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Network Gossiping 1.0
» Two main research threads in networking and systems

Broadcasting as “rumor-mongering”

Born out of epidemic models, studied in math in the mid 80s gained
prominence in engineering (mostly networking) as a method to share
content in peer 2 peer networks

Peaked in a long period ~ 2000-2007

Average Consensus Gossiping

Computing averages (or anything that could be written as an average),
introduced by Tsitsiklis, became popular in networking, control and
signal processing

Peaked around 2003-2007



Characteristics of the problem examined

» The tasks considered have modest complexity
Distribution and replication
Aggregation of data to respond queries

q =) filw:)?
1=1

» The data are scattered

Gossip is a tool to simplify management
Analysis of speed, resilience, fault tolerance

» Typical complexity @(n log n)
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Impact?

» Video multicasting

PPLive a Chinese media company is known to use a form of
algebraic gossiping

PPUlive

It combines network coding with epidemic replication
» For sensor networks!?
» For synchronization!?

» In robotics!?



Computer Systems Gossiping 1.0

» Consensus is associated with Paxos, by Leslie Lamport

a fictional legislative consensus system describes formally a
fault tolerant method to attain consensus for distributed

processing

Aim = consistency in the presence of lousy terminals and links

In a typical deployment there is a continuous stream of agreed
values acting as commands to a distributed state machine

» Impact?

GO\nge
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Network gossiping 2.0

» Option | — Design and Analyze applications

Learning emerging from 8 8 &

interactions between social agents 8888
Challenge: Does learning emerge!? 8 88 8
It is not a green field o e

» Option 2 — Solve more complex consensus problems....
Optimization in the cloud
Challenge: Does learning emerge!?

Possible application

Database transcription of sensor data




Bayesian and non Bayesian analyses




Social learning models

» Objective

Understanding how our opinions change when we observe others
opinions or actions

» Studies in 8 88 -----
Social Sciences 88
Physics/Statistical Mechanics @ Sl T

» Mostly analytical N

Physics/Statistical Mechanics

Non linear dynamics of the agent states under plausible interaction
models

Economics
Bayesian learning and self-interested actions



Social Networks in Economics
» Rational Agents

Belief = probability of the state of the world @ after observations of
private signals S and actions (1. maximizing expected utility

» Typical cases

Learning from binary signals and binary actions
Private information =1 s = ()

0=1 ¢ 1—gq
0=0 1—-¢ ¢

Learning from Gaussian signals

Utility U(CL, 9) — _(a - 9)2 :
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Private belief
» Given the Gaussian prior 6 ~ N (m,1/p), s~ N(0,1/p.)

Private belief /I
e w /P =1/p+1/p
N(m',1/p")

m' = (1 —a)m+ as
a=p/p

» Given the binary experiment

Private belief \/

e ;- : -U\’:Antlog(P(Se:l))
1+ et =




The basic analysis

» The action history is public

ht: (at,...,al)

» Either the log-likelihood function or the mean of the
density are shifted by all agents by the same amount

P(a:0 =1
)\t—|—1 — )\t -+ Vi Vi — lOg( (at )>

P(CLt 0 = O)
» For the Gaussian case

T+ :E[(9|ht], ]-/IOt :MMSEt((9|ht)



One advantage of the Bayesian model

» The model has one distinct advantage in general (no
matter what the utility is)
» The sequence of beliefs has to be a martingale:

Ubdating is rational and rationally anticibated > The expected
revision of the belief must be zero

Tt — “:[(9‘}%] — E[azt+1\ht]

» The Martingale Convergence Theorem (MCT) ensures
. X
that the belief must converge to a random value 4

» Note it cannot go to 0 or | because its next move

would be anticipated
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Social learning in the Gaussian case

» This case for the classic setup is greatly simplified by the
choice of utility, which leads to a Bayesian MMSE
estimation problem

» The action that minimize the squared error on the
average current belief is

ar = mpy1 = EOlh] = (1 — ay)my + sy

Pt+1 = Pt T Pe

» The action reveals the private information of the agent and
therefore the network attains asymptotic the right belief
and learning continues indefinitely
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The Binary case - the BHW model
» Credited to Bikhchandani, Hirshleifer and Welch (1992)

» Showed informational cascades in Bayesian learning

» Recall that the agents maximize the expected utility
u(a,0) = (0 —c)a, ce€(0,1)

» Hence the optimum action is

agl{%ﬁ} (Elf|ht] —c)a — a = u(x; — c)

» Equivalently:

ar = u(At —7y) v =log

C
1 —c




Herding
» The probability of a=1 is the CDF of the belief at 7y

» Hence the belief evolution is a Markov Chain
Lt+1 — B(CEt, Cbt)
_ _ v,
Pla;=1)=1—F/(7)
» Proposition (BHW ’98)
. gj* < x < x** Agents invests in and only if S — 1

Xk
2. Tt > T Agent t invests no matter what S
3. ry < ™™ Agentt does not invest

» Cascade (2 or 3) will occur almost surely in finite time
|5



Bayesian model challenges

» Except for the Gaussian case with quadratic utility rational herding
analyses often requires great mathematical sophistication

Proofs are indirect
Brute force calculation of the dynamics are difficult

Stochastic dominance and MCT are key ingredients

» Some economic papers resort to numerical simulations using neural
networks to emulate the learning step

» Experiments have shown that humans are not rational

» Reference:

“Rational Herds: Economic Models of Social Learning” by C. Chamely,
Cambridge 2004



Non Bayesian models

» Statistical physics approach to social dynamics
» Topics studied

Dynamics of opinions
Cultural dissemination
Crowd dynamics

Emergence of hierarchies

» Let’s focus on opinion dynamics
A rather comprehensive and intimidating tutorial

“Statistical physics of social dynamics” Claudio Castellano et. al.



Opinion dynamics models

» Discrete voter model
Clifford and Sudbury, 1973 - Holley and Liggett, 1975

The agents have a discrete state I'; € {O, 1}

At random times they copy each other

Ercan Yildiz discussed this extensively last year while analyzing
the impact of stubborn agents

» Continuous opinion
Chatterjee and Seneta, 1977; Cohen et al., 1986; Stone, 1961

The agents have a continuous random belief T; © [O, 1]

Bounded confidence model
Deffuant et al., 2000 and Hegselmann and Krause, 2002

Only if agents have sufficiently similar opinions they mix them



Extensions we have analyzed

» Belief/opinion Model:
D'0.4

There are  @tates of nature

Belief: x = [x1, - - - , 4] (probabilities)

Sample space: X = {x|> ;=1 and z, € [0,1]}°
» Opinion Dynamics (non Bayesian): x =1 P,

After each interaction, the opmlon d:stance cannot increasé.

(al) dw[k—F ] 1_€k,0(d

& de
QS\ N
% OPiniop, Chang

(a2) ¢ : Z € = 00, Z €7 < 00 (a3) p(d) : a non-decreasing function of d.
» Distance measure:

dij = d(x;,%;) :a proper geometric distance

X is bounded w.r.t. the norm ||x;| := d(x;,0)
» Herding:Vi,j € V, d(x;,x;) = 0 Polarization: non-interacting sub-groups

19



Interaction Models

dijlk +1] = [1 — exp(di;[K]))diz k]|

» Two classes of interaction models

Soft-Interaction model (=Unequal confidence)
Agents always communicate and exchange beliefs

(a4) p(dmax) = Pmin > 0
(a5) p(d) is C*-differentiable for all d
(a6) p(d)d is concave

Hard-Interaction model (= Bounded Confidence)
No interaction occurs when the distance is greater than or-equal to  (threshold)

@) 7:d>7 — p(d) =0
(28) p(d) is C?-differentiable for Vd € (0,7)
(@9) p(0)/p(77) < B < o0

(al0) p(d)d is concave for Vd € [0, 7]
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Soft-Interaction Model

» Approach:
Step |: Stochastic Approximation

dijlk + 1] = [1 — exp(diz[K])]di;[K]

€L €L
dij(t) = —p(dij (t))di;(t) d3;(t) = —[2p(di; (1)) — exp?(di; ())]dZ; (1)
d= Z(i,j)eEEjdijl idQ - Z(z‘,j)elﬂﬁ”d?j
d = —Z(i’j)eEp(dz’j)dij a2 = _Z(i,j)eE[Qp(dij) — ewp®(dij)ld3;
(in expectation) (in mean square)

Step 2: Find the upper bound and the lower bound of the system
Step 3: Convergence analysis

» Lemma | [Convergence in expectation]: under (al)-(ab),

Ja € (0,3] st the dynamics of d is upper and lower bounded by —p(d)d < d < —ap(d)d

1)
Local rate of convergence: exponential (dot) o[p(d) — dp'(d)] < r(d) < p(d)dp’(d)

» Lemma 2 [Clionvergence in mean square]: under (al)-(aé),
36 € (0,5] s.t.the dynamics of d2 is upper and lower bounded by —2p(V @) < & < p(V &)

Local rate of convergence: exponential
21



Simulations

Xy = Xy
» G.=G(n,a) with n =100, o = 0.6 (connected)
» L2 distance metric
» deg. of opinion changg;(d) =0.5—0.2d
» Beliefs are updated through the shortest patty i 1

d(x;,%x;) = u(dij)d;; and d(x;,x;) = v(d;;)dij
% JLJ/ = X X; di Xj X]

p(dij) = p(diz) + v(dij)

1 Evolution of Opinion Distribution:
Each line segment corresponds to a node
and a segment terminates when a node
interacts and changes its belief.

-/

0
% i a0 % 1000 2000 O 1000 2000
k k k
150 4000
( \ e . 100
A histogram of 300 belief profile
at time zero (left) and after the 50
dynamics have stabilized (right.)
ol
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Hard-Interaction Model (Deffuant)

» Step |:Stochastic Approximation

dijll + 1] = [1 = expldig k)] dig K] ==Y,

e Pdij)di
XA : / ZW)EEF” b
dij(t) = —p(di;(t))di; (1)

Step 2: Find the lower bound system — > > _Bp(d)d
Step 3:Analyze the lower bound system } — —Bp(b)b

Under (al)-(a3) and (a7)-(al0)
the system b = —Bp(b)b converges if T > b(()),

> A necessary condition for the system to converge almost surely is 7 > d|[0].
» However, 7 > d[()] is not the sufficient conditiop:

J— T -
Hl It Z(i,j)eHlezpij < T+90 = d[O] ST W

dZJ =740 g 2
© ® J
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ry Condition)

Averaged over 400 trials. Each
starts with an uniform random
initial belief profile and

p(d)=1Vd <.

~

/




[s the Rate of Interaction Important?

» We also studied how the social fabric affects the herding behavior.

Is there any particular distribution for P,L-jthat favors agreement vs. disagreement?

The following simple lemma establishes the necessary condition proved in Lemma 4
is not affected by the social fabric as long as Pz‘j are drawn independently from the

beliefs.
> If the social fabric ( represented by P, ;) is random and
independent of dz ] [O] then it will, on average, exhibits the same phase
transition.

» Local rewiring topology:
Aim: to decrease d|0]
How? --- by choosing an opinion-dependent Fz-j
Topology: (1) remove links between agents whose d;;[0] > T
(2) redistribute ?z’j uniformly to the remaining neighbors
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Simulations (Local Rewiring Topology)
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» Observations:
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Performances are similar when the underlying network is
independent of d,,[0].

When P;; is correlated with d;; 0] through the local rewiring
topology, the probability of forming a convergent belief increases.



Considerations

4

Both point of views are exciting to learn and fun to
analyze when they do not give me an headache

My worry is:
What is our value added?

| tend to agree with considering non-Bayesian models not
sufficiently based on a “rational” argument = tenuous
connection with evidence

Non Bayesian models also do not capture the selfishness
that triggers the action and therefore the information
exchange

Attacking the Bayesian models tome has more profound
implications, also in terms of automation of decisions

Much harder!
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Where and when....




Optimization via network diffusion

» Clearly an engineering problem - typical sensing problem

zi = fi(z) + v

» Non-linear least square
in, » Ji(z) =) |z — fi(2)ll%,

» ldea (Angelia is the one that can elaborate) approximate
the gradient descent for the global objective

Jo(z) = Z Ji(x) =~ const. + Z |z — 2™ || g,
29 i=1 '

1=1

T

||
Q0
H
0Q
=
-



Local surrogate of the global function

» Make a surrogate with two terms

v) Y Jil@)+ Y lle—2]m,

]ENz JEN’L

Ak
» Consensus step to decrease E , Hx — &y HHz
JEN;
» Gradient descent step to decrease E J )

FJEN;

Angelia has the strongest results for convex functions
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Technical Detail

» Decentralized Formulation :

I I
minJ (x) = 3 Ji(x) = D [z — i) R [z — £()]

» Iterative Updates by Asynchronous Gossiping:

Update = function descent of local cost J;(x)

» Application: Cyber Physical Systems

Today the model is Sensory Control and Data
Acquisition (SCADA)

State estimation is done after transcription in the
database system...



Network gossiping as a transcription tool

» Traditional database Storage o ( Z)

| Compress +

Transcribe :
Replicate

Decompress Compute

Same storage

State/Query Aware Database cost

Storage
Transcribe & e e e

Rle —— H(Z)=H(X,Z)

v

Network Gossiping
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Measurement Compression

- Quantized measurement data snapshot index
(Gl QGiml), ()i R— (0,1}

S
\-_’_a’

- Accurate state imiplies accurate pseudo-measurements

I%;16] = %i[£]]] .0 [ fj.m (X50€]) = fim XKal€])]| =0

- Pseudo-measurements serve as.side information

2l = fim ([ + gt

()

= fim (Xild]) +O(!|Xz[€] =X [ + ejml]

~ (Z) Bits at

~ C],m [6] X Rate » H(x|y) ;E
f’-~N —| ENCODER » DECODER |—»




(]

SE via gossiping on I
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Example of Measurement Compression

» State-Aware Slepian-Wolf Codes (SA-SWC)

. close
remotely located  Application Software

fast access

large delay

1
store residual bias s; , (t¢) ~ :

~
)
e ™
FS EES ENN EEN EEN SEN NN SEN SEN S - L] :
|
Channel Parity Bits I
Coder (Syndrome) Reconstruction :
(Error Decoding) I
L L P —— ------I
\ 2 (te) 1 J - 1! J
v N4
Slepian-Wolf Encoder Slepian-Wolf Decoder
Example: 10°

- IEEE 30 bus system, approximately 250 quantized
measurements with L=8 bits

- Use (n, n-2t) Reed Solomon codes, t= 1:60 with 8-bit
symbols (one byte per meas.)

- 30 bytes suffice at each DDBS to recover the measurements
(30*3/250 = 36%)

MSE

10
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Considerations

» Societies filter information via message passing, hence
they are naturally interesting for those who research
network gossiping

» Unfortunately social learning is not a green field

Rational agents models are far more interesting but far more
complex

» Advanced network gossiping techniques for sensor data
are possibly going to have more impact if they are
integrated with the transcription of data into an archive

» They are powerful methods to compute and disseminate
answers to queries, which could populate the database

first
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