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Abstract—Previous adaptations of the δ-generalized labeled
multi-Bernoulli (δ-GLMB) filter to the multi-sensor case involve
the sequential application of the update step for each sensor or
Gibbs sampling for multi-sensor data association. The practical
usage of the sequential δ-GLMB filter is limited due to the
number of hypotheses growing with each additional sensor.
Similarly, the Gibbs method requires a large number of samples
for each hypothesis. In this paper, in the aim of finding the
optimal or near-optimal multi-sensor assignments, we propose
two novel methods, the combination and the cross entropy
methods. Numerical simulations are conducted to evaluate the
proposed multi-assignment methods together with the standard
sequential processing method and a stochastic optimization algo-
rithm based on Gibbs sampling. The combination method is able
to significantly reduce running time with respect to the sequential
method while yielding competitive performance across a wide
range of test scenarios.

I. INTRODUCTION

The objective of multi-target tracking is to infer the target
tracks in addition to estimating the number of targets and
their kinematic states; but non-uniform detection probability,
measurement origin uncertainty, false detection and target
birth/death are all difficult obstacles to solving the problem.

Random finite set (RFS) filters [1] have emerged as a
popular paradigm for solving the multi-target tracking problem
in the Bayesian framework. Since the exact multi-target Bayes
filter is computationally intractable, the probability hypothesis
density (PHD) filter [2], cardinalized PHD (CPHD) [3] filter
and multi-Bernoulli (MB) filter [4] have been proposed as
tractable approximations, although they do not provide target
tracks over time. Vo et al. [5] introduced the notion of a labeled
RFS in which unique labels are appended to the elements of the
RFS to identify their targets (and their estimates) across time
and hence infer target tracks. They subsequently developed
the δ-generalized multi-Bernoulli (δ-GLMB) density [5] and a
single-sensor tracker based on δ-GLMB RFSs [6].

While all these filters have been initially developed for
single-sensor tracking, multi-sensor extensions have also been
proposed [7]–[14]. In the iterator-corrector PHD filter [7], [8],
each sensor’s measurements are processed sequentially and
the output from one sensor is used as input for the next
sensor. The recent work by Papi [10] presents the multi-sensor
extension of the δ-GLMB filter, and its implementation also
involves iterating through each sensor. Liu et al. [11] use an
extended association table to generate the most likely asso-
ciations between targets and measurements from all sensors,
but no simulations are provided to validate the algorithm’s

performance. Both the multi-sensor CPHD filter [12] and
the multi-sensor multi-Bernoulli filter [13] process all sensor
measurements simultaneously by using a greedy algorithm to
select the most likely associations. Vo et al. [14] have recently
applied Gibbs sampling to find a number of likely multi-sensor
assignments in the δ-GLMB filter.

The exact implementation of the multi-sensor δ-GLMB
filter requires enumerating all multi-sensor assignments to
compute the posterior multi-target density. In practice, we look
for a number of likely multi-sensor assignments to construct
a truncated density. Although the problem of finding the
T best single-sensor assignments can be solved efficiently
using Murty’s algorithm [15], the multi-sensor counterpart is
NP-hard [16]. In this paper, we present two approximation
algorithms, the combination and the cross entropy methods,
that yield a number of likely multi-sensor assignments without
exhaustive enumeration. We compare their performance to the
Gibbs method [14] and the sequential processing method [10].
The combination method first solves the assignment problem
locally at each sensor and then combines the locally optimal
solutions to form high-scoring multi-sensor assignments. The
cross entropy method constructs a distribution on the space
of all multi-sensor assignments with higher probability for
more likely assignments. The algorithms’ performances are
compared via simulations and it is shown that the combination
method greatly reduces computational time with respect to the
sequential method while yielding near-optimal assignments.

II. BACKGROUND

The study of finite set statistics [1] has led to the develop-
ment of multi-target filters in the Bayesian framework where
the target states are modeled as random finite sets. An RFS is
a finite set with random cardinality and elements, and thus it
conveniently captures the two unknown quantities of interest
in multi-target tracking problems: the number of targets and
their states. A labeled RFS appends a unique label to each
element in the RFS. Elements with the same label correspond
to the same target and allow the formulation of target tracks.

For the rest of the paper, unlabeled single-object states are
denoted by lower case letters (e.g., x) and multi-object states
(realizations of an RFS) by upper case letters (e.g., X). Their
labeled counterparts are bold letters (e.g., x = (x, l), X =
{x1, ...xn}). The blackboard bold letters (e.g., X, L) denote
the corresponding state space. The projection function L(X) =
{l, (x, l) ∈ X} returns the labels of a labeled RFS. The distinct



label indicator function ∆(X) returns 1 if all labels in the
RFS are distinct and 0 otherwise. For a real-valued function
h(x) and a set X, the multi-object exponential is defined as
[h]X =

∏
x∈X h(x). Finally, we adopt a generalized Kronecker

delta function δY (X) where X and Y can be scalars, vectors,
or unordered sets.

The δ-GLMB RFS is a labeled RFS with state space X at
time k and has the following distribution [5]:

πk|k(X) = ∆(X)
∑

(I,ε)∈F(L0:k)×Ξ

w
(I,ε)
k|k δI(L(X))[p

(ε)
k|k]X, (1)

where L0:k is the label space of targets that exist from time
0 to k, F(L0:k) is the space of all finite subsets of L0:k, Ξ
is a discrete space of target-measurement association histories,
and w(I,ε)

k|k are normalized weights. Each I represents a set of
track labels, and ε represents a history of measurement-target
associations. Each pair (I, ε) thus represents the hypothesis
that the labels I have the measurement association history ε

and hypothesis weight w(I,ε)
k|k . The term p

(ε)
k|k(·, l) is the single-

target density of label l ∈ I given ε.
The δ-GLMB filter is a two-step Bayesian filter which

models the multi-object target states as δ-GLMB RFSes.
1) Predict: If the posterior multi-object distribution at time

k is a δ-GLMB of the form (1), then the predicted multi-object
distribution is also a δ-GLMB of the following form [5]:

πk+1|k(X) = ∆(X)
∑

(I,ε)∈F(L0:k+1)×Ξ

w
(I,ε)
k+1|kδI(L(X))[p

(ε)
k+1|k]X (2)

The predicted multi-object density (2) is a weighted mixture
of multi-target exponentials. Each component comprises birth
and surviving labels. A birth label is a new target that appears
at time k + 1. A surviving label is a target that exists at
time k and continues to exist at time k + 1. The predicted
weights wk+1|k and predicted single-target densities pk+1|k
are given in [5]. Exact computation of the predicted δ-GLMB
distribution requires exhaustive enumeration of all possible
combinations of surviving and birth labels, which is computa-
tionally intractable in general. In practice, the K-shortest-paths
algorithm [18] is used to the find K label sets with the highest
mixture weight w(I,ε)

k+1|k [6].
2) Update: Let Zj = {z1

j , z
2
j , ...} denote the measurements

of sensor j and let Z = {Z1, ...ZS} denote the measure-
ments from all S sensors. We assume that P (Zi, Zj |X) =
P (Zi|X)P (Zj |X) ∀i 6= j. Each sensor j is characterized
by a likelihood function gj(z|x), a probability of detection
PD,j(x) and a clutter intensity κj(z). Denote by θj a mapping
between the track labels and measurement indices of sensor j.
In a valid association map, each label is associated to at most
one measurement or miss detected, and each measurement is
associated to at most one label. If the prior distribution is
a δ-GLMB of the form (2), then the multi-sensor posterior
distribution is also a δ-GLMB given by [14]

πk+1|k+1(X|Z) = ∆(X)
∑
(I,ε)

∑
θ1

· · ·
∑
θS

w
(I,ε,θ1,...,θS)
k+1|k+1 (Z)

× δI(L(X))[p
(ε,θ1,...,θS)
k+1|k+1 (·|Z)]X (3)

w
(I,ε,θ1,...,θS)
k+1|k+1 (Z) ∝ w(I,ε)

k+1|k[η
(ε,θ1,...,θS)
Z ]I (4)

η
(ε,θ1,...,θS)
Z (l) =

∫
p

(ε)
k+1|k(x, l)

S∏
j=1

ψj(x, l; θj)dx (5)

ψj(x, l; θj) =

1− PD,j(x) θj(l) = 0
PD,j(x)gj(zij |x,l)

κj(zij)
θj(l) = i > 0

(6)

p
(ε,θ1,...,θS)
k+1|k+1 (x, l|Z) =

p
(ε)
k+1|k(x, l)

∏S
j=1 ψj(x, l; θj)

η
(ε,θ1,...,θS)
Z (l)

(7)

The exact multi-sensor δ-GLMB update (3) requires gen-
erating all multi-sensor association maps for each predicted
hypothesis which is infeasible in all but the simplest scenarios.
Practical solutions involve exploring only a limited number
of associations for each predicted hypothesis, leading to a
truncated δ-GLMB posterior.

III. IMPLEMENTATION OF δ-GLMB FILTER

Given a valid multi-sensor association map (θ1, ..., θS)

for the predicted hypothesis (I, ε) with weight w
(I,ε)
k+1|k,

the posterior hypothesis weight is proportional to
w

(I,ε)
k+1|k

∏
l∈I η

(ε,θ1,··· ,θS)
Z (l). Therefore, maximizing the

posterior hypothesis weight (score) for a given predicted
hypothesis is equivalent to solving:

minimize
θ1 ··· θS

∑
l∈I

− log
(
η

(ε,θ1,...,θS)
Z (l)

)
, (8)

subject to θj valid association map ∀ j = 1, . . . , S.

Equation (8) is known as the multi-sensor assignment prob-
lem and is NP-hard for S > 1 [16]. We can interpret the term
− log

(
η

(ε,θ1,...,θS)
Z (l)

)
as the cost of assigning measurements

θ1(l), ...θS(l) to label l and we can thus define the cost of
a multi-sensor map for label set I as the sum of assignment
costs for individual labels l ∈ I . The objective is to minimize
the total cost of |I| assignments without any conflict. In the
following, we present two novel approximation algorithms that
produce T high-scoring (low-cost) multi-sensor associations
for the label set I without exhaustive enumeration.

A. Combination of single-sensor assignments

Consider Eq. (5). If η(ε,θ1...θS)
Z (l), the multi-sensor assign-

ment weight for label l, can be approximated as a product of
single-sensor assignment weights,

η
(ε,θ1...θS)
Z (l) ≈

S∏
j=1

η
(ε,θj)
Z (l) (9)

then the objective function (8) becomes
S∑
j=1

[∑
l∈I

− log
(
η

(ε,θj)
Z (l)

)]
. (10)

The approximation in (9) is exact in two different
cases. On one hand, if all of the ψ(x, l) are con-
stant with respect to x, then they factor out. On the
other hand, in the limit as p

(ε)
k+1|k(x, l) → δµ(x), then



∫ ∏S
j=1 gj(z

θj(l)
j |x, l)p(ε)

k+1|k(x, l)dx ≈
∏S
j=1 gj(z

θj(l)
j |µ, l) ≈∏S

j=1

[∫
gj(z

θj(l)
j |x, l)p(ε)

k+1|k(x, l)dx
]

with µ being the mean

of p(ε)
k+1|k(·). Note that the same approximation is applied in

[14] to simplify the sampling process.
Minimizing (10) is equivalent to solving S independent

single-sensor assignment problems using only the sensor’s
local measurements. Using this assumption, we propose a two-
step algorithm to produce T multi-sensor assignment maps
which minimize

∑
l∈I
∑S
j=1− log

(
η

(ε,θj)
Z (l)

)
.

First, each sensor generates T best (lowest cost) single-
sensor association maps using Murty’s algorithm [15].
These maps are then combined into multi-sensor maps. Let
θ

(1)
1...s, ...θ

(T )
1...s denote the T best multi-sensor maps for sensors

1 to s. At sensor s + 1, we obtain T 2 multi-sensor maps by
concatenating θ

(1)
1...s, ...θ

(T )
1...s with θ

(1)
s+1, ...θ

(T )
s+1 (the maps of

sensor s + 1). We compute the cost of the new maps using
Eq. (10), retain the T maps with lowest costs and propagate
them to sensor s+ 2 and so on.

B. Cross-entropy

The cross-entropy method constructs a distribution on the
space of all valid multi-sensor assignments and draws samples
from this distribution. The samples with lowest costs are in
turn used to update the distribution parameters. With each
iteration, the distribution approaches convergence in the sense
that assignments with low costs have higher probability. Unlike
the combination method, the generated association maps are
not necessarily distinct since the same map may be resampled.

We adapt the algorithm proposed in [16]. Consider label set
I with n labels and sensor j with measurements {z1

j , ...z
mj

j }.
We define a row-stochastic probability matrix

πj =

 pj(l
1|0) pj(l

1|1) ... pj(l
1|mj)

...
pj(l

n|0) pj(l
n|1) ... pj(l

n|mj)

 (11)

where pj(l|i) is the probability of assigning the ith measure-
ment of sensor j to label l. To sample from πj , we go through
each label and perform categorical sampling. If zij is assigned
to label l, then we set p(l′|i) = 0,∀l′ 6= l and renormalize to
ensure the map remains valid. We can generate a multi-sensor
assignment by sequentially sampling from π1, π2 and so on.

We draw T samples, compute their costs using (8) and select
the dγT e samples with lowest costs to update the parameters of
π. Let θ(1)

j , ...θ
(dγTe)
j denote sensor j’s assignments from the

dγT e (0 < γ ≤ 1) best samples. We update πj as follows [16]:

pj(l|z) =
|t ∈ {1, 2, ..., dγT e} : θ

(t)
j (l) = z|

dγT e
(12)

The numerator in Eq. (12) counts the number of samples in
which sensor j assigns measurement z to label l and the
denominator is a normalization constant.

In [16], the authors suggest initializing π to be uniform,
running multiple iterations and retaining only the T samples
from the last iteration. In our simulations, we find that a poor
initialization leads to a majority of samples having very high

−20 −10 0 10 20

−20

−10

0

10

20

X (m)

Y
 (

m
)

Fig. 1: Target positions (blue and red dots), target-originated measurements
(blue and red diamonds) and clutter measurements (empty black diamonds)

cost in the first few iterations and in turn to a slow convergence
towards the optimal distribution. We instead initialize π using
probabilistic gating. Each sensor computes the likelihood that
label l generates a measurement z. The likelihoods are then
normalized and used as initial values of p(l|z). Furthermore,
we retain all distinct samples (from all sampling iterations) to
maximize the number of output maps.

IV. PERFORMANCE EVALUATION

In this section we evaluate and compare the performance of
the two proposed algorithms with the sequential method [10]
and an adaptation of the Gibbs sampler described in [14]. The
sequential multi-sensor filter involves the iterative application
of single-sensor δ-GLMB update where the number of hy-
potheses is capped after each update step. In [17], a Gibbs
sampler is proposed in the joint δ-GLMB framework in which
multi-sensor association maps are extended to account for
target birth and death. This method is later extended to the
multi-sensor setting [14]. We do not consider target birth and
death to be a part of the multi-sensor assignment problem
and adapt the Gibbs sampler for the separate predict-update
δ-GLMB framework. In addition, we reduce the computa-
tional complexity of Gibbs sampling by approximating the
multi-sensor assignment costs as in the combination method
(Eq. (9)). As in the cross entropy method, the sampled maps
are not guaranteed to be distinct. We note that our adapted
sampler loses the benefits of operating in the joint δ-GLMB
framework which is shown to yield robust performance [14].

We consider a network of S = 4 sensors. Each sensor
detects target(s) with probability PD = 0.9. We consider
a linear measurement model (i.e., sensors measure target
positions directly) so sensor positions do not affect the algo-
rithms’ performance. All measurements are corrupted by white
Gaussian noise with covariance matrix σ2

xyI2 where I2 is the
2× 2 identify matrix and σxy = 3m. At each time step, each
sensor also receives Nc = 6 clutter measurements which are
uniformly distributed over a 50m× 50m tracking area.

For the combination and sequential methods, each sensor
generates a maximum of T = 500 single-sensor maps. For the
cross entropy method, at each sampling iteration, a maximum
of T multi-sensor maps are generated and the best d0.3T e
maps are used to update the sampling distribution parameters.
Five sampling iterations are run, and all distinct samples from
all iterations are output as the multi-sensor assignment maps.
Finally, we run two instances of Gibbs sampling. The first
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Fig. 2: a) Average ratio of aggregate map score with respect to σxy for Nc = 6. b) Average ratio of aggregate map score with respect to Nc for σxy = 3.

Mapping time in seconds (number of maps)
Comb CE Gibbs Gibbs-5 Seq

Baseline 0.067(500) 0.314(99) 0.058(76) 0.271(176) 0.321(329)
T=750 0.113(750) 0.461(122) 0.088(95) 0.423(215) 0.390(432)
T=1000 0.133(1000) 0.597(139) 0.112(112) 0.579(245) 0.415(518)
Nc=2 0.039(500) 0.265(44) 0.052(26) 0.261(65) 0.092(135)
Nc=4 0.053(500) 0.288(73) 0.055(52) 0.266(121) 0.195(239)
Nc=8 0.084(500) 0.348(137) 0.061(108) 0.276(259) 0.471(404)
Nc=10 0.104(500) 0.365(163) 0.063(131) 0.280(311) 0.636(447)

TABLE I: Average runtime in seconds for map generation. The number in
bracket is the number of distinct generated maps. For baseline, σxy = 3,
T = 500, Nc = 6, PD = 0.9. Shortest runtimes are marked in red and
highest number of maps are marked in blue.

runs for 500 iterations (Gibbs) and the second runs for 2500
iterations (Gibbs-5). Both instances output at most T distinct
highest-scoring assignments among the samples generated.

The objective is to evaluate and compare the algorithms’
ability to generate optimal assignment maps. In our test, we
generate a single hypothesis comprised of true target labels.
We model the target state density using Gaussian distribution
with mean equal to the true target state and covariance matrix
diag([10, 10, 10, 10]). We then apply the association algorithms
to generate the assignment maps. We run a number of tests in
which we vary a single simulation parameter. Each test consists
of 200 random Monte Carlo trials. The sensor measurements
change at each trial; but the target positions remain fixed.

Fig. 1 shows the positions of targets and all sensor mea-
surements for one trial (at default parameters values). Note
that the two targets are in close proximity and several clutter
measurements are difficult to distinguish from true target-
originated measurements, making this a challenging scenario.

Table I shows the average running time and the number of
generated maps for all algorithms. As expected, the running
time increases when the number T of maps or the number
Nc of clutter measurements increases. The combination and
Gibbs method have comparable running time for Nc ≤ 4 and
are significantly faster than the other two methods. The cross
entropy has the longest running time. This can be attributed
to two factors: running multiple sampling iterations and com-
puting the exact assignment cost for all distinct samples. The
high running time of Gibbs-5 is due to the higher number of
samples. In the case of the sequential δ-GLMB, the number
of posterior hypotheses grows with each application of the
single-sensor update procedure which also accounts for the
high computational load of the filter.

The combination method consistently generates T distinct
maps. The Gibbs and cross entropy methods generate signifi-
cantly fewer maps as expected. The Gibbs-5 method generates
more maps at the cost of higher computational overhead.

Our second metric is the ratio of aggregate map score. We
construct a combined pool of distinct maps from all algorithms.
Note that the algorithms can generate different maps so the
pool may contain as many as 5T maps. We then select the T
highest-scoring maps from the pool. These T maps are the best
maps that the algorithms have produced and their aggregate
score, Coptimal, is a suitable baseline for measuring different
algorithms’ performance. For each algorithm, we compute the
aggregate of its generated maps and report its ratio to Coptimal
with higher ratio denoting better performance. A ratio of 0
means that the algorithm did not generate any of the top T
maps and a ratio of 1 means that algorithm has produced all
T highest-scoring maps.

Fig. 2(a) shows the average ratio of aggregate map score
with respect to σxy . As σxy increases, the ratio decreases for all
algorithms with a bigger drop for the Gibbs, cross entropy and
sequential methods. The combination method has the highest
ratio for σxy ≥ 1.5. The Gibbs-5 method outperforms the
sequential method for σxy ≥ 4.

Fig. 2(b) shows the average ratio of aggregate map score
with respect to Nc. The combination method has the best
performance for all values of Nc followed by the Gibbs-5 and
sequential methods. For the Gibbs method, higher Nc leads to
more maps and better performance; although the performance
does degrade for sufficiently high Nc.

In both figures, the low aggregate score of the Gibbs method
comes from the combined effect of using the approximate scor-
ing function and more importantly having few distinct multi-
sensor assignments. On the other hand, the Gibbs-5 method
which generates more distinct maps is able to yield robust
performance at the cost of higher computational overhead.

V. CONCLUSION

In this paper we present two novel algorithms to solve the
multi-sensor assignment problem in the δ-GLMB filter. The
slow running time of the cross entropy method renders it
unsuitable for applications with strict timing requirements. The
combination method offers fast running time and competitive
performance across a wide range of test scenarios, making it
an attractive solution over the standard sequential method.
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