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Network Gossiping 1.0 
}  Two main research threads in networking and systems 

}  Broadcasting as “rumor-mongering” 

}  Born out of epidemic models, studied in math in the mid 80s gained 
prominence in engineering (mostly networking) as a method to share 
content in peer 2 peer networks  

}  Peaked in a long period ~ 2000-2007 

}  Average Consensus Gossiping 

}  Computing averages (or anything that could be written as an average), 
introduced by Tsitsiklis, became popular in networking, control and 
signal processing 

}  Peaked around 2003-2007 
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Characteristics of the problem examined 

}  The tasks considered have modest complexity  
}  Distribution and replication  
}  Aggregation of data to respond queries 

}  The data are scattered 
}  Gossip is a tool to simplify management 
}  Analysis of speed, resilience, fault tolerance    

}  Typical complexity 

q =
nX

i=1

fi(xi)?

⇥(n log n)
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Impact? 

}  Video multicasting  
}  PPLive a Chinese media company is known to use a form of 

algebraic gossiping  

}  It combines network coding with epidemic replication 

}  For sensor networks? 
}  For synchronization? 
}  In robotics?    
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Computer Systems Gossiping 1.0  
}  Consensus is associated with Paxos, by Leslie Lamport 

}  a fictional legislative consensus system describes formally a 
fault tolerant method to attain consensus for distributed 
processing   

}  Aim à consistency in the presence of lousy terminals and links 
}  In a typical deployment there is a continuous stream of agreed 

values acting as commands to a distributed state machine 

}  Impact? 
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Network gossiping 2.0 

}  Option 1 – Design and Analyze applications 

}  Learning emerging from  

interactions between social agents 

}  Challenge: Does learning emerge?  

}  It is not a green field 

}  Option 2 – Solve more complex consensus problems…. 

}  Optimization in the cloud 

}  Challenge: Does learning emerge?  

}  Possible application  

}  Database transcription of sensor data 
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Social Learning 

Bayesian and non Bayesian analyses 
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Social learning models 
}  Objective 

}  Understanding how our opinions change when we observe others 
opinions or actions  

}  Studies in 
}  Social Sciences 
}  Physics/Statistical Mechanics 
}  Economics 

}  Mostly analytical 
}  Physics/Statistical Mechanics 

}  Non linear dynamics of the agent states under plausible interaction 
models 

}  Economics 
}  Bayesian learning and self-interested actions 
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Social Networks in Economics 
}  Rational Agents  

}  Belief = probability of the state of the world    after observations of 
private signals     and actions     maximizing expected utility  

}  Typical cases 
}  Learning from binary signals and binary actions 

 

}   Learning from Gaussian signals 

 

s = 1 s = 0
✓ = 1| q 1� q
✓ = 0| 1� q0 q0

Private information 

✓ ⇠ N (m, 1/⇢), s ⇠ N (✓, 1/⇢✏)

Utility 

Utility 

✓
s a

u(a, ✓) = (✓ � c)a, c 2 (0, 1)

u(a, ✓) = �(a� ✓)2
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Private belief 
}  Given the Gaussian prior 

}  Given the binary experiment 

1/⇢0 = 1/⇢+ 1/⇢✏

m0 = (1� ↵)m+ ↵s

✓ ⇠ N (m, 1/⇢), s ⇠ N (✓, 1/⇢✏)

Private belief 
 
                          N (m0, 1/⇢0)

�0
= �+ log

✓
P (s|✓ = 1)

P (s|✓ = 0)

◆Private belief 
 
 
 

↵ = ⇢✏/⇢
0

x

0 =
e

�0

1 + e

�0
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The basic analysis 
}  The action history is public 

}  Either the log-likelihood function or the mean of the 
density are shifted by all agents by the same amount 

 
}  For the Gaussian case   

�t+1 = �t + ⌫t

mt = E[✓|ht], 1/⇢t = MMSEt(✓|ht)

ht = (at, . . . , a1)

⌫t = log

✓
P (at|✓ = 1)

P (at|✓ = 0)

◆
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One advantage of the Bayesian model 
}  The model has one distinct advantage in general (no 

matter what the utility is) 
}  The sequence of beliefs has to be a martingale: 

}  Updating is rational and rationally anticipated  The expected 
revision of the belief must be zero 

}  The Martingale Convergence Theorem (MCT) ensures 
that the belief must converge to a random value 

}  Note it cannot go to 0 or 1 because its next move 
would be anticipated 

µ⇤

xt = E[✓|ht] = E[xt+1|ht]
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Social learning in the Gaussian case 
}  This case for the classic setup is greatly simplified by the 

choice of utility, which leads to a Bayesian MMSE 
estimation problem 

}  The action that minimize the squared error on the 
average current belief is  

}  The action reveals the private information of the agent and 
therefore the network attains asymptotic the right belief 
and learning continues indefinitely 

⇢t+1 = ⇢t + ⇢✏

at ⌘ mt+1 = E[✓|ht] = (1� ↵t)mt + ↵tst
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The Binary case à the BHW model 
}  Credited to Bikhchandani, Hirshleifer and Welch (1992) 
}  Showed informational cascades in Bayesian learning 
}  Recall that the agents maximize the expected utility  

}  Hence the optimum action is  

 
}  Equivalently: 

u(a, ✓) = (✓ � c)a, c 2 (0, 1)

max

a2{0,1}
(E[✓|ht]� c) a ! a = u(xt � c)

at = u(�t � �) � = log

c

1� c
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Herding 
}  The probability of a=1 is the CDF of the belief at 
}  Hence the belief evolution is a Markov Chain 

 
}  Proposition (BHW ’98) 
1.       Agents invests in and only if 

2.          Agent t invests no matter what 

3.             Agent t does not invest 

}  Cascade (2 or 3) will occur almost surely in finite time 

�

xt+1 = B(xt, at)

P (at = 1) = 1� F

✓
t (�)

x

⇤
< xt < x

⇤⇤

xt > x

⇤⇤

xt  x

⇤⇤

s = 1

s
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Bayesian model challenges 
}  Except for the Gaussian case with quadratic utility rational herding 

analyses often requires great mathematical sophistication  

}  Proofs are indirect 

}  Brute force calculation of the dynamics are difficult 

}  Stochastic dominance and MCT are key ingredients 

}  Some economic papers resort to numerical simulations using neural 
networks to emulate the learning step 

}  Experiments have shown that humans are not rational 

}  Reference:  

}  “Rational Herds: Economic Models of Social Learning” by C. Chamely, 
Cambridge 2004  
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Non Bayesian models  
}  Statistical physics approach to social dynamics 
}  Topics studied 

}  Dynamics of opinions 
}  Cultural dissemination 
}  Crowd dynamics 
}  Emergence of hierarchies 
}  … 

}  Let’s focus on opinion dynamics 
}  A rather comprehensive and intimidating tutorial  
}  “Statistical physics of social dynamics” Claudio Castellano et. al.  

}  http://arxiv.org/abs/0710.3256v2  
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Opinion dynamics models 
}  Discrete voter model  

}  Clifford and Sudbury, 1973 - Holley and Liggett, 1975 
}  The agents have a discrete state 

}  At random times they copy each other 

}  Ercan Yildiz discussed this extensively last year while analyzing 
the impact of stubborn agents  

}  Continuous opinion  
}  Chatterjee and Seneta, 1977; Cohen et al., 1986; Stone, 1961 

}  The agents have a continuous random belief 

}  Bounded confidence model 
}  Deffuant et al., 2000 and Hegselmann and Krause, 2002 

}  Only if agents have sufficiently similar opinions they mix them  

xi 2 {0, 1}

xi 2 [0, 1]
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Extensions we have analyzed 

}  Belief/opinion Model: 
}  There are     states of nature 
}  Belief:                              (probabilities) 

}  Sample space:  
 

}  Opinion Dynamics (non Bayesian): 
}  After each interaction, the opinion distance cannot increase. 

   

 
}  Distance measure:   

}                           : a proper geometric distance  
}      is bounded w.r.t. the norm 

}  Herding:                                      Polarization:  non-interacting sub-groups 

q

X =
�
x

��
X

i

xi = 1 and xi � [0, 1]
 

x = [x1, · · · , xq]

X kxik := d(xi, 0)

8i, j 2 V, d(xi,xj) = 0

dij = d(xi,xj)

dij [k + 1] = [1� �k⇥(dij [k])]dij [k]

�k :
X

k
�k = 1,

X
k
�2k < 1

deg. of opinion change  
�(d) : a non-decreasing function of d.

(a1) 

(a2) (a3) 
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Interaction Models 

}  Two classes of interaction models 
}  Soft-Interaction model (=Unequal confidence) 

Agents always communicate and exchange beliefs 
}    

}                    

}                     is concave 

 
}  Hard-Interaction model (= Bounded Confidence) 

No interaction occurs when the distance is greater than or equal to     (threshold) 
}    
}    
}    
}    

�(d
max

) = �
min

> 0(a4) 

dij [k + 1] = [1� �k⇥(dij [k])]dij [k]

(a5) 
(a6) �(d)d

⌧
⇥ : d � ⇥ ! �(d) = 0(a7) 

(a8) �(d) is C2
-differentiable for 8d 2 (0, ⇥)

(a9) ⇥(0)/⇥(⇤�)  � < 1

�(d) is C2
-differentiable for all d

(a10) �(d)d is concave for 8d 2 [0, ⇥ ]
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Soft-Interaction Model 
}  Approach:  

}  Step 1: Stochastic Approximation 
 
                                                                                            
 
 
 
 

      
         

}  Step 2: Find the upper bound and the lower bound of the system 
}  Step 3: Convergence analysis 

}  Lemma 1 [Convergence in expectation]:  under (a1)-(a6),                            
}                      s.t. the dynamics of     is upper and lower bounded by  
}   Local rate of convergence: exponential (dot)  

}  Lemma 2 [Convergence in mean square]: under (a1)-(a6), 
}                     s.t. the dynamics of      is upper and lower bounded by   
}   Local rate of convergence: exponential 

 
 
 

9� 2 (0, 1
2 ] d̄ �⇥(d̄)d̄  ˙̄d  ��⇥(d̄)d̄

�[⇥(d̄)� d⇥0(d̄)]  r(d̄)  ⇥(d̄)d̄⇥0(d̄)

dij [k + 1] = [1� �k⇥(dij [k])]dij [k]

ḋij(t) = ��(dij(t))dij(t)

˙̄d = �
X

(i,j)2E
�(dij)dij

d̄ =
X

(i,j)2E
P ijdij

✏k

˙̄
d2 =

X
(i,j)2E

P ijd
2
ij

ḋ2 = �
X

(i,j)2E
[2⇥(dij)� �k⇥

2(dij)]d
2
ij

˙d2ij(t) = �[2⇥(dij(t))� �k⇥
2(dij(t))]d

2
ij(t)

✏k

9�̃ 2 (0,
1

2
] d2 �2�(

p
d2)d2  ḋ2  �(

p
d2)d2

(in expectation) (in mean square)
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Simulations 
}                                                                   (connected) 
}   L2 distance metric 
}  deg. of opinion change: 
}  Beliefs are updated through the shortest path:  if 

 
         

  

x i x jx jx i

dij
dij

x = x

di dj
djdi

Gc = G(n,�) with n = 100, � = 0.6

�(d) = 0.5� 0.2d

d(xi,x
0
i) = µ(dij)dij and d(xj ,x

0
j) = �(dij)dij

⇥(dij) = µ(dij) + �(dij)

✏k = 1

0
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Evolution of Opinion Distribution: 
Each line segment corresponds to a node 
and a segment terminates when a node 
interacts and changes its belief.  

A histogram of 300 belief profiles 
at time zero (left) and after the  
dynamics have stabilized (right.)  
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If
X

(i,j)2H1⇥H2

P ij <
⇥

⇥ + �
) d[0] < �

Hard-Interaction Model (Deffuant) 
}  Step 1: Stochastic Approximation 

 
}  Step 2: Find the lower bound system 
}  Step 3: Analyze the lower bound system 

Lemma 3: Under (a1)-(a3) and (a7)-(a10)  

the system                    converges if 
 

}  Lemma 4: A necessary condition for the system to converge almost surely is 
}  However,                 is not the sufficient condition.   

 
  

 

dij [k + 1] = [1� �k⇥(dij [k])]dij [k]

ḋij(t) = ��(dij(t))dij(t)

˙̄d = �
X

(i,j)2E
�(dij)dij

d̄ =
X

(i,j)2E
P ijdij✏k

ḋ � ��⇥(d)d

ḃ = ��⇥(b)b � > b(0).

� > d[0].

ḃ = ��⇥(b)b

� > d[0]
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Is the Rate of Interaction Important? 
}  We also studied how the social fabric affects the herding behavior.  

}  Is there any particular distribution for       that favors agreement vs. disagreement? 

}  The following simple lemma establishes the necessary condition proved in Lemma 4 
is not affected by the social fabric as long as        are drawn independently from the 
beliefs. 

}  Lemma 5: If the social fabric ( represented by       ) is random and 
independent of                   then it will, on average, exhibits the same phase 
transition.  

}  Local rewiring topology:  
}  Aim: to decrease  
}  How? --- by choosing an opinion-dependent 
}  Topology: (1) remove links between agents whose                                                                                               

    (2) redistribute              uniformly to the remaining neighbors 

dij [0]

d[0]

dij [0] > �

P ij

P ij
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Simulations (Local Rewiring Topology) 

}  Observations: 
}  Performances are similar when the underlying network is 

independent of  
}  When        is correlated with             through the local rewiring 

topology, the probability of forming a convergent belief increases. 
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Considerations 
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}  Both point of views are exciting to learn and fun to 
analyze when they do not give me an headache 

}  My worry is: 
}  What is our value added? 

}  I tend to agree with considering non-Bayesian models not 
sufficiently based on a “rational” argument à tenuous 
connection with evidence 

}  Non Bayesian models also do not capture the selfishness 
that triggers the action and therefore the information 
exchange 

}  Attacking the Bayesian models tome has more profound 
implications, also in terms of automation of decisions 
}  Much harder! 



Optimization via Network diffusion 

Where and when…. 
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Optimization via network diffusion  
}  Clearly an engineering problem - typical sensing problem 

 
}  Non-linear least square 

}  Idea (Angelia is the one that can elaborate) approximate 
the gradient descent for the global objective  

29 

zi = fi(x) + vi

x̂ = argmin
x

nX

i=1

J

i

(x) =
nX

i=1

kz
i

� f

i

(x)k2
Ri

J0(x) =
nX

i=1

Ji(x) ⇡ const.+
nX

i=1

kx� x

⇤kHi



Local surrogate of the global function 
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}  Make a surrogate with two terms 

}  Consensus step to decrease 
 
}  Gradient descent step to decrease 

}  Angelia has the strongest results for convex functions 

J0(x) ⇡i

X

j2Ni

Ji(x) +
X

j2Ni

kx� x̂

⇤
jkHi

X

j2Ni

kx� x̂

⇤
jkHi

X

j2Ni

Ji(x)



}  Decentralized Formulation : 

 

}  Iterative Updates by Asynchronous Gossiping: 

}  Application: Cyber Physical Systems  

}  Today the model is Sensory Control and Data 
Acquisition (SCADA) 

}  State estimation is done after transcription in the 
database system…  

q

k
i = �x

k�1
Ik

+ (1� �)xk�1
i

x

k
i = q

k
i � ↵i,kdi,k

Update	
  =	
  func-on	
  descent	
  of	
  local	
  cost	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ji(x)

 
 

Broadcasted	
  from	
  Agent	
  Ik	
  at	
  -me	
  k	
  

i � N (Ik)

Technical Detail 

xk�1
Ik

xk�1
i

xk�1
i

xk�1
i� qk

i�

qk
i

xk
i

xk
i�

	
  t	
  =	
  k+1	
  



Network gossiping as a transcription tool 
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}  Traditional database 

}    State/Query Aware Database 

Transcribe  Compress + 
Replicate  Decompress  Compute 

X

Z

Transcribe & 
Compute query 

+ replicate  

X

Z|X 
Compress + 

replicate 
  

Z

Storage H(Z)

H(Z) = H(X,Z)

= H(X) +H(Z|X)

Storage 

N
et

w
or

k 
G

os
si

pi
ng

 

Same storage 
cost 



-­‐	
  Quan-zed	
  measurement	
  data	
  
	
  
	
  
	
  	
  
-­‐	
  Accurate	
  state	
  implies	
  accurate	
  pseudo-­‐measurements	
  
	
  
	
  
-­‐	
  Pseudo-­‐measurements	
  serve	
  as	
  side	
  informa-on	
  

Measurement Compression 

qi,m[�] = Q (zi,m[�]) , Q(·) : R� {0, 1}L

⇤�xj [�]� �xi[�]⇤ ⇥ 0 ⇤fj,m (�xj [�])� fj,m (�xi[�])⇤ ⇥ 0

snapshot	
  index	
  

zj,m[⇤] = fj,m (x�[⇤]) + ⇥j,m[⇤]
(�)
= fj,m (�xi[⇤]) +O (⇤�xi[⇤]� x�[⇤]⇤) + ⇥j,m[⇤]

⇥ �(i)
j,m[⇤]

q(i)
j,m[⇥] = Q

�
�(i)
j,m[⇥]

⇥
Few	
  Errors	
  



SE via gossiping on IEEE 30 Bus System 

SA-DBS 3 
Pi + jQi
Pij + jQij

Vi, �i, Ii
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}  State-Aware Slepian-Wolf Codes (SA-SWC) 

Example of Measurement Compression 

!"#"$%&'()$
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Database iDatabase j
What is the measurement zj(t�)?
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Example: 
 
-  IEEE 30 bus system, approximately 250 quantized 
measurements with L=8 bits 
 
-  Use (n, n-2t) Reed Solomon codes, t= 1:60 with 8-bit 
symbols (one byte per meas.) 

-  30 bytes suffice at each DDBS to recover the measurements 
(30*3/250 = 36%) 



Considerations 
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}  Societies filter information via message passing, hence 
they are naturally interesting for those who research 
network gossiping 

}  Unfortunately social learning is not a green field  

}  Rational agents models are far more interesting but far more 
complex 

}  Advanced network gossiping techniques for sensor data 
are possibly going to have more impact if they are 
integrated with the transcription of data into an archive 

}   They are powerful methods to compute and disseminate 
answers to queries, which could populate the database 
first 


