
Particle Flow Auxiliary Particle Filter

Yunpeng Li
Dept. of Electrical and
Computer Engineering

McGill University
Montréal, Québec, Canada

Email: yunpeng.li@mail.mcgill.ca

Lingling Zhao
School of Computer Science

and Technology
Harbin Institute of Technology

Harbin, China
Email: zhaoll@hit.edu.cn

Mark Coates
Dept. of Electrical and
Computer Engineering

McGill University
Montréal, Québec, Canada

Email: mark.coates@mcgill.ca

Abstract—Particle flow filters have been recently developed
as an alternative approach for nonlinear filtering. The particles
approximating the prior are migrated using differential equations
to be distributed according to the posterior. Computationally
tractable exact solutions only exist for linear Gaussian models.
For other scenarios, approximations are required and it is not
fully understood how these approximations impact the movement
of the particles and the subsequent propagation of error in the
filter. An alternative approach is to use the particle flow methods
to perform the importance sampling step within a particle
filtering framework. Existing methods along these lines involve
either intensive calculation or the construction of a transport
map, which can be challenging. In this paper, we propose to use
existing particle flow methods in an auxiliary particle filter. The
flows are used to sample auxiliary variables; and these allow us to
identify importance sampling distributions that are well-matched
to the posteriors. Simulations results indicate that the auxiliary
particle filters we develop have accuracy and computational
complexity similar to that of the underlying particle flow filters.

I. INTRODUCTION

Particle filters struggle to perform well in high dimen-
sional state spaces unless one employs a very large number
of particles [1], [2]. Particle flow algorithms were recently
proposed to migrate particles from the prior to the posterior
distribution to avoid the degeneracy induced by sampling in
a high dimensional space. The “flow” involves propagating
particles according to a partial differential equation. The initial
version of the particle flow filtering algorithm [3], [4] involves
an incompressible particle flow. A series of papers provide dif-
ferent solutions to the problem based on different assumptions
about the evolution of the density [5]–[8].

Most of the derived solutions are computationally in-
tractable and require approximations when implemented. An
important exception is when the prior and the likelihood dis-
tributions are both from the exponential family, e.g. Gaussian.
The exact particle flow filter [5] was developed for this case.
The papers [3]–[8] are rich in algorithmic innovation but pro-
vide few implementation details. A more detailed algorithmic
description of the exact flow filter was provided in [9]. The
algorithm employs an extended or unscented Kalman filter
in parallel to estimate the covariance matrix required in the
particle flow equations. In this paper, we refer to the algorithm
in [9] as the exact Daum and Huang filter (EDH). A more
computationally-intensive variant was described in [10]. We
call this the localized exact Daum and Huang filter (LEDH)
because it computes an individual flow for each particle rather

than evaluating a single flow at the mean of the particle
distribution.

In the past three years, Daum and Huang have described
several new particle flow algorithms. A non-zero diffusion
particle flow filter (NZDDH) was proposed in [11]. Khan et al.
compared the performance of the NZDDH and the EDH/LEDH
algorithms for a bearings-and-range multiple target tracking
problem in [12]. They observed that NZDDH outperformed
EDH and LEDH, but was itself outperformed by a bootstrap
particle filter (BPF) with a much larger number of particles.

Although particle flow algorithms display very promising
characteristics, there is not yet a good theoretical or practical
understanding of the impact of approximations that must be
incorporated when implementing the algorithms. An alterna-
tive approach is to use particle flow methods to derive an
importance sampling distribution within a particle filtering
framework. The approximation error in such a combined
algorithm is solely the sampling error, and the many results
from the sequential Monte Carlo filtering literature concerning
error propagation, stability, and convergence then apply.

There have only been a few proposals for using particle
flows or transport procedures to derive sampling distributions.
In [13], Reich described a procedure that moved particles
through coupling and he derived the equations required to
appropriately update importance weights. The method requires
the careful design of a complex transport map function and the
design process can be challenging for some filtering problems.
In [14], Bunch et al. derived an algorithm, which we refer
to as GPFIS, that maintains a correctly weighted particle
representation of the posterior distribution at all stages of
the flow. Particles at each stage are treated as being drawn
from a proposal distribution. The weights are corrected accord-
ingly, but calculating the update requires the computationally-
expensive solution of many differential equations.

In this paper, we propose a much simpler approach. We em-
bed particle flow techniques within an auxiliary particle filter
framework. The flows are used to sample auxiliary variables
that define an importance sampling distribution that is well-
matched to the posterior. The computational overhead is much
less than that of the procedure in [14], being approximately
equivalent to that of the underlying particle flow algorithm.
In contrast to the method described in [13], we can avoid the
identification of a transport map, and directly insert off-the-
shelf particle flow algorithms.

The paper is organized as follows. Section II provides

a problem statement. The importance sampling after particle
flow algorithm is proposed in Section III. Section IV presents
simulation results and Section V makes concluding remarks.

II. PROBLEM STATEMENT

We address a nonlinear filtering task with the following
models:

xk = g(xk−1, uk) (1)
zk = h(xk, vk) . (2)

Here the observation zk is related to the unobserved state xk,
g() is the state-transition function, and h() is a nonlinear mea-
surement function. uk and vk are the process and measurement
noises, respectively. The nonlinear filtering goal is to estimate
the marginal posterior distribution p(xk|z1:k), given a sequence
of observations z1:k = {z1, . . . , zk}.

III. PARTICLE FLOW AUXILIARY PARTICLE FILTER

Our proposed algorithm is constructed with an auxiliary
particle filter framework. After the completion of step k − 1,
we obtain particles {(xik−1, wik−1)}Np

i=1 that approximate the
marginalized posterior distribution p(xk−1|z1:k−1). Auxiliary
variables {µik}

Np

i=1 are generated by moving particles first using
the system model without noise, then through the particle flow
process. {{µik}

Np

i=1, w
i
k} are then used to produce particles that

are drawn from a proposal distribution which conditions on
the new measurement zk. Importance weights are calculated
for each particle in the last step.

A. Exact Gaussian flow algorithms

We first use existing particle flow algorithms to generate
auxiliary variables {µik}

Np

i=1. Two exact Gaussian flow algo-
rithms that suit our needs are described as follows.

1) DH exact Gaussian flow with zero diffusion: The flow
of auxiliary particles {µik}

Np

i=1 can be modelled to follow an
exact Gaussian flow with zero diffusion, as proposed in [5]:

dµik
dλ

= ζ(µik, λ) = A(λ)µik + b(λ) (3)

where

A(λ) = −1

2
PHT (λHPHT +R)−1H (4)

b(λ) = (I + 2λA)[(I + λA)PHTR−1zk +Aµ̄ik] (5)

in which µ̄ik is the predicted value of µik, i.e. the mean of the
prior distribution. P is the covariance matrix of the prediction
error for the prior distribution, which can be estimated by the
sample covariance matrix, the extended Kalman filter (EKF),
or the unscented Kalman filter (UKF). For nonlinear models,
the linearization of the measurement model can be used to
construct the measurement matrix H , i.e. h(µik) = Hµik.
R is the covariance matrix of the measurement error. The
pseudocodes of two typical algorithms, the EDH [9] and the
LEDH, are both presented in [10].

2) DH exact Gaussian flow with non-zero diffusion: A non-
zero diffusion particle flow algorithm is developed in [11]. The
flow equation is expressed as

ζ(µik, λ) = −[∇2φ(µik, λ)]−1∇ log(l(µik)) , (6)

where l() is the likelihood function, and the Hessian of the
log-homotopy function φ(µik, λ) can be approximated by

∇2φ(µik, λ) ≈ −P−1 + λ∇2 log l(µik) . (7)

For an additive Gaussian likelihood function with
l(zk|xk) = N(zk;h(xk),Σk),

∇ log l(µik) = −[∇h(µik)]TΣ−1k (h(µik)− zk) . (8)

The (m,n)-th element of ∇2 log l(µik) is

[∇2 log l(y)]m,n =− [∇2
m,nh(µik)]TΣ−1k (h(µik)− zk)

− [∇ih(µik)]TΣ−1k ∇jh(µik) . (9)

B. Importance sampling

Once the auxiliary variables {µik}
Np

i=1 have been calculated,
the generated particles are drawn from a proposal distribution
q(xik|xik−1, zk) = N(xik;µik,Σ

c
k). The choice of the covariance

matrix Σck is problem dependent. The importance weights can
be easily calculated. We refer to this algorithm as PF-APF;
pseudocode is presented in Algorithm 1.

IV. SIMULATION AND RESULTS

We evaluate the performance of PF-APF based on differ-
ent algorithms with a multi-target acoustic sensor example.
Comparison algorithms are EDH, LEDH, NZDDH, GPFIS and
BPF.

A. Simulation setup

The multi-target simulation setup we use was proposed
in [15] and adapted in [10]. Four targets move independently
following a state-transition equation given by x(p)k = Gx

(p)
k−1+

Wu
(p)
k , where x

(p)
k = (x

(p)
k , y

(p)
k , ẋ

(p)
k , ẏ

(p)
k)T contains the

position and velocity of target p in an x-y plane. G ∈ R4×4

and W ∈ R4×4 are system matrices. u(p)k ∼ N(0, σ2
uI4) is an

i.i.d. Gaussian noise vector. There are 25 acoustic amplitude
sensors deployed in a region of size 40 m×40 m. Each target
emits a sound of amplitude A, which is sensed by sensor j at
position ξj with an amplitude

ψj(xk) =

P∑
p=1

A

||(x(p)
k , y

(p)
k)T − ξj ||κ + d0

.

The measurement zjk of sensor j at time k due to the additive
contribution of each target is modelled as

zjk = ψj(xk) + vjk

where xk = (x
(1)
k ;x

(2)
k ;x

(3)
k ;x

(4)
k) is the overall state vector

of dimension 16, vjk ∼ N(0, σ2
v).

Algorithm 1: Particle flow auxiliary particle filter.

1: Initialization: Draw {xi0}
Np

i=1 from the prior p0(x);
2: Set {wi0}

Np

i=1 = 1
Np

;
3: for k = 1 to T do

// Calculate auxiliary variables µik;
4: for i = 1, . . . , Np do
5: Propagate particles µik = g(xik−1, 0);
6: end for
7: Estimate Pk|k−1 using the sample covariance matrix,

EKF, or UKF;
8: for i = 1, . . . , Np do
9: Set λ = 0;

10: for j = 1, . . . , Nλ do
11: Set λ = λ+ ∆λ(j);
12: Calculate dµi

k

dλ = ζ(µik, λ) using (3) or (6);
13: Migrate particles: µik = µik + ∆λ(j)

dµi
k

dλ ;
14: end for
15: end for
16: for i = 1, . . . , Np do
17: Draw xik ∼ N(µik,Σ

c
k);

18: wik =
p(xik|xik−1)p(zk|xik)

N(xik;µik,Σ
c
k)

wik−1;

19: end for
20: for i = 1, . . . , Np do
21: Normalize wik = wik/

∑Np

s=1 w
s
k;

22: end for
23: Estimate x̂k from {xik, wik};
24: (Optional) Resample {xik, wik}

Np

i=1 and regularize to
obtain {xik, 1

N }
Np

i=1;
25: end for

In the simulation, P = 4, A = 10, G =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

,

and W =

1/3 0 0.5 0
0 1/3 0 0.5

0.5 0 1 0
0 0.5 0 1

. σ2
u = 0.05, κ =

1, and d0 = 0.1. We set σ2
v = 0.01, indicating that

measurements are highly informative. The targets are with
initial states [12, 6, 0.001, 0.001]T , [32, 32,−0.001,−0.005]T ,
[20, 13,−0.1, 0.01]T , [15, 35, 0.002, 0.002]T .

We run the simulation for 100 Monte Carlo trials. In each
trial, we generate a different trajectory and an associated set
of measurements. Each algorithm then processes the same set
of measurements for each trial. The simulation is conducted
in Matlab.

B. Parameter values for the filtering algorithms

Exponentially increasing step size is recommended in [11]
and [12] for numerical integration within the non-zero diffu-
sion particle flow algorithm. Here we adopt an exponentially
spaced sequence of 29 λ values for all particle flow type
algorithms. The constant ratio of step sizes is 1.2 and the initial
step size is approximately 0.001 (the exact value is chosen so
that the sum of step sizes is equal to 1). The covariance of

prior distribution are all estimated with an EKF executed in
parallel. The number of particles Np is 100 unless explicitly
mentioned.

We adopt the redraw strategy in [10] for the EDH, LEDH,
and NZDDH filters at the start of each time step. The diffusion
terms for the NZDDH and GPFIS algorithms are both set to
0 based on preliminary numerical simulation results, which is
also the suggested value in [11] and [14].

For all filtering algorithms, we sample the initial mean
m0 from a Gaussian centered at the true initial states with
variance 1 for positions and 0.000025 for velocity ele-
ments. The covariance of dynamic noise is modelled as 3 0 0.1 0

0 3 0 0.1
0.1 0 0.03 0
0 0.1 0 0.03

, larger than that used to gener-

ate tracks. The variances of the position components are
modelled to be larger than the velocity components, which
agrees with the initial target states. In PF-APF algorithms,
the covariance matrix of the correction noise Σck is set to1 0 0 0

0 1 0 0
0 0 0.01 0
0 0 0 0.01

, smaller than that of the dynamic noise,

as we assume auxiliary variables have been moved close to the
target distribution. We perform resampling when the effective
sample size is less than Np

2 . We set the covariance matrix of
the regularization noise we add in the regularization step to be
the same as Σck.

C. Experimental results

Figure 1 shows the average position errors at each time
step for the various tracking algorithms we compare. The
LEDH method exhibits the smallest average tracking error.
EDH, GPFIS, and PF-APF based on LEDH or EDH have
slightly greater errors. The average error from NZDDH is
not displayed, since 9 out of 100 trials result in lost tracks,
which are declared when the average position error among four
targets reaches more than 40 m at any time step of the tracking.
The NZDDH filter is prone to numerical approximation error,
and if we do not redraw particles every time step from an
approximated Gaussian, then all trials result in lost tracks. The
reason is that the flow calculation in (6) is not numerically
stable, and can often lead to unreasonably large movement
for individual particles if the uneven intermediate step size is
also large. The auxiliary particle filtering framework corrects
for this and prevents lost tracks for most trials. All auxiliary
particle filtering approaches also have significantly smaller av-
erage tracking errors than BPF with 10000 particles. Boxplots
of the performances of several of the algorithms are shown
in Figure 2. The LEDH filter has very few outliers and much
smaller median errors in the last few time steps when compared
to the other approaches. The computational cost of PF-APF is
almost the same as the particle flow methods it utilizes, and
is much smaller that of GPFIS, as shown in Table I.

V. CONCLUSION

In this paper, we have proposed a particle flow auxiliary
particle filter algorithm. Although theoretically appealing, par-
ticle flow algorithms often involve multiple stages of model

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

time step

a
v
e

ra
g

e
 p

o
s
it
io

n
 e

rr
o

r(
m

)

PF−APF (LEDH)

PF−APF (EDH)

PF−APF (NZDDH)

LEDH

EDH

GPFIS

BPF (10000 particles)

34 36 38 40

4

4.5

5

5.5

6

6.5

Fig. 1. Average errors of different filtering algorithms at each time step. The
number of particles is 100 for all algorithms except the BPF.

0

10

20 PF−APF (EDH)

0

10

20 PF−APF (LEDH)

p
o

s
it
io

n
 e

rr
o

r(
m

)

0

10

20 LEDH

5 10 15 20 25 30 35 40
0

10

20 GPFIS

time step

Fig. 2. Error boxplots of different filtering algorithms at each time step.

TABLE I. TYPICAL EXECUTION TIME PER TIME STEP OF DIFFERENT
ALGORITHMS. THE BPF USES 10000 PARTICLES, AND ALL OTHER

ALGORITHMS USE 100 PARTICLES. RESULTS ARE PRODUCED USING A
WORKSTATION WITH AN INTEL I7-4770K CPU AND 32 GB RAM.

Algorithm
PF-APF

(EDH)

PF-APF

(LEDH)

PF-APF

(NZDDH)
EDH GPFIS BPF

Avg. exec. time per step (s) 0.007 0.35 3.5 0.007 29 0.03

approximations and flow assumptions which can lead to a
discrepancy between the target distribution and the actual
distribution. Including particle flow into the auxiliary particle
filtering framework transforms these approximation errors into
well-studied sampling errors.

We have observed that adding the importance sampling step
does not significantly impact the performance of particle flow
algorithms in our simulation. It also has a huge computational
cost saving compared with other algorithms that link particle
flow with importance sampling.

Our future work will include more extensive simulation
experiments, which will help us develop a more comprehensive
understanding of the behaviour and performance of the particle
flow filters, and help us address the question of whether the
incorporation of an importance sampling framework is useful
or desirable.

REFERENCES

[1] T. Bengtsson, P. Bickel, and B. Li, “Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems,” in Probability
and Statistics: Essays in Honor of David A. Freedman, D. Nolan and
T. Speed, Eds. Beachwood, OH, USA: Institute of Mathematical
Statistics, 2008, vol. 2, pp. 316–334.

[2] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson, “Obstacles to
high-dimensional particle filtering,” Monthly Weather Review, vol. 136,
no. 12, pp. 4629–4640, 2008.

[3] F. Daum and J. Huang, “Nonlinear filters with log-homotopy,” in Proc.
SPIE Signal and Data Processing of Small Targets, Sep. 2007, p.
669918.

[4] ——, “Particle flow for nonlinear filters with log-homotopy,” in Proc.
SPIE Signal and Data Processing of Small Targets, Apr. 2008, p.
696918.

[5] F. Daum, J. Huang, and A. Noushin, “Exact particle flow for nonlinear
filters,” in Proc. SPIE Conf. Signal Proc., Sensor Fusion, Target Recog.,
Apr. 2010, p. 769704.

[6] F. Daum and J. Huang, “Exact particle flow for nonlinear filters:
Seventeen dubious solutions to a first order linear underdetermined
PDE,” in Asilomar Conf. Signals, Systems and Computers (ASILOMAR),
Pacific Grove, CA, USA, Nov. 2010, pp. 64–71.

[7] F. Daum, J. Huang, and A. Noushin, “Coulomb’s law particle flow for
nonlinear filters,” p. 81370B, Sep. 2011.

[8] F. Daum and J. Huang, “Small curvature particle flow for nonlinear
filters,” in Proc. SPIE Signal and Data Processing of Small Targets,
May 2012, p. 83930A.

[9] S. Choi, P. Willett, F. Daum, and J. Huang, “Discussion and application
of the homotopy filter,” in Proc. SPIE Conf. Signal Proc., Sensor
Fusion, Target Recog., May 2011, p. 805021.

[10] T. Ding and M. J. Coates, “Implementation of the daum-huang exact-
flow particle filter,” in IEEE Statistical Signal Processing Workshop
(SSP), Ann Arbor, MI, USA, Aug. 2012, pp. 257–260.

[11] F. Daum and J. Huang, “Particle flow with non-zero diffusion for
nonlinear filters,” vol. 8745, May 2013, p. 87450P.

[12] M. A. Khan and M. Ulmke, “Non-linear and non-Gaussian state
estimation using log-homotopy based particle flow filters,” in Proc.
Sensor Data Fusion: Trends, Solutions, Applications (SDF), Bonn,
Germany, Oct. 2014, pp. 1–6.

[13] S. Reich, “A guided sequential Monte Carlo method for the assimila-
tion of data into stochastic dynamical systems,” in Recent Trends in
Dynamical Systems. Springer Basel, 2013, vol. 35, pp. 205–220.

[14] P. Bunch and S. Godsill, “Approximations of the optimal impor-
tance density using gaussian particle flow importance sampling,” arXiv
preprint arXiv:1406.3183, 2014.

[15] O. Hlinka, O. Sluciak, F. Hlawatsch, P. M. Djuric, and M. Rupp,
“Distributed Gaussian particle filtering using likelihood consensus,” in
Proc. Intl. Conf. Acoustics, Speech and Signal Proc. (ICASSP), Prague,
Czech Republic, May 2011, pp. 3756–3759.

