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Abstract—Particle flow filters obtain impressive results in chal-
lenging high dimensional, non-linear sequential state estimation
problems. In contrast to a particle filter, which uses importance
sampling to approximate the posterior distribution of the state,
the flow based algorithms solve a differential equation to migrate
the particles from the prior to the posterior distribution. However,
the particles after the flow are not true samples of the posterior
distribution due to strong model assumptions required for the
derivation of the flow and the approximations associated with
the numerical solution. This affects performance adversely in
many highly non-linear, non-Gaussian filtering problems. Particle
Flow Particle Filters (PFPF) adapt the particle flow procedure to
construct a proposal density inside the particle filter. These tech-
niques can outperform the underlying particle flow algorithms
by compensating for the approximations in the flow calculations
via update of importance weights after the flow, at the cost
of a negligible increase in the computational complexity. Most
of the PFPF approaches have focused on using a deterministic
particle flow. In this paper, we develop a PFPF algorithm using
a stochastic particle flow based on Gromov’s method. Numerical
simulations are conducted to examine when the proposed method
offers advantages compared to existing techniques.

Index Terms— non-linear sequential state estimation, par-
ticle flow, particle filter, high-dimensional filtering.

I. INTRODUCTION

Particle filters [1] have become a standard tool for per-
forming sequential state estimation in a Bayesian framework.
They employ sequential importance sampling to approximate
the posterior distribution of the states in a recursive manner.
However, if the measurements are highly informative or the
state dimension is high, most of the particles fall in regions
of state space where the likelihood is very low after a few
time steps. This leads to negligible weights for the majority of
particles which results in a deterioration in the approximation
of the posterior [2]–[6].

Although there have been multiple proposals [5]–[10] to
address the weight degeneracy issue, the applicability of the
methods are somewhat limited, either because they impose
strong assumptions on the structure of the posterior or involve
a very high computational cost.

Particle flow algorithms [11]–[15] can achieve impressive
performance for a reduced computational overhead in many
challenging filtering tasks. In these filters, particles are grad-
ually migrated from the prior to the posterior distribution
by solving differential equations. The idealized modelling
assumptions and the numerical approximations needed to im-
plement these filters can lead to particles not being distributed
according to the posterior. To address this, several recent
algorithms combine particle flow and particle filtering [15]–

[19]. In particular, [19] introduces the particle flow particle
filter (PFPF), which uses particle flow to construct the proposal
distribution in a particle filtering framework. As a result, the
convergence results for any particle filter still apply, while the
flow constructs an efficient proposal distribution.

The PFPF of [19] relies on a zero-diffusion particle
flow [13], [20]. Recent work [21], [22] has shown that stochas-
tic algorithms can significantly outperform the deterministic
particle flow algorithms. In this paper, we propose to incor-
porate a variant of stochastic particle flow, called the Gromov
flow in the particle filtering framework.

The paper is organized as follows. Section II states the
filtering task that we address. Section III reviews the geodesic
particle flow and the Gromov flow filters [22], [23]. Section IV
introduces the proposed particle flow particle filter using
Gromov flow and Section V presents and discusses the results
of numerical simulation experiments.

II. PROBLEM STATEMENT
We address the task of sequential state estimation in discrete

time for a hidden Markov model. The unobserved state and
the observation at time k are denoted by xk ∈ Rd and zk ∈
RS respectively. We assume that the hidden state xk evolves
according to a first order Markov process, i.e., it is independent
of all states before time k − 1 conditioned on the state xk−1.
The measurement zk is assumed to be independent of all past
measurements and past states conditioned on the current state
xk. The state evolution and measurements are described by
the following model:

x0 ∼ p(x0) , (1)
xk = gk(xk−1, vk) for k ≥ 1 , (2)
zk = hk(xk, wk) for k ≥ 1 . (3)

Here p(x0) is an initial probability density function of state x0,
gk : Rd × Rd′ → Rd models the dynamics of the unobserved
state xk and the measurement model hk : Rd × RS′ → RS
specifies the dependence of the observation zk on state xk.
The process and measurement noises are denoted by vk ∈ Rd
and wk ∈ RS′ respectively.

Given a set of observations z1:k = {z1, . . . , zk} and an
initial distribution p(x0), our goal is to track the marginal
posterior distribution p(xk|z1:k). This can be used to form
estimates of xk and to assess uncertainty.

III. GEODESIC PARTICLE FLOW AND GROMOV’S METHOD
Suppose that we have a set of Np particles {xik−1}

Np
i=1,

which are distributed according to the posterior distribution



at time k−1. After propagating these particles through the
dynamic model, we obtain particles {x̃ik}

Np
i=1 approximating

the predictive posterior distribution at time k. Particle flow
methods then solve a stochastic differential equation to migrate
the particles so that they become samples of the posterior
distribution at time k.

We consider the particle flow as a background stochastic
process ηλ in a pseudo time interval λ ∈ [0, 1]. Since the
particle flow only migrates the particles within a single time
step, we omit the time index k temporarily to simplify the
notation. ηiλ is used to denote the i-th realization of the
stochastic process. The flow is initialized at ηi0 = x̃ik, for
i = 1, 2, . . . , Np.

We assume the particle flow follows a stochastic differential
equation of the following form

dηiλ = f(ηiλ, λ)dλ+ dνi , (4)

where f(ηiλ, λ) is referred to as the flow and νi(λ) is called the
diffusion term. The covariance matrix of the stochastic process
νi(λ) is denoted Q(ηiλ, λ), i.e., dνidνi

T

= Q(ηiλ, λ)dλ. The
covariance matrix is required to be positive semi-definite,
i.e., Q(ηiλ, λ) < 0. The allowable choices of f and Q are
governed by the Fokker-Planck equation [24]. By imposing
different constraints on the flow, we can obtain a variety of
particle flow filters. For example, setting Q(ηiλ, λ) = 0 leads
to the zero diffusion particle flow filters [12], [13], [24]–[27].
Although very few particle flow algorithms are analytically
tractable, calculation of the flow becomes analytically tractable
when the predictive posterior and the likelihood distributions
are both Gaussian and the measurement model is linear, i.e.,
ηi0 ∼ N(η̄0, P̄ ), z = Hηiλ + w ∼ N (Hηiλ, R). The predictive
covariance P̄ and the measurement covariance R are both
positive definite, and H is the measurement matrix.
A. The Geodesic Flow

Using the linearized approximation of the measurement
model at the particle locations, the flow parameters for the
geodesic flow [23] are computed as follows:

f(ηiλ, λ) = Ai(λ)ηiλ + bi(λ) , (5)

Q(ηiλ, λ) = 0 , (6)

where

M i(λ) =
(
P̄−1+λHi(λ)TR−1Hi(λ)

)−1
,

Ai(λ) = −M (i)(λ)Hi(λ)TR−1Hi(λ) ,

bi(λ) = M (i)Hi(λ)TR−1
(
z−ei(λ)

)
. (7)

Here Hi(λ) =
∂h(η)

∂η

∣∣∣∣
η=ηiλ

and ei(λ) = h(ηiλ)−Hi(λ)ηiλ.

B. The Gromov Flow
In the Gromov flow [22], the expression for the flow f is

exactly the same as in eq. (5). However, this flow is stochastic,
i.e., it has a non-zero diffusion covariance as follows:

Q(ηiλ, λ) =
(
P̄−1+λHi(λ)TR−1Hi(λ)

)−1×
Hi(λ)TR−1Hi(λ)

(
P̄−1+λHi(λ)TR−1Hi(λ)

)−1
. (8)

C. Numerical Implementation

We employ discretized pseudo-time integration to compute
the approximate solution of the flow equation (4). We identify
a sequence of discrete steps at Nλ positions, [λ1, λ2, . . . , λNλ ],
where 0 =λ0<λ1< . . . <λNλ = 1. The step size εj =
λj−λj−1 for j= 1, . . . , Nλ can vary but we require that∑Nλ
j=1 εj = λNλ − λ0 = 1. For computation of (7) and (8) we

need Hi(λj), which is obtained by computing the derivative
of the measurement function h at ηiλj−1

. The update for the
geodesic flow becomes

ηiλj = ηiλj−1
+ εj(A

i(λj)η
i
λj−1

+ bi(λj)) . (9)

Similarly, the update for the Gromov flow is given as

ηiλj = ηiλj−1
+ εj(A

i(λj)η
i
λj−1

+ bi(λj)) +
√
εjν

i(λj) (10)

where νi(λj) ∼ N
(
0, Q(ηiλj , λj)

)
.

IV. PARTICLE FLOW PARTICLE FILTER (GROMOV)

Assuming we have a set of weighted particles
{ωik−1, xik−1}

Np
i=1 approximating the posterior at time

k−1, we generate two sets of particles {η̄i0, ηi0}
Np
i=1 as follows:

ζk = E[vk] , (11)

η̄i0 = gk(xik−1, ζk) , (12)

V i = Cov[xk|xik−1] , (13)

ηi0 ∼ N
(
η̄i0, V

i
)
. (14)

If the process noise is additive Gaussian with a covariance
matrix which does not depend on the previous state xk−1, then
ηi0 can equivalently be sampled by propagating the particle
xik−1 through the dynamic model. However, for non-Gaussian
dynamic models, a pointwise Gaussian approximation is re-
quired for sampling ηi0. The distribution of ηi0 conditioned on
xik−1 is Gaussian. We construct an auxiliary geodesic flow
starting from η̄i0 to compute the flow and diffusion parameters
and use the same deterministic parameters to perform the
Gromov flow starting at ηi0. We note that this procedure ensures
that the distribution of ηiλj conditioned on (xik−1, zk) remains
Gaussian. We define

µiλj = E[ηiλj |x
i
k−1, zk] , (15)

Σiλj = Cov[ηiλj |x
i
k−1, zk] . (16)

with initializations µi0 = η̄i0 and Σi0 = V i. Then the update
of these parameters can be computed using the following
recursion:

µiλj =
(
I + εjA(λj)

)
µiλj−1

+ εjb(λj) , (17)

Σiλj =
(
I + εjA(λj)

)
Σiλj−1

(
I + εjA(λj)

)T
+ εjQ(η̄iλj , λj) ,

(18)

After the flow is complete, we set xik = ηi1 and the proposal
distribution becomes q(ηi1|xik−1, zk) = N

(
ηi1;µi1,Σ

i
1

)
, which

can be evaluated in closed form. The algorithm is summarized
in Algorithm 1.



Algorithm 1 Particle Flow Particle Filter (Gromov)

1: Initialization: Draw particles {xi0}
Np
i=1 from the prior

p(x0). Set {ωi0}
Np
i=1 =

1

Np
, compute x̂0 =

∑Np
i=1 ω

i
0x
i
0.

2: for k = 1 to K do
3: for i = 1, . . . , Np do
4: Apply EKF/UKF prediction to compute P̄ ik:

{xik−1, P ik−1} → {mi
k|k−1, P̄

i
k}

5: Calculate η̄i0 = gk(xik−1, ζk)
6: Calculate V i = Cov[xk|xik−1]
7: Sample ηi0 ∼ N

(
η̄i0, V

i
)

8: Initialize µi0 = η̄i0,Σ
i
0 = V i and λ0 = 0.

9: for j = 1, . . . , Nλ do
10: Set λj = λj−1 + εj
11: Calculate Ai(λj) and bi(λj) from eq. (7) and

Q(η̄iλj , λj) from eq. (8) with linearization per-
formed at η̄iλj−1

and with P̄ = P̄ ik
12: Migrate auxiliary particle using geodesic flow:

η̄iλj = η̄iλj−1
+ εp(A

i(λj)η̄
i
λj−1

+ bi(λj))

13: Migrate particle using Gromov flow: ηiλj =

ηiλj−1
+ εp(A

i(λj)η
i
λj−1

+ bi(λj)) +
√
εjν

i(λj),
where νi(λj) ∼ N (0, Q(η̄iλj , λj))

14: Compute µiλj and Σiλj from eq. (17) and (18)
15: end for
16: Set xik = ηi1
17: Calculate importance weights:

ωik ∝ ωik−1
p(xik|xik−1)p(zk|xik)

N
(
xik;µi1,Σ

i
1

)
18: end for
19: for i = 1, . . . , Np do
20: Normalize ωik = ωik/

∑Np
s=1 ω

s
k

21: Apply EKF/UKF update to compute P ik:
{mi

k|k−1, P̄
i
k} → {mi

k|k, P
i
k}

22: end for
23: Estimate x̂k =

∑Np
i=1 ω

i
kx

i
k

24: (Optional) resample particles : {xik, P ik, ωik}
Np
i=1 to ob-

tain {xik, P ik,
1

Np
}Npi=1

25: end for

V. NUMERICAL EXPERIMENTS AND RESULTS

We conduct numerical simulations for two scenarios. The
first is a linear Gaussian setup for state estimation in a large
spatial sensor network, which allows us to compare the per-
formance of the proposed filter with the optimal Kalman filter.
The second is a multi-target acoustic tracking problem with a
highly non-linear measurement model that requires the use of
sophisticated particle filters to obtain accurate state estimates.
We compare the proposed PFPF (Gromov) algorithm with the
PFPF algorithms [19], the Bootstrap Particle Filter (BPF) [1]
and various particle flow [13], [20], [22], [23] techniques.
In addition, we also implement the Gaussian Particle Flow
Importance Sampling (GPFIS) algorithm [17] for the non-

linear example. All numerical simulations are executed using
Matlab on an Intel i7-4770K, 3.50GHz CPU and 32GB RAM.

A. Linear Gaussian example
We use the spatial sensor network setup proposed in [6].

The network consists of d sensors placed uniformly on a two-
dimensional grid {1, 2, ...,

√
d}×{1, 2, ...,

√
d} and we set d =

64 in this example. At each time step k, each sensor i records a
measurement zik, independently of the other sensors, about the
underlying state xik at its physical location. The evolution of
the state vector xk = [x1k, x

2
k, ..., x

d
k]T ∈ Rd in time follows a

linear model with Gaussian noise and the measurement vector
zk = [z1k, z

2
k, ..., z

d
k ]T ∈ Rd is also linear in state xk.

The dynamic model and the measurement model are:

xk = αxk−1 + vk , (19)
zk = xk + wk , (20)

where α = 0.9, the process noise vk ∼ N (0,Σ). The (i, j)-th

entry of Σ is given as Σi,j = α0e
− ‖R

i−Rj‖22
β + α1δi,j , where

Ri ∈ R2 denotes the physical location of the i-th sensor on the
grid and δi,j is the Kronecker delta symbol (δi,i = 1 and δi,j =
0 for i 6= j). The structure of Σ implies that the correlation
between sensors decreases with the increase of the Euclidean
distance between them. We set α0 = 3, α1 = 0.01 and β =
20, as in [6]. The measurement noise is denoted by wk ∼
N (0, σ2

wI). We set σw = 0.5. The true states start at x0 =
0. The experiment is repeated for 100 Monte Carlo trials for
T = 10 time steps.

TABLE I: Average MSE, MSE(rel)
logZ , ESS (if applicable) and

execution time per step in the linear Gaussian example.

Algorithm
No.

particles
Avg.
MSE

Avg.
MSE(rel)

logZ

Avg.
ESS

Exec.
time (s)

KF - 0.07 0 - 0.002
PFPF (Gromov) 200 0.09 0.0004 30.6 2.3
PFPF (Geodesic) 200 0.09 0.0340 3.5 2.1

PFPF (LEDH) 200 0.09 0.0005 25.1 1.9
PFPF (EDH) 200 0.09 0.0006 21.7 0.015
PFPF (EDH) 104 0.08 0.0001 852 0.2
Gromov Flow 200 0.07 - - 2.2
Geodesic Flow 200 0.07 - - 1.8

LEDH 200 0.07 - - 1.4
EDH 200 0.07 - - 0.011
BPF 200 1.10 2.813 1.04 0.001
BPF 106 0.20 0.0265 1.62 2.5

In this linear Gaussian example, the true posterior distribu-
tion of the states is obtained from a Kalman filter, which also
allows us to compute the normalizing constant of the posterior
distribution in a closed form. In addition to reporting the
average Mean Square Error (MSE) in the state estimates, we
also compute the relative MSE for the log of the normalizing
constants MSE(rel)

logZ [28] from the particle filters. From Table I
we observe that the particle flow algorithms obtain similar
average MSE as the Kalman filter, since the linear Gaussian



models match their model assumptions. The proposed PFPF
(Gromov) algorithm performs comparably to the other PFPF
algorithms in terms of state estimation. Moreover, it achieves
the highest average effective sample size (ESS) [29] and
the lowest average MSE(rel)

logZ among all the PFPF algorithms
employing the same number of particles. In particular, com-
parison with PFPF (Geodesic) indicates that the inclusion of
the diffusion term in the particle flow equation diversifies
the particles and in turn results in a more efficient proposal
distribution. However, a much higher ESS can be obtained
from the PFPF (EDH) algorithm by increasing the number
of particles for this example, with negligible computational
overhead.

B. Non-linear example
We consider a multi-target tracking problem for superpo-

sitional sensors with low measurement noise. The scenario is
similar to those examined in [19], [30]. There are C = 4 targets
moving independently according to a constant velocity model
in a region of size 40m × 40m, equipped with 25 superpo-
sitional sensors deployed uniformly. The dynamic model for
the c-th target is specified as x(c)k = Fx

(c)
k−1 + v

(c)
k , where

x
(c)
k = [x(c)k , y(c)

k , ẋ(c)k , ẏ(c)k ]T is comprised of the position
coordinates and velocities. F denotes the state transition matrix
for each target. The process noise v(c)k ∼ N (0, V ). We set

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 and V =
1

20


1
3 0 1

2 0
0 1

3 0 1
2

1
2 0 1 0
0 1

2 0 1

 .
Each target emits sound of amplitude Ψ = 10 and the sum of
the attenuated amplitudes from all targets is recorded at each
sensor. The measurement function for the s-th sensor at Rs is:

z̄s(xk) =

C∑
c=1

Ψ

‖(x(c)
k , y(c)k )T −Rs‖2 + d0

. (21)

We set d0 = 0.1. The measurements are corrupted with
Gaussian noise, i.e., the noisy observation zck from s-th sensor
is a realization of N

(
z̄s(xk), σ2

w

)
. We simulate 100 random

state trajectories and corresponding measurement sequences
for 40 time steps. Each algorithm is run 5 times on each
trajectory starting from different initial distributions. We also
assume that the dynamic model is not known accurately during
tracking. We therefore use an inflated covariance matrix for
the process noise for all the filters (we copy the approach
from [19] — please see this paper for details regarding the
inflation and the initialization of the state distribution). We
consider two different noise values: σw = 0.1 and 0.001. The
average optimal sub-pattern assignment (OSPA) metric [31] is
used as the performance measure.

From Table II, we observe that the proposed PFPF (Gro-
mov) algorithm attains the smallest average OSPA metric
for both values of σw. However, the relative improvement
is more prominent for extremely informative measurements
(σw = 0.001). We also note that the proposed PFPF (Gromov)
algorithm achieves the largest average ESS among all the com-

TABLE II: Average OSPA metric, average ESS (if applicable)
and execution time per step for the multi-target acoustic
tracking example.

Algorithm No.
particles

σw = 0.1 σw = 0.001
Exec.

time (s)
Avg.

OSPA
(m)

Avg.
ESS

Avg.
OSPA

(m)

Avg.
ESS

PFPF(Gromov) 500 0.78 72.3 0.24 215.1 1.3
PFPF(Geodesic) 500 0.78 7.6 0.25 6.09 1.15

PFPF(LEDH) 500 0.79 45 0.28 1.02 0.9
PFPF(EDH) 105 2.42 1680 2.39 1.1 0.5

GPFIS 500 0.93 30 1.01 29.7 66.8
EKF - 5.74 - 14.4 - 0.00003
UKF - 4.91 - 37.9 - 0.005

Gromov Flow 500 1.91 - 2.41 - 1.25
Geodesic Flow 500 2.00 - 2.45 - 0.9

LEDH 500 2.19 - 1.23 - 0.8
EDH 105 2.79 - 2.45 - 0.45
BPF 106 1.10 6.3 1.14 1.0 3.0

peting particle filters with same number of particles. Although
the PFPF (Geodesic) algorithm achieves similar tracking per-
formance as the PFPF (Gromov) algorithm, it suffers from
weight degeneracy. The PFPF (LEDH) algorithm with 500
particles offers much better performance in comparison to
the PFPF (EDH) algorithm with 105 particles. This indicates
that for highly non-linear measurement models, performing
local linearization for computing the particle flow becomes
crucial. The EKF, the UKF and the particle flow algorithms
have large error, probably because of the strong non-linearity
of the measurement function. The comparison between the
particle flow algorithms and the corresponding PFPF algo-
rithms demonstrates the improvement in performance due to
the importance sampling step. The GPFIS algorithm uses
approximate Gaussian flows to sample from non-Gaussian pos-
terior distributions, followed by a computationally expensive
weight update step. However, while it offers improved tracking
performance compared to the particle flow algorithms (at much
higher computational cost), its performance is significantly
worse than the PFPF algorithms except for PFPF (EDH).

VI. CONCLUSION

We developed a particle flow particle filter that uses a
stochastic particle flow based on Gromov’s method. Experi-
mental results suggest that the non-zero diffusion term helps
in diversifying particles in challenging filtering problems with
high dimensionality of the state vector and/or very informa-
tive measurements. Although the proposed filter achieves the
highest average ESS among the competing PFPF algorithms
with the same number of particles in all our experiments, this
translates to a relatively small improvement in the accuracy
of the state estimates in the multi-target tracking example.
Future research will investigate ways to reduce the compu-
tational overhead by considering an EDH type flow and assess
performance via a more extensive experimental evaluation.
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