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Outline

» Motivation
» Semi-supervised differentiable particle filters
» Differentiable particle filters through normalizing flow

» Future directions

3/44



Background

Observation
w[ 0

Agent ,; ‘i Environment ;‘S?
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Motivating Examples: Autonomous driving?

Radar, Lidar, GPS, Camera measurements

Observation

Agent Environment | S?

1Geiger et al., " Are we ready for autonomous driving? The KITTI vision benchmark suite”, CVPR, 2012
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Motivating Examples: Weather forecasting?

Weather station measurements
(Thermometer, Barometer, Hygrometer, Anemometer, etc.)

Observation

Agent " Environment  §?

2Robert et al., "A local ensemble transform Kalman particle filter for convective scale data assimilation”, J.
Royal Meteorological Society 2018
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Bayesian Learning

Observation
I (0}

Agent ) Environment "S?

Prior: p(s)
Likelihood: p(ols)
p(s)p(ols)
[ p(o|s")p(s") ds’

Posterior: p(s|o) =

7/44



Filtering/ Target Tracking Problem Formulation

Recursive Bayesian Filtering: when the state and observation are

sequence data.
Actions @ @ e
e (5)—(3)— = —(%)
Observations @ @ @

» Dynamic model pg(s¢|si—1,a¢): transition of hidden state.

» Measurements model pg(o¢|s;): likelihood of the observation
given the state.
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Filtering/ Target Tracking Problem Formulation

Recursive Bayesian Filtering: when the state and observation are

sequence data.
Actions @ @ e
e (5)—(3)— = —(%)
Observations @ @ @

» Dynamic model pg(s¢|si—1,a¢): transition of hidden state.

» Measurements model pg(o¢|s;): likelihood of the observation
given the state.

» Goal: obtain marginal posterior pg(s¢|o1.¢,a1.1) or joint posterior
po(s1:t|o1:t, a1:t).

Linear Gaussian models: Kalman filters.

Non-linear non-Gaussian models: Particle filters.
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(Bootstrap) Particle Filters in One Slide

» Particle filters, a.k.a. sequential Monte Carlo (SMC) methods:
Weighted samples to sequentially approximate target distribution.
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» Particle filters, a.k.a. sequential Monte Carlo (SMC) methods:
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(Bootstrap) Particle Filters in One Slide

» Particle filters, a.k.a. sequential Monte Carlo (SMC) methods:
Weighted samples to sequentially approximate target distribution.
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(Bootstrap) Particle Filters in One Slide

» Particle filters, a.k.a. sequential Monte Carlo (SMC) methods:
Weighted samples to sequentially approximate target distribution.
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(Bootstrap) Particle Filters in One Slide

» Particle filters, a.k.a. sequential Monte Carlo (SMC) methods:
Weighted samples to sequentially approximate target distribution.
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Particle Filters: more generally

1000 1000
S0f sensor * L %9 sensor ® Sy
*
0 N 0
*
.
500 * target heading 0. S@MPle using g (x| X1:6-1, Z1:x)
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Parameter Estimation for Particle Filtering

Can we learn the parameters of particle filters from data?
» Maximum likelihood (ML) estimation®

» Bayesian estimation?

3Kantas et al., " An overview of sequential Monte Carlo methods for parameter estimation in general state-space
models”, IFAC, 2009

4Kantas et al., "On particle methods for parameter estimation in state-space models”, Statistical Science, 2015
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Parameter Estimation for Particle Filtering

Can we learn the parameters of particle filters from data?
» Maximum likelihood (ML) estimation®

» Bayesian estimation?

Can be effective, but ...

P> Assume that the structures or part of parameters of the dynamic
and measurement models are known.

3Kantas et al., " An overview of sequential Monte Carlo methods for parameter estimation in general state-space
models”, IFAC, 2009
4Kantas et al., "On particle methods for parameter estimation in state-space models”, Statistical Science, 2015
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Basic Idea of Differentiable Particle Filters (DPFs)

Combining particle filters with deep learning tools: Differentiable
particle filters®.

» Build dynamic model and measurement model with neural
networks;

» Optimize the networks with gradient descent.

5 Jonschkowski et al., " Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
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Differentiable Particle Filters: How?

Parameterise the dynamic and measurement model with neural
networks.

Dynamic model

St ~ p9(8t|8i71, at)? S;‘,L' = fe(sf‘:flv at) + ei

5 Jonschkowski et al., " Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
SKarkus et al., " Particle Filter Networks with Application to Visual Localization”, CoRL, 2018.
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Differentiable Particle Filters: How?

Parameterise the dynamic and measurement model with neural
networks.

p@h @ SR

Measurement model

i =polorlsy) =lolor,5)  wi=luwi,

5 Jonschkowski et al., " Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
SKarkus et al., " Particle Filter Networks with Application to Visual Localization”, CoRL, 2018.
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Differentiable Particle Filters: How?

Loss function”:
» The mean squared error (MSE)®:

Larse(0) = 4 S0 (st — 80T (st — 30).,

» The negative log likelihood (NLL)®:

Lyin(0) =~k XL log 7% o exp(—5 (57 =80T 57 = 80),

where s; is the ground truth state, 5; is the estimated state.

5 Jonschkowski et al., " Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.

Karkus et al., " Particle Filter Networks with Application to Visual Localization”, CoRL, 2018.
"Kloss et al., "How to Train Your Differentiable Filter”, arXiv:2012.14313, 2020.
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Existing DPFs and Research Questions

» Require ground truth state information.
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H. Wen, X. Chen, G. Papagiannis, C. Hu, and Y. Li, “End-to-end
semi-supervised learning for differentiable particle filters,” ICRA 2021.
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Maximum likelihood estimation

> ML estimation: recursively maximise the series of likelihoods
p@(olzt’alzt)

> However ...
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Maximum likelihood estimation

> ML estimation: recursively maximise the series of likelihoods
p@(olzt’alzt)

> However ...

» The dimension of pg(01.t|a1.t) will increase over time.
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Pseudo-likelihood

» "Divide" the log-likelihoods into blocks.

log pg(01:¢ar) — Sopy" log pa(Op| Ap)

Oy = OpL+1:(b+1)L and Ay = apri1.041)1
m: number of blocks, b: block index, L: block length

8 Andrieu et al. " On-line parameter estimation in general state-space models”, CDC, 2005.
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Pseudo-likelihood

» "Divide" the log-likelihoods into blocks.

log po(o1:tlare) — 31" 1og po(Op|Ap)
Oy = OpL+1:(b+1)L and Ay = apri1.041)1

m: number of blocks, b: block index, L: block length
The log pseudo-likelihood for a block log pg(O|A):
» Marginalise the joint distribution py (.S, O|A)
log pe(O|A) = log fSL pe(S,0|A)dS

8 Andrieu et al. " On-line parameter estimation in general state-space models”, CDC, 2005.
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Pseudo-likelihood

> If all S observed, learning is relatively easy

pe(S,01A) = pe(S|A) - po(O|S,A)
N—— N—_——

Dynamic model Measurement model
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Pseudo-likelihood

> If all S observed, learning is relatively easy

pe(S,01A) = pe(S|A) - po(O|S,A)
N—— N—_——

Dynamic model Measurement model

» If S not observed, use the 6, to get the posterior of S at current
block pg, (S]0, A)

/SL log(pG(S,O|A))p9b(S|O’A)dS«

19/ 44



Semi-supervised differentiable particle filters

» Optimisation objective for samples without true labels
NP
Q(6,6) =Y wjlog py(Sj, Oy Ap)

=1
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Semi-supervised differentiable particle filters

» Optimisation objective for samples without true labels
NP
Q(6,6) =Y wjlog py(Sj, Oy Ap)

=1

» Learning objective for semi-supervised learning:

0= arg min ML) — A2Q(0)

,_.

m—

1
—N"0(0,6,)
m b=0
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Recall the measurement model

HOUSTON
WE HAVE A

PROBLEM

[Credit: Dutch Creatives]
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Solution

Measurement model
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Maze environment®
Robot localisation.

» Top-down view of Maze 1.

9Beattie et al. DeepMind Lab, 2018.
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Maze environment®
Robot localisation.

» Top-down view of Maze 1.

» Example observation images.

9Beattie et al. DeepMind Lab, 2018.
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Tracking Demo (100 Particles)
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Particle weight
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Maze environment

» SDPF converges to the lowest RMSE during training process.

L I |

RMSE
w

N

0 50 100 150 200 250 300
Epoch

Maze 1

25/ 44



Maze environment

» SDPF improves tracking performance on testing trajectories.

15.0 —— SDPF
—— DPF
12.5 — LSTM™
10,0
g
2 75

5.0

2I5 é é
0.0

1 20 40 60 80 99

Time step

Maze 1
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Maze environment

» SDPF is robust to a wide range of percentage of labelled data.

5
—4— SDPF
4 —— DPF
—4—_LSTM
bl

1 2 5 10 20 50 100
Percentage of labeled data

Maze 1

27 /44



House3D environment!®

-l LU

Test

10vj et al. Building generalisable agents with a realistic and rich 3D environment, 2018
28 /44



House3D environment

» SDPF can generalise to different environments.

House3D

W
=)

—— SDPF
— DPF
— LST™M

RMSE (m)
I = N N
=) &) =) 5

=]
5

il
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Research Questions

1. Can we train DPFs with a reduced demand for labelled data?
2. Can we build flexible and tractable priors other than Gaussian?

3. Can we construct flexible and tractable proposals based on latest
observations?
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Research Questions

1. Can we train DPFs with a reduced demand for labelled data?
2. Can we build flexible and tractable priors other than Gaussian?

3. Can we construct flexible and tractable proposals based on latest
observations?

Challenges:

» Vanilla neural networks do not allow density estimation.
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X. Chen, H. Wen, and Y. Li, “Differentiable Particle Filters through
Conditional Normalizing Flow,” FUSION 2021.
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Normalizing Flows

Definition of normalizing flows:

y = To(z),
where Ty is required to be an invertible transformation.
Tg
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Normalizing Flows

Definition of normalizing flows:

y = To(z),

where Ty is required to be an invertible transformation.

Why invertible transformations?
» Invertibility allows density estimation (change of variable):

du |
det—y

ply) = pla) det

32/44



An Example of Normalizing Flow: Coupling Layer
Real-NVP1!

» Coupling layers.

x=[x,x] Y= Y.l

OO0~
(W

E-CHD—>

1Dinh et al. “Density Estimation Using Real NVP”, ICLR, 2017.
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An Example of Normalizing Flow: Coupling Layer
Real-NVP1!
» Coupling layers.

The special structure of coupling layers leads to triangular Jacobian
matrix:

1:d 1:d
Lo~ alp @Rz Tig)
y I :
Fr 81/&%‘;[) diag(exp[c(x1.4)])

1Dinh et al. “Density Estimation Using Real NVP”, ICLR, 2017.
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Construct Flexible Dynamic Model through Normalizing
Flow

Solution to Question 2

s
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Construct Flexible Dynamic Model through Normalizing
Flow

Solution to Question 2

B—<D-TH—~D

DPFs

s

Dynamic model
of CNF-DPFs

» Normalizing flow 7y(-): construct flexible dynamic models.
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Research Questions

2. Can we build flexible and tractable priors other than Gaussian?

Challenge:

» Vanilla neural networks do not allow density estimation.
(Resolved)

35/44



Research Questions

2. Can we build flexible and tractable priors other than Gaussian?

3. Can we construct flexible and tractable proposals based on latest
observations?

Challenge:

» Vanilla neural networks do not allow density estimation.
(Resolved)

» Normalizing flows allow density estimation but require the input
and output to have the same dimensionality. (7)
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Conditional Coupling Layer

We use conditional coupling layer to construct conditional Real-NVP:

x=[x,x] Y=Yl

S0
(W

CROIORE

Standard coupling layer
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Conditional Coupling Layer

We use conditional coupling layer to construct conditional Real-NVP:

x=[x,x] Y=Yl

OO0
-0~

CROIORE

Conditional coupling layer
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Conditional Coupling Layer: Solution to Challenge 2

» Conditional coupling layer:

s =35
1:d 1:d

s = &
d+1:D  d+1:D

» Standard coupling layer:

~

S = S
1:d 1:d

§ ©exp(c(8))+t(8)

S =
d+1:D d+1:D

1:d

®exp(e(§,0)) +1(§ ,0)

d

1:d
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Conditional Coupling Layer: Solution to Challenge 2

» Conditional coupling layer:

s = §
1:d 1:d

p— S S t )
dﬁ:D d+§:D © eXp(C(f?d’ o)+ (1§d7 o)

Still invertible and lead to triangular Jacobian matrix:

Os I 0
95 ‘92@2# diag(exp[c(51.4, 0)])
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The Structure of CNF-DPFs

il

Challenges:

1. Vanilla neural networks do not allow density estimation.
(Resolved)
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The Structure of CNF-DPFs

&
BH—<D-H—~D

DPFs

il

Dynamic model
of CNF-DPFs
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1. Vanilla neural networks do not allow density estimation.
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Solution: normalizing flows.
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The Structure of CNF-DPFs

D $op
DTG

DPFs

79

Dynamic model
of CNF-DPFs

CNF-DPFs

Challenges:

1. Vanilla neural networks do not allow density estimation.
(Resolved)
Solution: normalizing flows.

2. Normalizing flows allow density estimation but require the input
and output to have the same dimensionality. (Resolved)
Solution: conditional normalizing flows.
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The Structure of CNF-DPFs

D $op
H— DT — G~

DPFs

1Y

Dynamic model
of CNF-DPFs

CNF-DPFs

1. Normalizing flow Ty(+): construct flexible dynamic models.
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The Structure of CNF-DPFs

D $op
DTG

DPFs

1Y

Dynamic model
of CNF-DPFs

CNF-DPFs

1. Normalizing flow Ty(+): construct flexible dynamic models.

2. Conditional normalizing flow Gy(-): move particles to areas closer
to posterior by utilizing information from observations.
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Numerical Experiment
Disk tracking experiment!?7:

A True State Q Particles * Estimate
0 Timestep: 0

cf

&b
20

40

60

80

100

120

0 60 80 100 120

12Haarnoja et al., “Backprop KF: Learning Discriminative Deterministic State Estimators”, NeurlPS 2016.

"Kloss et al., “How to Train Your Differentiable Filter”, arXiv:2012.14313, 2020.
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Numerical Experiment
Test RMSE between prediction and true state, particles are initialized

uniformly:
—— DPF
65 | ! —— SDPF
: —— CNF-DPF
55} = —— CNF-SDPF
45; . : h
w i
S 35F i+
o §= : .
250 ([ et S
15 N T] KE TS TR Y
éé%s ’ éé*?
st T dbth AL it ol O]
1 10 20 30 40 50
Time step

DPF: differentiable particle filter
SDPF: semi-supervised DPF
CNF-DPF: conditional normalizing flow DPF

CNF-SDPF: conditional normalizing flow semi-supervised DPF o/t



Numerical Experiment

Test RMSE between prediction and true state, particles are initialized

around the true state:

207 —— DPF
_—— SDPF
' —— CNF-DPF
15} —— CNF-SDPF
210t e AR A T
o ' . L 1 !
5,
ik
1 10 20 30 40 50

Time step
DPF: differentiable particle filter
SDPF: semi-supervised DPF
CNF-DPF: conditional normalizing flow DPF

CNF-SDPF: conditional normalizing flow semi-supervised DPF
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Summary

> A learning objective based upon the maximisation of a
pseudo-likelihood function to use unlabelled observations.

» A mechanism to incorporate normalizing flows into DPFs
to construct flexible and tractable prior and proposal.

» Can serve as “plug-in" modules in existing DPF pipelines.

» Improved performance through numerical experiments.

43 /44



Future directions

» Online learning.
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v vvyyy

v

Online learning.
Better dynamic models — e.g. mixture models?
Better measurement models.

Better proposal distributions — e.g. APF with normalizing
flow, physics-inspired NNs?
Better optimisation objectives — existing VI-based,

self-supervised methods?

Differentiable resampling schemes!3.
Distributed learning and inference.
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Future directions

v vvyyy

v

Online learning.
Better dynamic models — e.g. mixture models?
Better measurement models.

Better proposal distributions — e.g. APF with normalizing
flow, physics-inspired NNs?

Better optimisation objectives — existing VI-based,
self-supervised methods?

Differentiable resampling schemes!3.

Distributed learning and inference.

Continuous-time filtering.

Thank you!

13 Corenflos et al., “Differentiable Particle Filtering via Entropy-Regularized Optimal Transport”, ICML, 2021.
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