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Numerical optimization: A workhorse of the digital age

min
x∈Rn

f(x)

Applications: Machine learning, signal processing, statistics, robotics,
computer vision, wireless communications, . . .

Convex functions

• Plethora of work, going back decades

• Known oracle complexity of problems

• Many classes of near-optimal methods

Nonconvex functions

• Traditional focus on convexification

• Recent focus on certain geometries

• Still much remains unknown ...
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The nonconvex optimization problem

Objective: min
x∈Rn

f(x) using the first-order (gradient) information ∇f(x)

Challenges for nonconvex functions

• A nonconvex landscape can have three types of attractive stationary points
(∇f(x) = 0): global minima, local minima, and saddle points

• Any first-order method will likely encounter many saddle neighborhoods in its
trajectory, which will eventually determine its convergence behavior

• How long does a first-order method spend in a saddle neighborhood is
not that straightforward due to the local regions of attraction and repulsion

An approach: Assume specialized geometry for f(x) such as essential strong
convexity, weak strong convexity, restricted strong convexity, Polyak– Lojasiewicz
condition, and quadratic growth condition

• All but the quadratic growth condition imply all local minimizers are global
minimizers and there are no saddle points in the function landscape
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Nonconvex optimization: State-of-the-art on saddle escape

Continuous-time analysis

• Stochastic differential equation approach: Kifer, 1981; Shi, Su, and
Jordan, 2020; J. Yang, Hu, and C. J. Li, 2021

• Normalized gradient flow curves: Murray, Swenson, and Kar, 2019

Geometric landscape analysis

• Statistical estimation problems: X. Li et al., 2019; Ma et al., 2020

Asymptotic analysis

• Stochastic gradient (Langevin) dynamics: Gelfand and Mitter, 1991;
Mertikopoulos et al., 2020

• Measure theoretic results: Lee et al., 2017; O’Neill and Wright, 2019
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Nonconvex optimization: State-of-the-art on saddle escape

Noise injection / stochasticity for saddle escape

• Perturbed gradient descent: Du et al., 2017; Jin, Ge, et al., 2017

• Curvature-based perturbation: Daneshmand et al., 2018

• Langevin dynamics: Raginsky, Rakhlin, and Telgarsky, 2017; Erdogdu,
Mackey, and Shamir, 2018

• Accelerated methods: Jin, Netrapalli, and Jordan, 2018; Reddi et al.,
2018; Xu, Rong, and T. Yang, 2018

Higher-order methods

• Anandkumar and Ge, 2016; Mokhtari, Ozdaglar, and Jadbabaie, 2018;
Paternain, Mokhtari, and Ribeiro, 2019

But how does the ‘vanilla’ gradient descent behave around saddle neighborhoods?

Bajwa (Rutgers) 5 / 44



Nonconvex optimization: State-of-the-art on saddle escape

Noise injection / stochasticity for saddle escape

• Perturbed gradient descent: Du et al., 2017; Jin, Ge, et al., 2017

• Curvature-based perturbation: Daneshmand et al., 2018

• Langevin dynamics: Raginsky, Rakhlin, and Telgarsky, 2017; Erdogdu,
Mackey, and Shamir, 2018

• Accelerated methods: Jin, Netrapalli, and Jordan, 2018; Reddi et al.,
2018; Xu, Rong, and T. Yang, 2018

Higher-order methods

• Anandkumar and Ge, 2016; Mokhtari, Ozdaglar, and Jadbabaie, 2018;
Paternain, Mokhtari, and Ribeiro, 2019

But how does the ‘vanilla’ gradient descent behave around saddle neighborhoods?

Bajwa (Rutgers) 5 / 44



Understanding gradient descent through its trajectories

Gradient descent (GD) iteration: xk+1 = xk − α∇f(xk)

Overarching Goal: Study the GD trajectories {xk}, as a function of the
initialization x0, for general nonconvex functions f(·)

The study of trajectories helps address the following questions:

• What trajectories around saddle points can be considered useful in the
sense of ‘fast’ saddle escape?

• Given a trajectory starting around a saddle point, can we understand
(and subsequently control) its behavior by knowing its initial conditions?

References

1 R. Dixit and B., “Exit time analysis for approximations of gradient descent
trajectories around saddle points,“ arXiv:2006.01106, Jun. 2020.

2 R. Dixit and B., “Boundary conditions for linear exit time gradient trajectories
around saddle points: Analysis and algorithm,“ arXiv:2101.02625, Jan. 2021.
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Assumptions

The nonconvex f : Rn → R is a twice continuously differentiable Morse function
(i.e., has non-degenerate saddles), along with the following assumptions:

1 It is locally analytic around saddle points (i.e., admits Taylor expansion)

2 It has L-Lipschitz gradients: ∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥

3 It has M-Lipschitz Hessians: ∥∇2f(x1)−∇2f(x2)∥2 ≤M∥x1 − x2∥

4 It has well-conditioned strict saddles: mini|λi(∇2f(x∗)| > β

5 The minimum gap between any two degenerate eigenvalue groups of the
Hessian ∇2f(x∗) at any strict saddle is δ

Non-strict saddle Degenerate strict saddle Morse function strict saddle
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The exit time of a gradient descent trajectory

Setup: Given a strict saddle point x∗ of f(·), suppose the gradient
descent trajectory {xk} starts on the boundary of the ball Bϵ(x∗) at
k = 0 and it exits Bϵ(x∗) at k = Kexit

The radial vector: uk := xk − x∗

The exit time: Kexit := inf
k≥1

{
k

∣∣∣∣ ∥uk∥2 > ϵ2
}

Objective I: Investigate whether there exists Kexit for which the sequence
{xk}k>Kexit

lies outside Bϵ(x∗) such that Kexit = O(log(ϵ−1))

Objective II: Derive sufficient conditions on x0 for guaranteeing the linear exit
time and develop a robust gradient descent-based algorithm
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What allows a GD trajectory to escape the saddle point?

A dynamical system perspective (Shub, 2013; Lee et al., 2017): A GD trajectory
can be viewed as a dynamical system, with each strict saddle x∗ imparting both
attractive (stable) and repulsive (unstable) dynamics on the trajectory

The stable and unstable subspaces of a strict saddle: Let (λi,vi) be the ith

eigenvalue–eigenvector pair of the Hessian ∇2f(x∗), then:

• The stable subspace ES = span{vi|λi > 0} is attractive
• The unstable subspace EUS = span{vi|λi < 0} is repulsive
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eigenvalue–eigenvector pair of the Hessian ∇2f(x∗), then:

• The stable subspace ES = span{vi|λi > 0} is attractive
• The unstable subspace EUS = span{vi|λi < 0} is repulsive

Challenge: A careful characterization of the exit time for a
GD trajectory requires a precise handle on the stable and
unstable projections of the trajectory
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Recipe (Step I): A Hessian-based gradient approximation

Claim: Let x ∈ Bϵ(x∗) be any point in the saddle neighborhood and
define u := x− x∗ to be the radial vector. Then

∇f(x) = (∇2f(x∗) +O(ϵ))u

Proof

1 We can write ∇f(x) =
(∫ p=1

p=0

∇2f(x∗ + pu)dp

)
u

2 The Hessian ∇2f(x) at x = x∗ + pu, where x ∈ Bϵ(x∗), p ∈ [0, 1], and
∥u∥ ≤ ϵ, can be expressed as

∇2f(x∗ + pu) = ∇2f(x∗) +D(x),

with the perturbation matrix D(x) bounded as

∥D(x)∥ ≤Mpϵ.

3 Hence, ∇f(x) = ∇2f(x∗)u+

(∫ p=1

p=0

D(x)dp

)
u = (∇2f(x∗) +O(ϵ))u
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Recipe (Step II): Trajectory in terms of the radial vector

An iterative form of the radial vector

uk+1 = xk − x∗ − α∇f(xk) =

(
I− α

∫ 1

0

∇2f(x∗ + puk)dp

)
uk

=⇒ uk+1 =

(
I− α∇2f(x∗)− α

∫ 1

0

D(x∗ + puk)dp︸ ︷︷ ︸
R(uk)=O(ϵ)

)
uk.

• Iteration in terms of initialization: uK+1 = ΠK
k=0

(
I−α∇2f(x∗)−R(uk)

)
u0

• How to approximate uK+1 from the above relation?

• Zeroth-order: uK+1 ≈ ΠK
r=0

(
I− α∇2f(x∗)

)
u0 ✗

• First-order: How to handle R(uk)? Answer: Use local analyticity of f(·)
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Proof layout for a linear exit time bound

The radial vector: uK+1 = ΠK
k=0

(
I− α∇2f(x∗)−R(uk)

)
u0

How to get a handle on the product of K + 1 non-commuting matrices?

1 Use the matrix perturbation theory to express the matrices R(uk)

2 Approximate the product up to first-order in order to obtain an
“approximate trajectory” {ũK} as follows:

ũK+1 := ΠK
k=0Aku0 −

K∑
r=0

(ΠK
k=r+1ArR(ur)Π

r−1
k=0Ar)u0,

where Ak := I− α∇2f(x∗) for all k.

How to confirm whether the approximation is “tight”?

• The relative error goes to 0: sup0≤K≤Kexit

∥ũK−uK∥
∥uK∥ → 0 as ϵ→ 0

Bajwa (Rutgers) 12 / 44
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ũK+1 := ΠK
k=0Aku0 −

K∑
r=0

(ΠK
k=r+1ArR(ur)Π

r−1
k=0Ar)u0,

where Ak := I− α∇2f(x∗) for all k.

How to confirm whether the approximation is “tight”?

• The relative error goes to 0: sup0≤K≤Kexit

∥ũK−uK∥
∥uK∥ → 0 as ϵ→ 0
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Proof layout for a linear exit time bound

The final hurdle: The approximate trajectory {ũK} cannot be uniquely
determined, since it a function of the eigenvalues of the Hessian ∇2f(x∗)

Solution

1 Obtain a parametrized family of approximate trajectories for a fixed u0,
denoted by {ũτ

K}, where the parameter τ ∈ R
2 Construct the minimal approximate trajectory from this family, defined

as one that stays closest to x∗ for each K

3 Obtain the smallest upper bound on K of the order O(log(ϵ−1)) that
satisfies the condition infτ ∥ũτ

K∥ > ϵ

4 Derive any necessary and sufficient conditions on x0 for guaranteeing
this linear exit time
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A 2-D representation of the approximate trajectories
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Representation of Hessians in the saddle neighborhood

Hessian representation using ‘degenerate’ matrix perturbation theory

The Hessian ∇2f(x) at any point x = x∗ + pu, where p ∈ [0, 1] and
∥u∥ ≤ ϵ, can be represented as

∇2f(x) = ∇2f(x∗) + p ∥u∥H(û) +O(ϵ2),

where û := u
∥u∥ is the unit radial vector, the matrix H(û) is defined as

H(û) := d
dw (∇

2f(x∗ + wû))|w=0 and we have that:

H(û) =

n∑
i=1

(
⟨vi,H(û)vi⟩viv

T
i + λi

∑
l ̸∈Gi

⟨vl,H(û)vi⟩
λi − λl

(
vlv

T
i + viv

T
l

))

with Gi = { j | λj = λi ±O(ϵ)}.
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First-order approximation of trajectories

Given an initialization u0, let uK :=
∏K−1

k=0

[
A+ ϵPk

]
u0, where {Pk}

are real symmetric matrices and A is real symmetric and invertible.

Lemma (The ‘Approximation Lemma’ (Dixit and Bajwa, 2020))

Let sup0≤k≤K−1 ∥Pk∥2 = ∥P∥2 for some matrix P, ϵ <
∥∥A−1

∥∥−1

2
∥P∥−1

2 ,
and Kϵ≪ 1. We then have the condition:∥∥A−1

∥∥−K

2

(
1−O(Kϵ)

)
≤ |νn| ≤ · · · ≤ |ν1| ≤ ∥A∥K2

(
1 +O(Kϵ)

)
,

where ν1, . . . , νn are the eigenvalues of
∏K−1

k=0

[
A+ ϵPk

]
.

In particular, the radial vector trajectory uK can be approximated up
to first order in ϵ as ũK in this case.
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First-order approximation of trajectories

Lemma (The ϵ-precision trajectory {ũK} (Dixit and Bajwa, 2020))

The dynamical system uK =
∏K−1

k=0

[
A+ ϵPk

]
u0 with the initial

condition u0 expressed in terms of the stable and unstable subspaces as
u0 = ϵ

∑
i:vi∈ES θsivi + ϵ

∑
j:vj∈EUS

θusj vj , A := I− α∇2f(x∗) and

ϵPK := −α∥uK∥
2 H(ûK) +O(ϵ2) can be approximated as

uK ≈ ũK = ΠK−1
k=0 Au0 + ϵ

K−1∑
r=0

(AK−1−rPrA
r)u0.

Recall: Since the eigenvalues of A are known only up to an interval, a
unique ũK cannot be obtained. Instead, we get a family of ϵ- precision
trajectories.
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The ‘minimal’ approximate trajectory

Definition (Parametrized approximate trajectories)

We define Sϵ :=
{
{ũτ

K}
Kτ

exit

K=1

∣∣∣u0

}
be the set of τ -parametrized ϵ-precision

trajectories, with exit times Kτ
exit := infK≥1

{
K
∣∣∣ ∥ũτ

K∥
2
> ϵ2

}
.

Definition (The minimal approximate trajectory)

There exists a lower bound on ∥ũτ
K∥

2 for every K, which we associate with the

minimal approximate trajectory. Formally, for 1 ≤ K < supτ

{
Kτ

exit

}
we define

the bound in terms of a sequence Ψ(K) such that ϵ2 ≥ infτ ∥ũτ
K∥

2
> ϵ2Ψ(K).

Exit time Kι for the minimal trajectory

Kι := inf
K≥1

{
K
∣∣∣ inf

τ

{
∥ũτ

K∥
2
}
> ϵ2

}
Note: Kι ≥ sup

τ

{
Kτ

exit

}
= sup

τ
inf
K≥1

{
K
∣∣∣ ∥ũτ

K∥2 > ϵ2
}
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Characterization of the minimal approximate trajectory

Lemma (The minimal trajectory sequence (Dixit and Bajwa, 2020))

The minimal trajectory sequence Ψ(K), as a function of the initial radial vector
u0 = x0 − x∗, takes the following form:

Ψ(K) =

(
c2K1 − 2Kc2K−1

2 b1 − b2c
K
3 cK2 − b2c

2K
3

) ∑
i:vi∈ES

(θsi )
2+

(
c2K4 − 2Kc2K−1

3 b1 − b2c
K
3 cK2 − b2c

2K
3

) ∑
j:vj∈EUS

(θusj )2,

with the constants defined as c1 = 1− αL−O(ϵ), c2 = 1− αβ +O(ϵ),
c3 = 1 + αL+O(ϵ), c4 = 1 + αβ −O(ϵ), b1 = αϵMLn

2δ +O(ϵ2), and

b2 =
(αϵMLn

2δ +O(ϵ2))(1+O(Kϵ))

(αL+αβ+O(ϵ2)) .
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Existence of GD trajectories with linear exit times

Theorem (‘Fast’ escape of GD trajectories (Dixit and Bajwa, 2020))

For gradient descent with α = 1
L on a well-conditioned function, i.e.,

β
L > ϵM

2L , and some minimum projection
∑

j:vj∈EUS
(θusj )2 ≥ ∆ of the

initial radial vector u0 on the unstable subspace EUS , there exist
ϵ-precision trajectories {ũk}Kexit

k=1 with linear exit time such that

Kexit < Kι ⪅
log

((
2 + ϵM

2L

)
log

(
2+ ϵM

2L

1+ β
L
− ϵM

2L

)
2δ

ϵMn

)
2 log

(
2+ ϵM

2L

1+ β
L
− ϵM

2L

) .

Necessary initial condition for linear exit time

For the above bound to hold, we must have ∆ > ϵ MLn
δ(L+β) = O(ϵ) for

some sufficiently small ϵ.
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Bound on the neighborhood size ϵ

Step size: α = 1
L

The linear exit time bound requires that Kϵ≪ 1 and

ϵ < min

{
inf

∥u∥=1

(
lim sup
j→∞

j

√
rj(u)

j!

)−1

,
2Lδ

M(2Ln2 − δ)
+O(ϵ2)

}
,

where rj(u) :=

∥∥∥∥( dj

dwj∇2f(x∗ + wu)

∣∣∣∣
w=0

)∥∥∥∥
2

.

Remark

The term O(ϵ2) appearing on the R.H.S. of the upper bound of ϵ only
implies a bounded uncertainty term that will go to 0 faster than ϵ goes to
0 for sufficiently small ϵ.
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Approximate trajectories: Tightness of the approximation

Lemma (Bound on the relative error (Dixit and Bajwa, 2021))

The relative error of the approximate trajectories is upper bounded as

sup
0≤K≤Kexit

∥uK − ũK∥
∥uK∥

≤
O
(

1√
ϵ

(
log

(
1
ϵ

)
ϵ

)2)
√∑

j:vj∈EUS
(θusj )2 −O

(
1√
ϵ

(
log

(
1
ϵ

)
ϵ

)) ,

which goes to 0 as ϵ→ 0.

Necessary condition for bounded relative error

The initial projection on the unstable subspace must satisfy

∑
j:vj∈EUS

(θusj )2 > O
((

log

(
1

ϵ

))2

ϵ

)
.
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Sufficient condition for linear exit time trajectories

Theorem (Sufficient unstable projection (Dixit and Bajwa, 2021))

A gradient descent trajectory is guaranteed to have linear exit time
whenever the function is well-conditioned with β

L > ϵM
2L and the projection

of the initial vector u0 on the unstable subspace satisfies

∑
j:vj∈EUS

(θusj )2 ⪆

(
2 + ϵM

2L

)(2δµ log

(
1+ β

L
− ϵM

2L

)
Mn

)
1
a log

(
1

ϵ a
√
µ

)
+ 1

= O
(

1

log(ϵ−1)

)

with a =

log

(
2+ ϵM

2L

)
c

, c = log

(
2+ ϵM

2L

1+ β
L
− ϵM

2L

)
, and a

√
µ =

Mn log

(
2+ ϵM

2L

)
2cδ

(
2+ ϵM

2L

)
log

(
1+ β

L
− ϵM

2L

) .

Bajwa (Rutgers) 23 / 44



Outline

1 Nonconvex optimization: Challenges and the state-of-the-art

2 Part I: Approximating GD trajectories around saddle points

3 Part II: Concrete results for the linear exit time bound

4 Part III: An algorithm with guaranteed linear time escape

5 Part IV: Convergence rate of CCRGD to a local minimum

6 Numerical results on a test function

Bajwa (Rutgers)



Linear time saddle escape: From theory to practice

It is already known that gradient descent trajectories almost surely escape from
strict saddle neighborhoods (Lee et al., 2017). But how can it be made to
follow the trajectory that escapes in linear time?

Theory: A GD trajectory with u0 = ϵ
∑

i:vi∈ES
θsivi + ϵ

∑
j:vj∈EUS

θusj vj that
satisfies the sufficient condition∑

j:vj∈EUS

(θusj )2 ⪆ O
(

1

log(ϵ−1)

)

will approximately exit the saddle neighborhood Bϵ(x∗) in linear time.

How to check if the sufficient condition is satisfied by u0?

• Estimate the negative curvature using consecutive gradient difference

• Intuition: The gradient difference approximates the column space of a
Hessian, thereby helping estimate the curvature
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A robust check for the sufficient condition

Assume xk is in a strict saddle neighborhood of the nonconvex function
and fix the gradient descent step size to be α = 1

L

1 Set y0 = xk and y1 = xk − 1
L∇f(xk)

2 Compute V1 = ∥y1 − y0∥2 and V2 =
1
L⟨y1 − y0,∇f(y1)−∇f(y0)⟩

3 Set Pmin(ϵ) =

(
2+ ϵM

2L

)( 2δµ log

(
1+

β
L

− ϵM
2L

)
Mn

)
1
a
log

(
1

ϵ a√µ

)
+1

(sufficient condition)

4 IF V1 − V2 >

(
50Pmin(ϵ)+4

27

)
L2ϵ2

β2 then GD will escape in linear time

Check fails: Either the sufficient condition is not being met or the
iterate xk is already near a local minimum
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Curvature Conditioned Regularized Gradient Descent

Algorithm CCRGD (Dixit and Bajwa, 2021)

1: Initialize x0 randomly, α = 1
L , Pmin(ϵ), and condition flag Ξ = 0

2: for k = 1 to Kmax do
3: If ∥∇f(xk)∥ > Lϵ then
4: Update xk+1 ← xk − α∇f(xk)

If Ξ = 1 then update condition flag Ξ← 0
5: Else

If ∥∇f(xk)∥ ≤ Lϵ and Ξ = 1 then
Update xk+1 ← xk − α∇f(xk)

Else If ∥∇f(xk)∥ ≤ Lϵ and Ξ = 0 then
If robust check condition satisfied then

Update condition flag Ξ← 1 and continue
Else Call a single-step subroutine

6: end for
7: Return xk
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Choices of subroutines for CCRGD

Subroutine 1 (Guarantees linear exit time trajectory)

Algorithm Constrained eigenvalue problem (Dixit and Bajwa, 2021)

1: Get xk+1 ∈ argmin
∥x−xk∥=

∥∇f(xk)∥
β

⟨(x− xk),∇2f(xk)(x− xk)⟩

2: Update condition flag Ξ← 1
3: IF ⟨(xk+1 − xk),∇2f(xk)(xk+1 − xk)⟩ ≥ 0 then break from CCRGD

Subroutine 2 (Fast probabilistic escape; may not give linear exit time)

Algorithm Perturbed GD (Du et al., 2017; Jin, Ge, et al., 2017)

1: Update xk+1 ← xk + ζk with ζk uniformly ∼ B0(r) for some r
2: Update condition flag Ξ← 1
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Outline

1 Nonconvex optimization: Challenges and the state-of-the-art

2 Part I: Approximating GD trajectories around saddle points

3 Part II: Concrete results for the linear exit time bound

4 Part III: An algorithm with guaranteed linear time escape

5 Part IV: Convergence rate of CCRGD to a local minimum

6 Numerical results on a test function
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Characterizing GD trajectories after the fast saddle escape

The CCRGD algorithm can exit sufficiently small saddle neighborhoods at a
linear rate. BUT . . .

• The function outside a saddle neighborhood Bϵ(x∗) is still nonconvex

• Since CCRGD reverts back to GD after the escape, traditional analytical
approaches only yield rates of O(η−2) for convergence of CCRGD to the
η-neighborhood of a local minimum

In order to improve on the O(η−2) rate, we need
to be able to address the following questions:

1 How do the GD trajectories behave outside
the small saddle neighborhood Bϵ(x∗)?

• Challenge: Matrix perturbation theory
does not hold outside Bϵ(x∗)

2 What is the guarantee that a trajectory, after
escaping Bϵ(x∗) and/or its augmentation,
does not return to the same region?
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The ‘sequential monotonicity’ property of GD trajectories

Lemma (Sequential monotonicity (Dixit and Bajwa, 2021))

Let ξ < 1
ςM

√(
(1+ β

L
)2

2

(
1−

(
1− β

L

)2)
− 1

)
for some ς > 2, take

α = 1
L , and assume a well-conditioned function. Next, consider the tuple

(x,x+,x++) such that ∥x+ − x∗∥ ≥ ∥x− x∗∥ and ∥x− x∗∥ < ξ. Then:

a.
∥∥x++ − x∗∥∥ >

∥∥x+ − x∗∥∥ , and

b.
∥∥x++ − x∗∥∥ ≥ ρ̄(x)

∥∥x+ − x∗∥∥− σ(x),

where σ(x) = O(∥x− x∗∥2) and ρ̄(x) > 1.

The sequential monotonicity property in words

If a gradient descent trajectory with respect to a strict saddle x∗ has
non-contractive dynamics at any iteration, then it has expansive dynamics
for all subsequent iterations as long as the trajectory stays inside Bξ(x∗).
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Implications of the sequential monotonicity property

Note: While the exit time analysis relies on local analyticity of f(·)
around x∗, the sequential monotonicity property only requires the function
to be twice continuously differentiable

Implications

• The property can be utilized to provide rates of convergence to /
divergence from x∗ in an augmented neighborhood Bξ(x∗) ⊃ Bϵ(x∗)

• Any rates obtained in this manner would be exact, since we no longer
rely on matrix perturbation analysis

Roadmap for convergence analysis: In order to develop rates in an
augmented neighborhood Bξ(x∗) of x∗, we can utilize/derive:

• Exit time bounds in some small neighborhood Bϵ(x∗) ⊂ Bξ(x∗) ✓
• Travel time in the shell B̄ξ(x∗)\Bϵ(x∗) using the monotonicity property
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Sojourn time inside the shell B̄ξ(x∗)\Bϵ(x∗)

Definitions of different trajectory times

• K̂exit: First exit time of the gradient descent trajectory from Bξ(x∗).

• Kc: Last time when the trajectory is contracting inside the shell

• Ke: First time when the trajectory starts expanding inside the shell

Theorem (Shell travel time (Dixit and Bajwa, 2021))

The sojourn time Kshell = K̂exit +Kc −Ke for a gradient descent
trajectory inside the compact shell B̄ξ(x∗)\Bϵ(x∗) has the following order:

Kshell = O
(
log

(
a

f(xKc)− f(x∗)− b

))
+O

(
log

(
ξ

ϵ

))
+O(1),

where a, b are some positive constants with f(xKc)− f(x∗) > b.
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A 2-D representation of 3 possible trajectories
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The ‘no return’ guarantees

So far, the theorems have only provided “first exit time” bounds, but the gradient

descent trajectory can possibly re-enter the neighborhood it just escaped!

Lemma (No return to small neighborhoods (Dixit and Bajwa, 2021))

For well-conditioned problems, i.e., O
( √

2√
log2(

1
ϵ
)

)
< β

L ≤ 1, where ϵ is

upper bounded from the exit time theorem, a gradient descent trajectory
having exited the ball Bϵ(x∗) can never re-enter it.

Lemma (No return to large neighborhoods (Dixit and Bajwa, 2021))

The gradient descent trajectories exiting the ball Bξ(x∗) can never
re-enter it, provided (i) ξ is bounded as in the sequential monotonicity
lemma with ς ≥ 47, (ii) the function is well conditioned inside Bξ(x∗),
and (iii) the gradient magnitudes outside Bξ(x∗) are sufficiently large
with ∥∇f(x)∥ ≥ γ > 1√

2
Lξ.
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Significance of the no-return guarantees
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Convergence rate: Assumptions on the global landscape

1 Minimum separation of stationary points: Let S∗ be the set of all
first-order stationary points of f(·) in some compact domain U . The
distance between any two stationary points of f(·) in U is lower
bounded by R > 0 and we have that R > 2ξ.

2 Initialization and convergence within the compact domain: Let x0

be the initialization point and the sequence {xk} generated by CCRGD

converges to the minimum x∗
optimal ∈ S∗, where

∥∥∥x0 − x∗
optimal

∥∥∥ ≤ ζ

and R < ζ < lR.

3 Boundedness of gradient magnitudes: The gradient magnitude for
any x ∈ U\

⋃l
j=1 B̄ξ(x∗

j ) is lower bounded as ∥∇f(x)∥ ≥ γ > 1√
2
Lξ. In

addition, compactness of U also implies ∥∇f(x)∥ ≤ Γ for any x ∈ U .
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Gradient descent trajectory traversing cascaded saddles
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Convergence rate of CCRGD to a local minimum

Theorem (Convergence rate of CCRGD (Dixit and Bajwa, 2021))

Suppose x0 ∈ Bξ(x∗
0) for a strict saddle x∗

0 ∈ S∗, and let Y = {Bξ(x∗
i )}Qi=0 be an

ordered sequence of cascaded saddle neighborhoods traversed by the trajectory
{xk}. Then, defining K̄shell := maxx∗∈Y Kshell(x

∗), the total time Kmax for
the trajectory to reach an ϵ-neighborhood of the local minimum x∗

optimal satisfies:

Kmax <

(
4Reff

R

)n(
(Kexit︸ ︷︷ ︸

1

+ K̄shell︸ ︷︷ ︸
2

) +
2L

γ2

(
Γ +

L

2
diam(U)

)
(R̂+ ξ)︸ ︷︷ ︸

3

)

where Reff = Rω(ζ), R̂ = Rω(R) and the function Rω(·) is bounded as:

Rω(z)≤ z + 2

(
Γ +

L

2
diam(U)

)
z

γ
+N0(z)Kexit

(
1

β
+

L

2β2

)
L2ϵ2

γ

+N0(z)(Kexit + K̄shell)ξ.
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Minimization of a modified Rastrigin function

Optimization problem

The problem corresponds to minimization of a modified Rastrigin function:

min
x∈Rn

f(x) :=

n∑
i=1

ai cos (bixi),

which differs from the standard Rastrigin function in the sense that this
modified function does not have the quadratic terms added to it.

Numerical setup

• Set ai = 1 for i = 1 and ai = −1 elsewhere; Set bi = 1 for
1 ≤ i ≤

⌊
n
2

⌋
and bi = 0.4 for

⌊
n
2

⌋
+ 1 ≤ i ≤ n

• The point x∗ = 0 is a strict saddle point for this problem

• Initialization: The iterate x0 is initialized in an ϵ neighborhood of the
strict saddle point x∗ with a very small unstable subspace projection
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Convergence plots: n = 10
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Convergence plots: n = 18
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Concluding Remarks

While first-order methods almost surely avoid strict saddle
neighborhoods, ensuring they escape the saddle in linear
time requires a handle on discrete trajectories

Developments presented in this talk

• A matrix perturbation-based analytical approach that
helps characterize the behavior of discrete trajectories in
small saddle neighborhoods

• A sufficient condition on the unstable subspace projection
of the initialization for linear exit time

• An analysis of discrete trajectories within the shells
surrounding saddle neighborhoods

• A gradient descent-based algorithm, and its convergence
analysis to a local minimum, that utilizes the sufficient
condition for fast saddle escape
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