with exactly
M(t) + 1 components at every time-window by running the
EM algorithm [24] with 10 random restarts. We keep the
model with the largest likelihood which, for the same model-
complexity in each fit, is equivalent to using BIC or AIC as
a model selection criterion.

Then, for each best fit model, we compute the KL diver-
gence between all distinct pairs of components in each time-
window. The distribution of the KL divergence values is shown
in Fig. 2(a), where it can be clearly seen that there are two
peaks present. We postulate that the first peak, near zero,
corresponds to the over-fit models which should be merged. In
other words, one would like to see the peak near zero disappear
and only the remaining peak be present, corresponding to
estimated components that are well-separated.

We continue to investigate this hypothesis by examining
when there is a mis-specified model of order M(t)+2 in each
time-window. Using the same method as for when M(t) + 1,
the distribution of the KL divergence values is shown in
Fig. 2(b). Here we can see the mass of the distribution near



10

0 5 10 15
KL Divergence

0

0.5

1

1.5

2
f(

x)

(a)

0 5 10 15 20
KL Divergence

0

0.5

1

1.5

2

2.5

f(
x)

(b)

0 2 4 6 8 10 12 14 16

KL Divergence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

M(t) + 1

M(t) + 2

LKL

(c)

Fig. 2. (a) A histogram density estimate over the sampled KL divergence values for the mis-specified M(t)+1 model. (b) A histogram density estimate over
the sampled KL divergence values for the mis-specified M(t) + 2 model.(c) The CDF of the fitted functions in (a) and (b) with the proposed KL divergence
threshold LKL = 0.678 superimposed at the vertical black line.

zero has indeed grown. To further see this consider Fig. 2(c)
which shows the CDF of the distributions in Fig. 2(a) and
Fig. 2(b), obtained using kernel density estimates. We can
clearly see that the mass in the near zero models has indeed
grown under the more mis-specified model (M(t) + 2), which
further supports setting LKL to trim this lower peak.

We propose to set the threshold LKL by computing the
numerical derivative of the CDF and searching for the first
value after the left-most peak where the slope approaches zero
(e.g., a slope less than 0.05). For the simulated network this
results in a value of LKL = 0.678, shown as the vertical, black
line in Fig. 2(c). The reason for choosing the threshold as close
to 0 as possible is we want to be as sensitive as possible
to components which will naturally appear close together
and will randomly have a small divergence while removing
components which are over-fit and have an unnaturally small
KL divergence.

VII. NUMERICAL EXPERIMENTS

We now continue with a performance evaluation of the
automatic hard EM algorithm using both simulated and real
data. The first simulated dataset is SDS1 which was described
in Sec. VI-A. Two other simulated datasets were also created
with a random network of 25 nodes simulated as another
realization of a random Delaunay graph. These simulated
datasets each also contain 100 time windows, and in each
time window observations are sampled from a mixture model.
The plot of this second dataset’s mixture model order over
time is shown in Fig. 3(b). For this network and mixture
model, two datasets (SDS2-a and SDS2-b) were generated.
The first dataset, SDS2-a, contains sets of vehicle observations
with path length distributed uniformly between 5 and 15, and
SDS2-b contains sets of vehicle observations with path length
distributed uniformly between 15 and 25. The intention is to
investigate how the number of observations per-vehicle affects
the accuracy. The probability of death and birth are set to the
same as SDS1, described in Sec. VI-A. A summary of the
simulated dataset parameters is given in Table I.

Comparing the time-varying model orders in Fig. 3, note
that SDS1 corresponds to a simpler test case and SDS2, with
overall larger model orders, is more challenging. For SDS2-a
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Fig. 3. (a) The mixture model order (number of mixture components) for
the first dataset (SDS1) over the 100 time-windows. (b) The mixture model
order for the second and third datasets (SDS2-a and SDS2-b) over the 100
time-windows.

and SDS2-b we generate 10 independent realizations for each
of the eight possible values of N(t) outlined in Table I in
order to report average results.

We set Lα = 2
N(t) so that we only delete components

where two or less vehicles gets assigned after the hard EM
phase. For these simulations we want to see all possibly
relevant components which have been estimated. For SDS2-a
and SDS2-b, the same analysis as SDS1 was performed in
order to choose the LKL threshold (see Sec. VI), and we
conclude that a threshold of LKL = 0.4 is appropriate for
this network.

A. Evaluation of the Algorithm Performance

Evaluation of Alg. 1 was performed by examining both the
estimated number of components and the `1 error of the model
component parameters.

Dataset SDS1 had a perfect model-order fit for all trials,
so we focus on SDS2 where we have non-perfect fits. The
estimate for the model order of SDS2-a is shown in Fig. 4 for
1000 vehicles per time-window in one of the 10 random trials.
The other fitted models of SDS2-a and SDS2-b also showed
that the number of estimated components is not a perfect fit
and varies from what is shown in Fig. 4 (i.e. the error in the
estimated number of components is not the same through all
the different dataset sizes). We attribute this increase in the
error of the number of mixture components to two sources.
First, the model order complexity can be quite large (up
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TABLE I
SUMMARY OF THE PARAMETERS OF THE THREE SIMULATED DATASETS SDS1, SDS2-A, AND SDS2-B. THE SET

N = {100, 200, 500, 1000, 2000, 5000, 10000, 20000}.

Dataset SDS1 SDS2-a SDS2-b
Model complexity Fig. 3(a) Fig. 3(b) Fig. 3(b)
Network size (|Ω|) 25 25 25

Number of observations in each time window (N(t)) N(t) ∈ N N(t) ∈ N N(t) ∈ N
Number of realizations 1 10 10

Observation sequence path length ∼ Uniform(13, 23) ∼ Uniform(5, 15) ∼ Uniform(15, 25)

LKL 0.678 0.4 0.4
Lα 2/N(t) 2/N(t) 2/N(t)
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Fig. 4. An example estimated number of components versus the true number
of components over 100 time windows for the dataset in SDS2-a with 1000
vehicles per time-window.

to 8 mixture components). Also, since the average vehicle
observation length is smaller than in the first dataset, mis-
classification of vehicles to the wrong component (or creation
of false components) is more likely.

We also investigate how the algorithm performs when
selecting the number of mixture model components for varying
lengths of the vehicle observation sequences. In Fig. 5 we see
that, after an initial transient period, the algorithm maintains
the estimate of the mixture model order more easily when there
are longer observation sequences (as in SDS2-b). Selecting
the correct number of components is an important step in the
estimation of the overall mixture model, but we want to further
investigate the error in the model’s parameter estimates as well.

Next we examine the fidelity of the estimated model pa-
rameters. We quantify the accuracy using two approaches
discussed below: the marginal `1 error, and the component-
wise `1 error.

1) Marginal `1 error: The first approach to error quantifi-
cation is based on the true and estimated marginal models,
computed from the mixture model as

P (marg)(t) =

M(t)∑
m=1

α(m)(t)P (m)(t) (21)

and π(marg)(t) =

M(t)∑
m=1

α(m)(t)π(m)(t). (22)

As a benchmark, we estimate a one-component model using
the maximum a posteriori (1-MAP) estimate of the marginal

0 20 40 60 80 100
Time window

0

0.5

1

1.5

2

M
ea

n 
er

ro
r 

in
 n

um
be

r 
of

 c
om

po
ne

nt
s

Dataset SDS2-a
Dataset SDS2-b

Fig. 5. The average absolute error in the number of estimated components
for SDS2-a and SDS2-b using 5000 vehicles per time-window and averaged
over 10 trials

distribution which is

p̂
(1-MAP)
j,k (t) =

nj,k + p̂
(1-MAP)
j,k (t− 1)

1 +
∑|Ω|
k=1 nj,k

(23)

and π̂(1-MAP)
j (t) =

nj + π̂
(1-MAP)
j (t− 1)

1 +
∑|Ω|
j=1 nj

, (24)

where nj,k is the total number of observed transitions from
j to k and nj is the number of observations of starting state
j. For the first time-window (t = 1), we use the same global
prior as with our proposed model.

We measure accuracy in terms of the `1 error,

`1(p̂, π̂, p, π) =

|Ω|∑
j=1

|Ω|∑
j=1

|p̂j,k − pj,k|+
|Ω|∑
j=1

|π̂j − πj |, (25)

where p̂ and π̂ are the estimated marginal transition matrix
and initial state distribution, and p and π are the true marginal
transition matrix and initial state distribution. This reduces the
error to a single scalar value and has the benefit that it is
straightforward to calculate even when the model order is not
estimated correctly.

Recall that the total variation distance between two proba-
bility densities is at most two. The metric defined in equation
(25) is the sum of |Ω|+1 total variation distances (one for the
initial state distribution, and one for each row of the transition
matrix). In all of the simulated datasets there are |Ω| = 25
states (i.e., sensors), so `1(p̂, π̂, p, π) ≤ 52.
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Fig. 6 shows the `1 errors among the marginal distributions
on all three simulated data sets, for estimates generated
using the proposed mixture model as well as using a single-
component Markov chain estimated using the MAP approach
described above. In general, the mixture model gives a signif-
icantly lower error than using a simple 1-component Markov
model. Note that the time windows where the errors of the two
models coincide in SDS1 occur when the true model order
is N(t) = 1. The `1 marginal error of the mixture estimate
also appears to be correlated with the model order. In these
simulations, the total number of observations (vehicles) per
time-window is constant, so when the model order is higher
there are fewer observations per component, resulting in a
higher error. Also observe that the steady-state marginal error
of the mixture model is slightly higher for SDS2-a than it is for
SDS2-b. This is expected, since there are fewer observations
per vehicle, on average, in SDS2-a.

We next examine how the error in the marginal distribution
changes as a function of the number of observed vehicles,
N(t). Fig. 7 shows that the error of the mixture model goes
to zero significantly faster than that of the 1-MAP as N(t)
increases on the SDS2-b dataset. Datasets SDS1 and SDS2-a
exhibit the same behaviour, only differing in the scale of the
plots, and they are therefore not shown here.

2) Component-wise `1 errors: When the model order is
estimated correctly, we also examine the average component-
wise errors. In this case, the labels (indices) of components
in the true and estimated models may not coincide, so to
assess the component-wise error we first perform a matching
as follows. Let (π(m), P (m)) denote the model parameters
associated with component m of the true mixture model, and
let (π̂(m′), P̂ (m′)) denote the parameters of component m′ of
the estimated mixture model. Note that we have dropped the
time index t to simplify the notation. Suppose that there are
M mixture components overall, and let SM denote the set of
permutations of M elements. We first find the permutation σ?

that minimizes the total `1 error,

σ? = arg min
σ∈SM

M∑
m=1

`1

(
P̂ (σ(m)), π̂(σ(m)), P (m), π(m)

)
.

The solution σ? is computed using the Hungarian algorithm.
Then we compute the average component-wise `1 errors for
the initial state distributions, π(m), the transition matrices,
P (m), and mixture weights, α(m), separately. For example,
for the initial state distribution, the average component-wise
`1 error is

1

M

M∑
m=1

|Ω|∑
i=1

∣∣∣π(m)
i − π̂(σ?(m))

i

∣∣∣ .
Note that it is not straight-forward to assess component-wise
errors when the model order has not been accurately estimated.
For example, if the estimated model has more components than
the true model, it may be that two or more components in the
estimate should be associated with a single component in the
true model, or alternatively, it may be that one component in
the estimated model should be partially associated with two
or more components in the true model. Hence, we only report

component-wise errors for time-windows where the model
order has been correctly estimated.

Fig. 8 shows the average component-wise errors for the
SDS2-a dataset with N(t) = 5000 observations. The same
trends were observed for the other two datasets so they are
not shown here. In general, we observe that the average
component-wise errors also correlate well with the model
order. As the model becomes large (e.g., time-windows 80–
100), the average component-wise `1 also becomes large,
suggesting that the estimated components do not precisely
match those of the true model. This may again be attributed to
the fact that, in the simulation, when the model order is higher
there are fewer observations per component. However, as we
will see in the experiments on real data reported below, this
error does not necessarily imply that predictions made using
the estimated mixture are inaccurate. We also computed the
standard deviation of component-wise errors, but these were
all orders of magnitude smaller than the mean errors so they
are not shown in the figure.

B. Computation Time

The real benefit of Algorithm 1 compared to some of the
non-deterministic approaches, such as Gibbs sampling in [7],
is the computation time and complexity. Even with 20,000
observations in each time-window, the computation time never
exceeds 30 seconds per iteration on a laptop with a quad-
core 2 GHz Intel Core i7 processor and 8 GB of RAM. This
makes this algorithm practical for real-time applications where
estimation of a complex mixture model is necessary without
having unlimited time or computational resources available. In
addition to computation time, the algorithm is deterministic
and requires no random restarts or bootstrapping.

C. Comparison to Gibbs Sampling

The MCMC method described in Stephens [7] was also
applied to the generative model in Section III. This algorithm
was run on a single time-window (t = 35) of SDS1 where
the true mixture has 3 components and 10,000 vehicles are
observed. The method was run for 5,000 burnin iterations and
50,000 sampling iterations. The best candidate model, with the
correct number of components, chosen in the sampling had a
`1 marginal error of 20.68, which is significantly larger than
the `1 error of 0.8444 obtained using Alg. 1. Upon further
inspection, we observe that the Gibbs sampler appears to
sample poor candidate models due to the high-dimension of
the parameter space (we conclude this because most sampled
models are immediately rejected using the approach described
in [7]). Consequently the estimated model order alternates
between two and three specific mixture components and does
not explore the space of possible candidate components well.
Based on these observations we conclude that the class of
MCMC models will fail to estimate traffic models with such a
high-dimensional and time-varying parameter space. Therefore
we do not consider this approach further.
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Fig. 6. (a) The `1 error of the estimated marginal Markov chain distribution versus the true underlying distribution for SDS1 with 5000 vehicles per time-
window. Also shown is a MAP estimated marginal distribution and the mixture model superimposed. (b) The `1 error of the estimated marginal Markov chain
versus the truth with SDS2-a and 5000 vehicles per time-window. (c) The same plot as (b) for dataset SDS2-b.
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Fig. 7. The average `1 error in the estimate of the marginal distribution
estimated using the proposed method and a MAP estimate for SDS2-b with
a varying number of vehicles in each time-window. The number of vehicles
is on a log-scale.

D. Real Data Analysis

Next we run Alg. 1 on a real LPR dataset provided by a
corporate partner. The dataset is a collection of LPR reads
from a network of 20 LPR cameras over a period of 31 days
and 2 hours. We take each time-window to be an hour long
so there are a total of 746 time-windows; the effect of time-
window length is discussed further in Section VII-F. In every
time-window we create observation sequences for the vehicles
which appear in that window. From the data in each time-
window, we estimate the mixture model using Alg. 1. The
threshold parameters Lα and LKL are set to

Lα =
2

|X(t)|
and LKL = 0.12 (26)

so that the trimming of weak components deletes any compo-
nent with less than two vehicles assigned to it. We estimate
the KL divergence threshold, LKL = 0.12, by running Alg. 1
once with LKL = 0 so that we essentially over-fit as much
as possible. We then compute the KL divergence between
all pairs of components and show the density of the KL
divergences in Fig. 9(a). Here we can clearly see another
peak near 0, which we hypothesize is appearing due to the

same reason as in the simulated case. Those components with
very small divergence are being over-fit and should be merged
into other existing components. In Fig. 9(a) we draw the red
line to demonstrate where we place the LKL threshold to
trim off that lower peak, which is at 0.12. We then plot the
CDF of the resulting KL divergences when Alg. 1 is run with
LKL = 0.12 which demonstrates that the lower peak is no
longer present. There is no ground-truth distribution for this
dataset, so validating the KL divergence threshold beyond this
is not feasible.

The estimated number of components is shown in Fig. 10(a)
where we see that the estimated mixture model is quite com-
plex, having up to 18 components. However upon closer in-
spection, we observe a cyclic behavior, as shown in Fig. 10(b),
where the model is most complex at rush-hour in the morning
and afternoon and least-complex during the late evening and
early morning. This agrees with one’s intuition about traffic
simply due to the fact that at rush-hours, the volume of
traffic traversing the roads will be greatest therefore the largest
number of paths are likely to be observed.

E. Mixture Model Predictive Ability

There is no ground-truth model available for the real dataset.
To assess the quality of the estimated mixture model, we
consider the following prediction task. In each time-window,
we split the observations (i.e., per-vehicle sequences) into a
training set and a test set. Specifically, 20% of the observations
are randomly (uniformly) sampled to form a test set for the
time-window, and the remaining 80% of the samples form
the training set. For each time-window, we use the training
data to update the estimated model parameters. Then, for each
test point (the sequence of observations of a single vehicle),
the task is to predict the last state where the vehicle will be
observed given all observations but the last one; i.e., for a
test sequence (x1, x2, . . . , xn), we must predict the value of
xn given x1, . . . , xn−1. We allow the prediction to be in the
form of a probability density over the set Ω, which can also
be viewed as the parameters of a multinomial distribution.

We again compare the performance of the proposed mixture
model, fit using the automatic hard EM algorithm, with that of
a single-component (1-MAP) model. For the 1-MAP model,
the prediction is simply given by row xn−1 of the estimated
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Fig. 8. Average component-wise `1 errors of the mixture weights α(m), initial state distributions π(m), and transition matrices P (m), on SDS2-a for
N(t) = 5000 observations per time-window.
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Fig. 9. (a) A histogram of the distribution of the KL divergence values
when setting the KL divergence threshold to 0 (LKL = 0). The red line
(y = 0.12) denotes the proposed threshold value, LKL, to remove the lower-
component, over-fit estimated DTMCs. (b) The CDF of the distribution of the
distribution of the KL divergences in Fig. 9(a) once we impose our threshold
of LKL = 0.12. Note that there is no “hump” near zero meaning we have
removed unnecessary, over-fit components.
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Fig. 10. (a) The estimated number of components for the real LPR dataset for
the 746 time-windows. (b) A portion of the estimated number of components
on the real dataset in Fig. 10(a) zoomed in to view the cyclic behavior.

transition matrix. For the mixture model, we use the first n−1
observations of each test vehicle to determine which of the
estimated mixture components best explains the observations,
and then the prediction is given by row xn−1 of the transition
matrix of that specific component. As a baseline, we also
compare with a naive, uniform prediction that places mass
1/|Ω| on every sensor (i.e., every state in Ω).

The ideal predicted distribution would have unit mass on
position xn, and zero everywhere else. To measure the quality
of the predictions given by the mixture model and 1-MAP, we

compute the multinomial log-loss

LLMN (p(pred)) = − 1

Ntest(t)

Ntest(t)∑
i=1

|Ω|∑
j=1

yi,j log
(
p

(pred)
i,j

)
,

where Ntest(t) is the number of testing samples in time-
window t, yi,j is the indicator that the final observation of
the ith test vehicle was made at sensor j, and p(pred) is the
predicted probability that the ith test vehicle was last observed
at sensor j, given the initial observations of that vehicle. The
multinomial log-loss of a particular training instance is equal
to zero if the prediction puts all of its mass on the correct
sensor, and it increases as the predicted probability of the
correct state decreases.

Fig. 11 shows the multinomial log-losses for each time
window. The boxplots show that the proposed model (“Mixture
fit”) has a lower median and much lower spread of LLMN ,
and thus its predictions are closer to the truth for a larger
volume of the datapoints than predictions made by the single-
component MAP Markov model (“1-component fit”). This is
likely due to the proposed model providing more accurate
estimates for vehicles on less-frequently observed routes; these
can be represented as low-weight mixture components in the
mixture model, while the corresponding data gets washed out
in the 1-component model. The vast majority of predictions
made by the mixture model have lower loss than the naive
prediction, whereas the upper whisker of the 1-component fit
lies above the naive loss line.

Fig. 12 shows performance as a function of the number of
vehicle observations (n− 1 in the discussion above) available
before making a prediction. The mixture model clearly shows
a benefit when making predictions from a few initial obser-
vations. When the number of observations of a vehicle gets
large, both the mixture and 1-component fits are comparable.

F. Time-Window Length Selection

The selection of an appropriate time-window length when
estimating the time-varying mixture model is critical to the
algorithm’s performance. If the time-window length is set
too large, then the true underlying distribution of traffic may
change significantly within one time-window. On the other
hand, if the time-window is too short than there may not be a
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sufficient number of observations available to estimate model
parameters within each window.

Towards selecting a reasonable time-window length for the
real data experiments, we explore some related characteristics
of this dataset. We begin by organizing the dataset by vehicle,
and segment the per-vehicle observations into individual trips.
Recall that the entire dataset spans a period of one month, and
many of the vehicles appearing in the dataset are observed
multiple times during that period. The maximum distance
between two sensors is roughly 40 km. Assuming a minimum
speed of 10 km/hr, the maximum time it would take observe a
vehicle at one of these sensors after it was observed at the other
is four hours. Hence, whenever the consecutive observations
of a vehicle are more than four hours apart we consider it the
beginning of a new trip.

The number of observations per trip and the duration of each
trip are shown in Fig. 13. In total there are 27,7798 observed
vehicle trips. The median number of observations per trip is
3.5183, and the median trip duration is 36.0585 minutes. The
red line in Fig. 13(b) indicates a duration of 60 minutes, which
is the value we use for the trip-window duration. In this case,
86.08% of the observed trips have a duration of 60 minutes
or less.
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Fig. 13. (a) Histogram of the distribution of number of vehicle observations
per trip in the real dataset. Note that vehicles that are only observed once
are excluded from the histogram for clarity. (b) Histogram of trip durations
(the time from the initial observation of a vehicle to the final observation in a
single trip). The superimposed red line denotes the 60-minute (1 hour) mark
which we have used as the window-size for the results reported in the paper.
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Fig. 14. Boxplots of the multinomial log-loss for three different time-windows
(30 minutes, 1 hour, 2 hours). The first, third, and fifth plots are using the
single-component MAP estimated DTMC models while the second, fourth,
and sixth plots are using the time-varying mixture of DTMCs proposed in this
paper. The last plot is a “naive” fit using a single DTMC with 1/|Ω| in all
cells of the transition matrix. For clarity, a zoomed-in portion of the boxplots
is provided.

We also repeat the prediction experiment described in
Sec. VII-E with models trained using both 30 minute and 2-
hour time windows. For each scenario, we estimate a time-
varying mixture of Markov chains using the proposed ap-
proach, as well as a time-varying single-component Markov
chain estimated as the MAP with the model from the previous
time window as the prior. The results of these trials are shown
in Fig. 14. Observe that there is a slight increase in the
variability of the performance (multinomial log-loss) of the
proposed mixture model as the time-window length decreases.
However there is a much greater increase in the variability
(as evidenced by the increase in the whisker locations) in
the single-component estimated model. This suggests that the
mixture model is less sensitive to the choice of time-window
length than a single-component model.

VIII. CONCLUSION

This article proposes a novel approach to fitting time-
varying mixture models, with an specific application to
discrete-time Markov chains for the problem of traffic esti-
mation. The Markov model specified in this paper enables
complex, time-varying, network models to be modelled using
AVI data. We then go on to define an algorithm to estimate the
parameters of this time-varying mixture model and specifically
apply it to AVI data. The performance of the algorithm is
assessed using simulated data and data from a real deployment.
The results indicate that the proposed model provides more
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accurate predictions of vehicle trajectories, especially when
the prediction is made using fewer initial observations.

A. Future Work

1) Errors in Data Source: A future avenue of research
stemming from this work is the modelling of errors in the
incoming data stream. We currently assume that the observed
vehicle IDs are error free. For license plates, the errors
which can occur are insertions, deletions, and replacements
of characters in the license plate. A probability distribution
over the possible errors could be postulated and then transition
count matrices for each vehicle could be updated based on the
likelihood of the recorded license plate. This would allow for
a natural extension to model the input errors in the recording
of license plates.

2) Adapting the Time-Window Length: Another extension
would be to dynamically adapt the time window length. To
motivate why, consider normal traffic in an urban environment.
Traffic patterns typically have two very high volume periods,
during the morning and afternoon rush-hours. At these times,
the largest variation in traffic patterns are observed (see, e.g.,
the real-data example in Section VII-D). On the other hand,
traffic patterns observed in the middle of the night are likely
remain unchanged for many hours since few vehicles are
travelling at that time.

Therefore the mixture models which are estimated to be
governing the current traffic patterns may be valid for longer
or shorter times based on the observed traffic patterns and
volumes at different times of the day. One approach could be
to run a sequential hypothesis test in parallel to the estimation
scheme, to detect when the current model no longer adequately
fits or explains incoming observations. When the fit to current
data becomes sufficiently poor then an adaptive model update
would be triggered.
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[19] N. V. D. Zijpp, “Dynamic OD-matrix estimation from traffic counts and
automated vehicle identification data,” Tranprn Res. Record: J. of the
Transprn Res. Board, vol. 1607, pp. 87–94, 1997.

[20] S. Lawlor and M. G. Rabbat, “Estimation of time-varying mixture
models: An application to traffic estimation,” in 2016 IEEE Wrksp. on
Stat. Signal Process. (SSP), June 2016.

[21] G. Celeux and G. Govaert, “A classification EM algorithm for clustering
and two stochastic versions,” Computational Statistics & Data Analysis,
vol. 14, no. 3, pp. 315–332, 1992.

[22] S. Lawlor, T. Sider, N. Eluru, M. Hatzopoulou, and M. Rabbat, “Detect-
ing convoys using license plate recognition sensors,” IEEE Trans. Signal
and Information Processing over Networks, vol. 2, no. 3, pp. 391–405,
Sep. 2016.

[23] S. Kotz, N. Balakrishnan, and N. Johnson, Continuous Multivariate
Distributions. Volume 1: Models and Applications. Wiley, 2000, vol. 1.

[24] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. of the Royal Statatistics
Society Ser. B, vol. 39, no. 1, pp. 1–38, 1977.

[25] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley,
Calif.: University of California Press, 1967, pp. 281–297.

[26] C. J. Wu, “On the convergence properties of the EM algorithm,” The
Annals of Statistics, vol. 11, no. 1, pp. 95–103, 1983.

[27] H. White, “Maximum likelihood estimation of misspecified models,”
Econometrica, vol. 50, no. 1, pp. 1–25, 1982.


