Some Initial Explorations of Differentiable Particle Filters

Yunpeng Li

Collaborators: Xiongjie Chen, Hao Wen, Georgios Papagiannis, Conghui Hu

Department of Computer Science

University of Surrey, UK

Bellairs Workshop 2021

Outline

- Motivation
- Semi-supervised differentiable particle filters
- Differentiable particle filters through normalizing flow
- Future directions

Background

Motivating Examples: Autonomous driving¹

Radar, Lidar, GPS, Camera measurements

¹Geiger et al., "Are we ready for autonomous driving? The KITTI vision benchmark suite", CVPR, 2012

Motivating Examples: Weather forecasting²

Weather station measurements (Thermometer, Barometer, Hygrometer, Anemometer, etc.)

 $^{^2 {\}rm Robert}$ et al., "A local ensemble transform Kalman particle filter for convective scale data assimilation", J. Royal Meteorological Society 2018

Bayesian Learning

Prior: p(s)Likelihood: p(o|s)Posterior: $p(s|o) = \frac{p(s)p(o|s)}{\int p(o|s')p(s') ds'}$

Recursive Bayesian Filtering: when the state and observation are sequence data.

- ▶ Dynamic model $p_{\theta}(s_t|s_{t-1}, a_t)$: transition of hidden state.
- Measurements model p_θ(o_t|s_t): likelihood of the observation given the state.

Recursive Bayesian Filtering: when the state and observation are sequence data.

- ▶ Dynamic model $p_{\theta}(s_t|s_{t-1}, a_t)$: transition of hidden state.
- Measurements model $p_{\theta}(o_t|s_t)$: likelihood of the observation given the state.
- Goal: obtain marginal posterior p_θ(s_t|o_{1:t}, a_{1:t}) or joint posterior p_θ(s_{1:t}|o_{1:t}, a_{1:t}).

Recursive Bayesian Filtering: when the state and observation are sequence data.

- ▶ Dynamic model $p_{\theta}(s_t|s_{t-1}, a_t)$: transition of hidden state.
- Measurements model $p_{\theta}(o_t|s_t)$: likelihood of the observation given the state.
- Goal: obtain marginal posterior p_θ(s_t|o_{1:t}, a_{1:t}) or joint posterior p_θ(s_{1:t}|o_{1:t}, a_{1:t}).

Linear Gaussian models: Kalman filters.

Recursive Bayesian Filtering: when the state and observation are sequence data.

- ▶ Dynamic model $p_{\theta}(s_t|s_{t-1}, a_t)$: transition of hidden state.
- Measurements model $p_{\theta}(o_t|s_t)$: likelihood of the observation given the state.
- Goal: obtain marginal posterior p_θ(s_t|o_{1:t}, a_{1:t}) or joint posterior p_θ(s_{1:t}|o_{1:t}, a_{1:t}).

Linear Gaussian models: Kalman filters. Non-linear non-Gaussian models: Particle filters.

 Particle filters, a.k.a. sequential Monte Carlo (SMC) methods: Weighted samples to sequentially approximate target distribution.

Use particle approximation of target state posterior

$$\hat{p}(s_{t-1}|o_{1:t-1}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{s_{t-1}^i}(s_{t-1})$$

update/reweigh $p(o_t|s_t)$

5000

4000

-500

3000

Particle Filters: more generally

Parameter Estimation for Particle Filtering

Can we learn the parameters of particle filters from data?

- Maximum likelihood (ML) estimation³
- Bayesian estimation⁴

 $^{^{3}}$ Kantas et al., "An overview of sequential Monte Carlo methods for parameter estimation in general state-space models", IFAC, 2009

⁴Kantas et al., "On particle methods for parameter estimation in state-space models", Statistical Science, 2015

Parameter Estimation for Particle Filtering

Can we learn the parameters of particle filters from data?

- Maximum likelihood (ML) estimation³
- Bayesian estimation⁴

Can be effective, but ...

Assume that the structures or part of parameters of the dynamic and measurement models are known.

 $^{^{3}}$ Kantas et al., "An overview of sequential Monte Carlo methods for parameter estimation in general state-space models", IFAC, 2009

⁴Kantas et al., "On particle methods for parameter estimation in state-space models", Statistical Science, 2015

Basic Idea of Differentiable Particle Filters (DPFs)

Combining particle filters with deep learning tools: Differentiable particle filters⁵.

- Build dynamic model and measurement model with neural networks;
- Optimize the networks with gradient descent.

⁵ Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.

Differentiable Particle Filters: How?

Parameterise the dynamic and measurement model with neural networks.

Dynamic model

$$s_t \sim p_{\theta}(s_t | s_{t-1}^i, a_t), s_t^i = f_{\theta}(s_{t-1}^i, a_t) + \epsilon^i$$

 ⁵ Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.
 ⁶Karkus et al., "Particle Filter Networks with Application to Visual Localization", CoRL, 2018.

Differentiable Particle Filters: How?

Parameterise the dynamic and measurement model with neural networks.

Measurement model

$$l_{t}^{i} = p_{\theta}(o_{t}|s_{t}^{i}) = l_{\theta}(o_{t}, s_{t}^{i}) \qquad w_{t}^{i} = l_{t}^{i}w_{t-1}^{i}$$

 ⁵ Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.
 ⁶Karkus et al., "Particle Filter Networks with Application to Visual Localization", CoRL, 2018.

Differentiable Particle Filters: How?

Loss function⁷:

► The mean squared error (MSE)⁶:

$$L_{MSE}(\theta) = \frac{1}{T} \sum_{t=1}^{T} (s_t^* - \hat{s}_t)^T (s_t^* - \hat{s}_t)$$
 ,

• The negative log likelihood (NLL)⁵: $L_{NLL}(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \log \sum_{i=1}^{N_p} \frac{w_t^i}{\sqrt{|\Sigma|}} \exp(-\frac{1}{2}(s_t^* - \hat{s}_t)^T \Sigma^{-1}(s_t^* - \hat{s}_t)),$ where s_t^* is the ground truth state, \hat{s}_t is the estimated state.

⁵Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.

⁶Karkus et al., "Particle Filter Networks with Application to Visual Localization", CoRL, 2018.

⁷Kloss et al., "How to Train Your Differentiable Filter", arXiv:2012.14313, 2020.

Require ground truth state information.

Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

- Require ground truth state information.
 - Q1: Can we train DPFs with a reduced demand for labelled data?
- Only able to generate Gaussian prior or intractable non-Gaussian prior⁵.

⁵ Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.

Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

 Only able to generate Gaussian prior or intractable non-Gaussian prior⁵.

Q2: Can we build flexible and tractable priors other than Gaussian?

⁵ Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.

Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

 Only able to generate Gaussian prior or intractable non-Gaussian prior⁵.

Q2: Can we build flexible and tractable priors other than Gaussian?

 Bootstrap Particle Filtering framework or particle proposal schemes that use latest observation but ignore state⁵.

⁵ Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.

Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

 Only able to generate Gaussian prior or intractable non-Gaussian prior⁵.

Q2: Can we build flexible and tractable priors other than Gaussian?

 Bootstrap Particle Filtering framework or particle proposal schemes that use latest observation but ignore state⁵.

 $\ensuremath{\mathsf{Q3:}}$ Can we construct flexible and tractable proposals based on latest observations?

⁵ Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.

- Require ground truth state information.
 Q1: Can we train DPFs with a reduced demand for labelled data?
- Only able to generate Gaussian prior or intractable non-Gaussian prior⁵.

Q2: Can we build flexible and tractable priors other than Gaussian?

 Bootstrap Particle Filtering framework or particle proposal schemes that use latest observation but ignore state⁵.

 $\ensuremath{\mathsf{Q3:}}$ Can we construct flexible and tractable proposals based on latest observations?

⁵ Jonschkowski et al., "Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors", RSS, 2018.

H. Wen, X. Chen, G. Papagiannis, C. Hu, and Y. Li, "End-to-end semi-supervised learning for differentiable particle filters," ICRA 2021.

Maximum likelihood estimation

- ML estimation: recursively maximise the series of likelihoods $p_{\theta}(o_{1:t}|a_{1:t})$
- ► However ...

Maximum likelihood estimation

- ML estimation: recursively maximise the series of likelihoods p_θ(o_{1:t}|a_{1:t})
- However ...
- The dimension of $p_{\theta}(o_{1:t}|a_{1:t})$ will increase over time.

Pseudo-likelihood

"Divide" the log-likelihoods into blocks.

$$\begin{array}{l} \log p_{\theta}(o_{1:t}|a_{1:t}) \longrightarrow \sum_{b=0}^{m-1} \log p_{\theta}(O_{b}|A_{b}) \\ O_{b} = o_{bL+1:(b+1)L} \text{ and } A_{b} = a_{bL+1:(b+1)L} \\ \text{m: number of blocks, b: block index, L: block length} \end{array}$$

⁸Andrieu et al. "On-line parameter estimation in general state-space models", CDC, 2005.

Pseudo-likelihood

"Divide" the log-likelihoods into blocks.

 $\begin{array}{l} \log p_{\theta}(o_{1:t}|a_{1:t}) \longrightarrow \sum_{b=0}^{m-1} \log p_{\theta}(O_{b}|A_{b}) \\ O_{b} = o_{bL+1:(b+1)L} \text{ and } A_{b} = a_{bL+1:(b+1)L} \\ \text{m: number of blocks, b: block index, L: block length} \end{array}$

The log pseudo-likelihood for a block $\log p_{\theta}(O|A)$:

• Marginalise the joint distribution $p_{\theta}(S, O|A)$ $\log p_{\theta}(O|A) = \log \int_{S^L} p_{\theta}(S, O|A) dS$

⁸Andrieu et al. "On-line parameter estimation in general state-space models", CDC, 2005.

Pseudo-likelihood

\blacktriangleright If all S observed, learning is relatively easy

\blacktriangleright If all S observed, learning is relatively easy

► If S not observed, use the θ_b to get the posterior of S at current block p_{θ_b}(S|O, A)

$$\int_{S^L} \log(p_{\theta}(S, O|A)) p_{\theta_b}(S|O, A) dS$$

Semi-supervised differentiable particle filters

Optimisation objective for samples without true labels

$$\hat{Q}(\theta, \theta_b) = \sum_{i=1}^{N_p} w_b^i \log p_\theta(S_b^i, O_b | A_b)$$

Semi-supervised differentiable particle filters

Optimisation objective for samples without true labels

$$\hat{Q}(\theta, \theta_b) = \sum_{i=1}^{N_p} w_b^i \log p_{\theta}(S_b^i, O_b | A_b)$$

Learning objective for semi-supervised learning:

$$\theta = \underset{\theta \in \Theta}{\arg\min \lambda_1 L(\theta) - \lambda_2 Q(\theta)}$$
$$Q(\theta) = \frac{1}{m} \sum_{b=0}^{m-1} \hat{Q}(\theta, \theta_b)$$

Recall the measurement model

Solution

Maze environment⁹

Robot localisation.

⁹Beattie et al. DeepMind Lab, 2018.

Maze environment⁹

Robot localisation.

► Top-down view of Maze 1.

Example observation images.

⁹Beattie et al. DeepMind Lab, 2018.

Tracking Demo (100 Particles)

Maze environment

SDPF converges to the lowest RMSE during training process.

Maze environment

SDPF improves tracking performance on testing trajectories.

Maze environment

SDPF is robust to a wide range of percentage of labelled data.

Maze 1

House3D environment¹⁰

 $^{^{10}}$ Yi et al. Building generalisable agents with a realistic and rich 3D environment, 2018

House3D environment

SDPF can generalise to different environments.

Research Questions

- 1. Can we train DPFs with a reduced demand for labelled data?
- 2. Can we build flexible and tractable priors other than Gaussian?
- 3. Can we construct flexible and tractable proposals based on latest observations?

Research Questions

- 1. Can we train DPFs with a reduced demand for labelled data?
- 2. Can we build flexible and tractable priors other than Gaussian?
- 3. Can we construct flexible and tractable proposals based on latest observations?

Challenges:

Vanilla neural networks do not allow density estimation.

X. Chen, H. Wen, and Y. Li, "Differentiable Particle Filters through Conditional Normalizing Flow," FUSION 2021.

Normalizing Flows

Definition of normalizing flows:

$$y = \mathcal{T}_{\theta}(x),$$

where \mathcal{T}_{θ} is required to be an invertible transformation.

Normalizing Flows

Definition of normalizing flows:

$$y = \mathcal{T}_{\theta}(x),$$

where \mathcal{T}_{θ} is required to be an invertible transformation.

Why invertible transformations?

Invertibility allows density estimation (change of variable):

$$p(y) = p(x) \left| \det \frac{dy}{dx} \right|^{-1}$$

An Example of Normalizing Flow: Coupling Layer Real-NVP¹¹

Coupling layers.

¹¹Dinh et al. "Density Estimation Using Real NVP", ICLR, 2017.

An Example of Normalizing Flow: Coupling Layer Real-NVP¹¹

Coupling layers.

The special structure of coupling layers leads to triangular Jacobian matrix:

$$y = x$$

$$1:d$$

$$y = x$$

$$d+1:D = x \oplus (c(x)) + t(x)$$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} \mathbb{I} & 0 \\ \frac{\partial y_{d+1:D}}{\partial x_{1:d}^T} & \text{diag}(\exp[c(x_{1:d})]) \end{bmatrix}$$

¹¹Dinh et al. "Density Estimation Using Real NVP", ICLR, 2017.

Construct Flexible Dynamic Model through Normalizing Flow

Solution to Question 2

Construct Flexible Dynamic Model through Normalizing Flow

Solution to Question 2

▶ Normalizing flow $T_{\theta}(\cdot)$: construct flexible dynamic models.

Research Questions

2. Can we build flexible and tractable priors other than Gaussian?

Challenge:

 Vanilla neural networks do not allow density estimation. (Resolved)

Research Questions

- 2. Can we build flexible and tractable priors other than Gaussian?
- 3. Can we construct flexible and tractable proposals based on latest observations?

Challenge:

- Vanilla neural networks do not allow density estimation. (Resolved)
- Normalizing flows allow density estimation but require the input and output to have the same dimensionality. (?)

Conditional Coupling Layer

We use conditional coupling layer to construct conditional Real-NVP:

Conditional Coupling Layer

We use conditional coupling layer to construct conditional Real-NVP:

Conditional Coupling Layer: Solution to Challenge 2

Conditional coupling layer:

$$\begin{split} s &= \hat{s} \\ 1:d & 1:d \\ s \\ d+1:D &= \hat{s} \\ d+1:D & \odot \exp(c(\hat{s}, o)) + t(\hat{s}, o) \\ 1:d & 0 \end{split}$$

Standard coupling layer:

$$s = \hat{s}$$

$$1:d = 1:d$$

$$s = \hat{s} \odot \exp(c(\hat{s})) + t(\hat{s})$$

$$t_{1:d}$$

Conditional Coupling Layer: Solution to Challenge 2

Conditional coupling layer:

Still invertible and lead to triangular Jacobian matrix:

$$\frac{\partial s}{\partial \hat{s}} = \begin{bmatrix} \mathbb{I} & 0\\ \frac{\partial s_{d+1:D}}{\partial \hat{s}_{1:d}} & \mathsf{diag}(\exp[c(\hat{s}_{1:d}, o)]) \end{bmatrix}$$

Challenges:

1. Vanilla neural networks do not allow density estimation. (Resolved)

Challenges:

 Vanilla neural networks do not allow density estimation. (Resolved) Solution: normalizing flows.

Challenges:

- Vanilla neural networks do not allow density estimation. (Resolved) Solution: normalizing flows.
- 2. Normalizing flows allow density estimation but require the input and output to have the same dimensionality. (Resolved)

Challenges:

- Vanilla neural networks do not allow density estimation. (Resolved) Solution: normalizing flows.
- 2. Normalizing flows allow density estimation but require the input and output to have the same dimensionality. (Resolved) Solution: conditional normalizing flows.

1. Normalizing flow $\mathcal{T}_{\theta}(\cdot)$: construct flexible dynamic models.

- 1. Normalizing flow $\mathcal{T}_{\theta}(\cdot)$: construct flexible dynamic models.
- 2. Conditional normalizing flow $\mathcal{G}_{\theta}(\cdot)$: move particles to areas closer to posterior by utilizing information from observations.

Numerical Experiment

Disk tracking experiment^{12,7}:

 $^{^{12}}$ Haarnoja et al., "Backprop KF: Learning Discriminative Deterministic State Estimators", NeurIPS 2016. 7 Kloss et al., "How to Train Your Differentiable Filter", arXiv:2012.14313, 2020.

Numerical Experiment

Test RMSE between prediction and true state, particles are initialized uniformly:

DPF: differentiable particle filter SDPF: semi-supervised DPF CNF-DPF: conditional normalizing flow DPF CNF-SDPF: conditional normalizing flow semi-supervised DPF
Numerical Experiment

Test RMSE between prediction and true state, particles are initialized around the true state:

DPF: differentiable particle filter SDPF: semi-supervised DPF CNF-DPF: conditional normalizing flow DPF CNF-SDPF: conditional normalizing flow semi-supervised DPF

Summary

- A learning objective based upon the maximisation of a pseudo-likelihood function to use unlabelled observations.
- A mechanism to incorporate normalizing flows into DPFs to construct flexible and tractable prior and proposal.
- Can serve as "plug-in" modules in existing DPF pipelines.
- Improved performance through numerical experiments.

Online learning.

Better dynamic models – e.g. mixture models?

- Online learning.
- Better dynamic models e.g. mixture models?
- Better measurement models.

- Online learning.
- Better dynamic models e.g. mixture models?
- Better measurement models.
- Better proposal distributions e.g. APF with normalizing flow, physics-inspired NNs?

- Online learning.
- Better dynamic models e.g. mixture models?
- Better measurement models.
- Better proposal distributions e.g. APF with normalizing flow, physics-inspired NNs?
- Better optimisation objectives existing VI-based, self-supervised methods?

- Online learning.
- Better dynamic models e.g. mixture models?
- Better measurement models.
- Better proposal distributions e.g. APF with normalizing flow, physics-inspired NNs?
- Better optimisation objectives existing VI-based, self-supervised methods?
- ▶ Differentiable resampling schemes¹³.

¹³ Corenflos et al., "Differentiable Particle Filtering via Entropy-Regularized Optimal Transport", ICML, 2021.

- Online learning.
- Better dynamic models e.g. mixture models?
- Better measurement models.
- Better proposal distributions e.g. APF with normalizing flow, physics-inspired NNs?
- Better optimisation objectives existing VI-based, self-supervised methods?
- ▶ Differentiable resampling schemes¹³.
- Distributed learning and inference.

¹³ Corenflos et al., "Differentiable Particle Filtering via Entropy-Regularized Optimal Transport", ICML, 2021.

- Online learning.
- Better dynamic models e.g. mixture models?
- Better measurement models.
- Better proposal distributions e.g. APF with normalizing flow, physics-inspired NNs?
- Better optimisation objectives existing VI-based, self-supervised methods?
- ▶ Differentiable resampling schemes¹³.
- Distributed learning and inference.
- Continuous-time filtering.

¹³ Corenflos et al., "Differentiable Particle Filtering via Entropy-Regularized Optimal Transport", ICML, 2021.

- Online learning.
- Better dynamic models e.g. mixture models?
- Better measurement models.
- Better proposal distributions e.g. APF with normalizing flow, physics-inspired NNs?
- Better optimisation objectives existing VI-based, self-supervised methods?
- ▶ Differentiable resampling schemes¹³.
- Distributed learning and inference.
- Continuous-time filtering.

Thank you!

¹³ Corenflos et al., "Differentiable Particle Filtering via Entropy-Regularized Optimal Transport", ICML, 2021.