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Motivating Examples: Autonomous driving1

s?

o

Environment

Observation

Agent

Radar, Lidar, GPS, Camera measurements

1Geiger et al., ”Are we ready for autonomous driving? The KITTI vision benchmark suite”, CVPR, 2012
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Motivating Examples: Weather forecasting2

s?

o

Environment

Observation

Agent

Weather station measurements
(Thermometer, Barometer, Hygrometer, Anemometer, etc.)

2Robert et al., ”A local ensemble transform Kalman particle filter for convective scale data assimilation”, J.
Royal Meteorological Society 2018
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Bayesian Learning

s?

o

Environment

Observation

Agent

Prior: p(s)

Likelihood: p(o|s)

Posterior: p(s|o) =
p(s)p(o|s)∫
p(o|s′)p(s′) ds′
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Filtering/Target Tracking Problem Formulation

Recursive Bayesian Filtering : when the state and observation are
sequence data.

…
1s 2s

ts

1a 2a
ta

1o 2o to

States

Observations

Actions

I Dynamic model pθ(st|st−1, at): transition of hidden state.

I Measurements model pθ(ot|st): likelihood of the observation
given the state.
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Filtering/Target Tracking Problem Formulation

Recursive Bayesian Filtering : when the state and observation are
sequence data.
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ta

1o 2o to

States

Observations

Actions

I Dynamic model pθ(st|st−1, at): transition of hidden state.

I Measurements model pθ(ot|st): likelihood of the observation
given the state.

I Goal: obtain marginal posterior pθ(st|o1:t, a1:t) or joint posterior
pθ(s1:t|o1:t, a1:t).

Linear Gaussian models: Kalman filters.
Non-linear non-Gaussian models: Particle filters.
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(Bootstrap) Particle Filters in One Slide
I Particle filters, a.k.a. sequential Monte Carlo (SMC) methods:

Weighted samples to sequentially approximate target distribution.
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Particle Filters: more generally
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Parameter Estimation for Particle Filtering

Can we learn the parameters of particle filters from data?

I Maximum likelihood (ML) estimation3

I Bayesian estimation4

3Kantas et al., ”An overview of sequential Monte Carlo methods for parameter estimation in general state-space
models”, IFAC, 2009

4Kantas et al., ”On particle methods for parameter estimation in state-space models”, Statistical Science, 2015
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Parameter Estimation for Particle Filtering

Can we learn the parameters of particle filters from data?

I Maximum likelihood (ML) estimation3

I Bayesian estimation4

Can be effective, but ...

I Assume that the structures or part of parameters of the dynamic
and measurement models are known.

3Kantas et al., ”An overview of sequential Monte Carlo methods for parameter estimation in general state-space
models”, IFAC, 2009

4Kantas et al., ”On particle methods for parameter estimation in state-space models”, Statistical Science, 2015
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Basic Idea of Differentiable Particle Filters (DPFs)

Combining particle filters with deep learning tools: Differentiable
particle filters5.

I Build dynamic model and measurement model with neural
networks;

I Optimize the networks with gradient descent.

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
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Differentiable Particle Filters: How?

Parameterise the dynamic and measurement model with neural
networks.

Dynamic model

st ∼ pθ(st|sit−1, at), s
i
t = fθ(s

i
t−1, at) + εi

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
6Karkus et al., ”Particle Filter Networks with Application to Visual Localization”, CoRL, 2018.
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Differentiable Particle Filters: How?

Parameterise the dynamic and measurement model with neural
networks.

Measurement model

lit = pθ(ot|sit) = lθ(ot, s
i
t) wit = litw

i
t−1

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
6Karkus et al., ”Particle Filter Networks with Application to Visual Localization”, CoRL, 2018.
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Differentiable Particle Filters: How?

Loss function7:

I The mean squared error (MSE)6:

LMSE(θ) = 1
T

∑T
t=1(s∗t − ŝt)T (s∗t − ŝt) ,

I The negative log likelihood (NLL)5:

LNLL(θ) = − 1
T

∑T
t=1 log

∑Np
i=1

wit√
|Σ|

exp(−1
2(s∗t − ŝt)TΣ−1(s∗t − ŝt)) ,

where s∗t is the ground truth state, ŝt is the estimated state.

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.
6Karkus et al., ”Particle Filter Networks with Application to Visual Localization”, CoRL, 2018.
7Kloss et al., ”How to Train Your Differentiable Filter”, arXiv:2012.14313, 2020.
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Existing DPFs and Research Questions

I Require ground truth state information.

15 / 44



Existing DPFs and Research Questions

I Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

15 / 44



Existing DPFs and Research Questions

I Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

I Only able to generate Gaussian prior or intractable non-Gaussian
prior5.

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.

15 / 44



Existing DPFs and Research Questions

I Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

I Only able to generate Gaussian prior or intractable non-Gaussian
prior5.

Q2: Can we build flexible and tractable priors other than Gaussian?

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.

15 / 44



Existing DPFs and Research Questions

I Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

I Only able to generate Gaussian prior or intractable non-Gaussian
prior5.

Q2: Can we build flexible and tractable priors other than Gaussian?

I Bootstrap Particle Filtering framework or particle proposal schemes
that use latest observation but ignore state5.

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.

15 / 44



Existing DPFs and Research Questions

I Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

I Only able to generate Gaussian prior or intractable non-Gaussian
prior5.

Q2: Can we build flexible and tractable priors other than Gaussian?

I Bootstrap Particle Filtering framework or particle proposal schemes
that use latest observation but ignore state5.

Q3: Can we construct flexible and tractable proposals based on
latest observations?

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.

15 / 44



Existing DPFs and Research Questions

I Require ground truth state information.

Q1: Can we train DPFs with a reduced demand for labelled data?

I Only able to generate Gaussian prior or intractable non-Gaussian
prior5.

Q2: Can we build flexible and tractable priors other than Gaussian?

I Bootstrap Particle Filtering framework or particle proposal schemes
that use latest observation but ignore state5.

Q3: Can we construct flexible and tractable proposals based on
latest observations?

5Jonschkowski et al., ”Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors”, RSS, 2018.

15 / 44



H. Wen, X. Chen, G. Papagiannis, C. Hu, and Y. Li, “End-to-end
semi-supervised learning for differentiable particle filters,” ICRA 2021.
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Maximum likelihood estimation

I ML estimation: recursively maximise the series of likelihoods
pθ(o1:t|a1:t)

I However ...
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Maximum likelihood estimation

I ML estimation: recursively maximise the series of likelihoods
pθ(o1:t|a1:t)

I However ...

I The dimension of pθ(o1:t|a1:t) will increase over time.
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Pseudo-likelihood

I ”Divide” the log-likelihoods into blocks.

log pθ(o1:t|a1:t) −→
∑m−1

b=0 log pθ(Ob|Ab)
Ob = obL+1:(b+1)L and Ab = abL+1:(b+1)L

m: number of blocks, b: block index, L: block length

8Andrieu et al. ”On-line parameter estimation in general state-space models”, CDC, 2005.
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I ”Divide” the log-likelihoods into blocks.

log pθ(o1:t|a1:t) −→
∑m−1

b=0 log pθ(Ob|Ab)
Ob = obL+1:(b+1)L and Ab = abL+1:(b+1)L

m: number of blocks, b: block index, L: block length

The log pseudo-likelihood for a block log pθ(O|A):

I Marginalise the joint distribution pθ(S,O|A)

log pθ(O|A) = log
∫
SL pθ(S,O|A)dS

8Andrieu et al. ”On-line parameter estimation in general state-space models”, CDC, 2005.
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Pseudo-likelihood

I If all S observed, learning is relatively easy

pθ(S,O|A) = pθ(S|A)︸ ︷︷ ︸
Dynamic model

· pθ(O|S,A)︸ ︷︷ ︸
Measurement model
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I If all S observed, learning is relatively easy

pθ(S,O|A) = pθ(S|A)︸ ︷︷ ︸
Dynamic model

· pθ(O|S,A)︸ ︷︷ ︸
Measurement model

I If S not observed, use the θb to get the posterior of S at current
block pθb(S|O,A)∫

SL
log(pθ(S,O|A))pθb(S|O,A)dS
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Semi-supervised differentiable particle filters

I Optimisation objective for samples without true labels

Q̂(θ, θb) =

Np∑
i=1

wib log pθ(S
i
b, Ob|Ab)
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Semi-supervised differentiable particle filters

I Optimisation objective for samples without true labels

Q̂(θ, θb) =

Np∑
i=1

wib log pθ(S
i
b, Ob|Ab)

I Learning objective for semi-supervised learning:

θ = arg min
θ∈Θ

λ1L(θ)− λ2Q(θ)

Q(θ) =
1

m

m−1∑
b=0

Q̂(θ, θb)
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Recall the measurement model

[Credit: Dutch Creatives]
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Solution

Measurement model

i

ts

to h

ĥ

te

i

te

similarity i

tl

lit = lθ(ot|s̃it) wit = litw
i
t−1
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Maze environment9

Robot localisation.

I Top-down view of Maze 1.

9Beattie et al. DeepMind Lab, 2018.
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Maze environment9

Robot localisation.

I Top-down view of Maze 1.

I Example observation images.

9Beattie et al. DeepMind Lab, 2018.
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Tracking Demo (100 Particles)
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Maze environment

I SDPF converges to the lowest RMSE during training process.
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Maze environment

I SDPF improves tracking performance on testing trajectories.
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Maze environment

I SDPF is robust to a wide range of percentage of labelled data.
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House3D environment10

Train

Test

10Yi et al. Building generalisable agents with a realistic and rich 3D environment, 2018
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House3D environment

I SDPF can generalise to different environments.

House3D
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Research Questions

1. Can we train DPFs with a reduced demand for labelled data?

2. Can we build flexible and tractable priors other than Gaussian?

3. Can we construct flexible and tractable proposals based on latest
observations?
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Research Questions

1. Can we train DPFs with a reduced demand for labelled data?

2. Can we build flexible and tractable priors other than Gaussian?

3. Can we construct flexible and tractable proposals based on latest
observations?

Challenges:

I Vanilla neural networks do not allow density estimation.
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X. Chen, H. Wen, and Y. Li, “Differentiable Particle Filters through
Conditional Normalizing Flow,” FUSION 2021.
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Normalizing Flows

Definition of normalizing flows:

y = Tθ(x),

where Tθ is required to be an invertible transformation.
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Normalizing Flows

Definition of normalizing flows:

y = Tθ(x),

where Tθ is required to be an invertible transformation.

Why invertible transformations?

I Invertibility allows density estimation (change of variable):

p(y) = p(x)

∣∣∣∣det
dy

dx

∣∣∣∣−1
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An Example of Normalizing Flow: Coupling Layer
Real-NVP11

I Coupling layers.

11Dinh et al. “Density Estimation Using Real NVP”, ICLR, 2017.

33 / 44



An Example of Normalizing Flow: Coupling Layer
Real-NVP11

I Coupling layers.

The special structure of coupling layers leads to triangular Jacobian
matrix:

y
1:d

= x
1:d

y
d+1:D

= x
d+1:D

� exp(c( x
1:d

)) + t( x
1:d

)

∂y

∂x
=

[
I 0

∂yd+1:D

∂xT1:d
diag(exp[c(x1:d)])

]

11Dinh et al. “Density Estimation Using Real NVP”, ICLR, 2017.
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Construct Flexible Dynamic Model through Normalizing
Flow

Solution to Question 2
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I Normalizing flow Tθ(·): construct flexible dynamic models.
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Research Questions

2. Can we build flexible and tractable priors other than Gaussian?

Challenge:

I Vanilla neural networks do not allow density estimation.
(Resolved)
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Research Questions

2. Can we build flexible and tractable priors other than Gaussian?

3. Can we construct flexible and tractable proposals based on latest
observations?

Challenge:

I Vanilla neural networks do not allow density estimation.
(Resolved)

I Normalizing flows allow density estimation but require the input
and output to have the same dimensionality. (?)
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Conditional Coupling Layer

We use conditional coupling layer to construct conditional Real-NVP:

Standard coupling layer
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Conditional Coupling Layer

We use conditional coupling layer to construct conditional Real-NVP:

Conditional coupling layer
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Conditional Coupling Layer: Solution to Challenge 2

I Conditional coupling layer:

s
1:d

= ŝ
1:d

s
d+1:D

= ŝ
d+1:D

� exp(c( ŝ
1:d
, o)) + t( ŝ

1:d
, o)

I Standard coupling layer:

s
1:d

= ŝ
1:d

s
d+1:D

= ŝ
d+1:D

� exp(c( ŝ
1:d

)) + t( ŝ
1:d

)
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Conditional Coupling Layer: Solution to Challenge 2

I Conditional coupling layer:

s
1:d

= ŝ
1:d

s
d+1:D

= ŝ
d+1:D

� exp(c( ŝ
1:d
, o)) + t( ŝ

1:d
, o)

Still invertible and lead to triangular Jacobian matrix:

∂s

∂ŝ
=

[
I 0

∂sd+1:D

∂ŝ1:d
diag(exp[c(ŝ1:d, o)])

]
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The Structure of CNF-DPFs

Challenges:

1. Vanilla neural networks do not allow density estimation.
(Resolved)
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The Structure of CNF-DPFs

Challenges:

1. Vanilla neural networks do not allow density estimation.
(Resolved)
Solution: normalizing flows.

2. Normalizing flows allow density estimation but require the input
and output to have the same dimensionality. (Resolved)
Solution: conditional normalizing flows.
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The Structure of CNF-DPFs

1. Normalizing flow Tθ(·): construct flexible dynamic models.
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The Structure of CNF-DPFs

1. Normalizing flow Tθ(·): construct flexible dynamic models.

2. Conditional normalizing flow Gθ(·): move particles to areas closer
to posterior by utilizing information from observations.
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Numerical Experiment
Disk tracking experiment12,7:

12Haarnoja et al., “Backprop KF: Learning Discriminative Deterministic State Estimators”, NeurIPS 2016.
7Kloss et al., “How to Train Your Differentiable Filter”, arXiv:2012.14313, 2020. 40 / 44



Numerical Experiment
Test RMSE between prediction and true state, particles are initialized
uniformly:

1 10 20 30 40 50
Time step

5
15
25
35
45
55
65

RM
SE

DPF
SDPF
CNF-DPF
CNF-SDPF

DPF: differentiable particle filter
SDPF: semi-supervised DPF
CNF-DPF: conditional normalizing flow DPF

CNF-SDPF: conditional normalizing flow semi-supervised DPF
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Numerical Experiment
Test RMSE between prediction and true state, particles are initialized
around the true state:

1 10 20 30 40 50
Time step

0

5

10

15

20

RM
SE

DPF
SDPF
CNF-DPF
CNF-SDPF

DPF: differentiable particle filter
SDPF: semi-supervised DPF
CNF-DPF: conditional normalizing flow DPF

CNF-SDPF: conditional normalizing flow semi-supervised DPF
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Summary

I A learning objective based upon the maximisation of a
pseudo-likelihood function to use unlabelled observations.

I A mechanism to incorporate normalizing flows into DPFs
to construct flexible and tractable prior and proposal.

I Can serve as “plug-in” modules in existing DPF pipelines.

I Improved performance through numerical experiments.
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Future directions
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Future directions

I Online learning.

I Better dynamic models – e.g. mixture models?

I Better measurement models.

I Better proposal distributions – e.g. APF with normalizing
flow, physics-inspired NNs?

I Better optimisation objectives – existing VI-based,
self-supervised methods?

I Differentiable resampling schemes13.

I Distributed learning and inference.

I Continuous-time filtering.

Thank you!

13 Corenflos et al., “Differentiable Particle Filtering via Entropy-Regularized Optimal Transport”, ICML, 2021.
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