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Abstract—Particle flow filters provide an approach for state
estimation in nonlinear systems. They can outperform many
particle filter implementations when the state dimension is high
or when the measurements are highly informative. Instead of
employing importance sampling, the particles are migrated by
numerically solving differential equations that describe a flow
from the prior to the posterior at each time step. An analytical
solution for the flow equation requires a Gaussian assumption for
both the prior and the posterior. Recently Khan et al. [1] devised
an approximate flow that could address the case when the prior
is represented by a Gaussian Mixture Model (GMM) and the
likelihood function is Gaussian. The solution involved inversion
of a large matrix which made the computational requirements
scale poorly with the state dimension. In this paper, we devise
an approximate particle flow filter for the case when both the
prior and the likelihood are modeled using Gaussian mixtures.
We perform numerical experiments to explore when the proposed
method offers advantages compared to existing techniques.

Index Terms—non-linear sequential state estimation, particle
flow, Daum-Huang filter, particle filter, Gaussian mixture model,
high-dimensional filtering.

I. INTRODUCTION

Particle filters offer a Monte Carlo based solution to the
discrete-time nonlinear filtering task in a Bayesian framework.
Weighted particles are propagated in time to approximate the
filtering distribution sequentially. The bootstrap particle filter
draws particles from the predictive prior distribution at each
time step and updates the weights of the particles according to
the likelihood of the measurements [2]. If the measurements
are highly informative or the state dimension is high, after a
few time steps, most of the particles lie in regions of state space
where the likelihood is very low, leading to negligible weights
for the majority of particles. This degeneracy in weights results
in poor approximation of the posterior [3]–[7].

Multiple research avenues have been explored to develop
filters that perform well in high dimensions. Some methods
factorize or partition the state space [8]–[11]; others incorpo-
rate Markov Chain Monte Carlo (MCMC) methods within the
particle filters [6], [7], [12]–[20]. Partitioning methods require
that the posterior has a special structure, and the methods that
incorporate MCMC are computationally demanding.

The “particle flow” filters, described in [21]–[30], can
achieve impressive performance for a much reduced compu-
tational overhead. In these filters, particles are “migrated” to
represent the posterior distribution by identifying and solving
differential equations that link the prior and posterior distri-
butions. Several recent algorithms combine particle flow and
particle filtering [30]–[34].

Numerous variants of the particle flow filter have been
developed, but most are intractable. When the measurement
model is linear, and the prior and posterior distributions
are Gaussian, the “exact” particle flow filter [24] can be
expressed in terms of matrix computations. Recently, Khan et
al. extended this to derive approximate flow equations for the
case of a Gaussian mixture model prior and a linear Gaussian
measurement model [1]. Although the solution is effective, the
computation of the flow requires inversion of matrix whose
size grows rapidly with respect to the state dimension.

In this paper, we develop a particle flow algorithm that
combines exact particle flow with the extended Kalman filter
implementation of the Gaussian sum filter to address the
case where both the prior and likelihood can be modelled
as Gaussian mixtures. The computational requirements of our
proposed algorithm scale with respect to the state dimension
in the same way as the exact particle flow filter.

The paper is organized as follows. In Section II we specify
the problem that we address. Section III reviews the extended
Gaussian sum filter [35], [36] and Section IV reviews the
exact particle flow filter [24], [37]. Section V introduces the
proposed Gaussian sum particle flow filter and Section VI
presents and discusses the results of numerical simulation
experiments. Section VII contains concluding remarks.

II. PROBLEM STATEMENT

The nonlinear filtering task we address involves tracking the
marginal posterior distribution p(xk|z1:k), where xk is the state
of a system at time k and z1:k = {z1, . . . , zk} is a sequence of
measurements collected up to time step k. The state evolution
and measurements are described by the following model:

x0 ∼ p(x0), (1)
xk = gk(xk−1) + vk for k ≥ 1 , (2)
zk = hk(xk) + wk for k ≥ 1 . (3)

Here p(x0) is an initial probability density function, gk :
Rd → Rd is the state-transition function of the unobserved
state xk ∈ Rd, zk ∈ RS is the measurement generated
from the state xk through a potentially nonlinear measurement
model hk : Rd → RS . vk ∈ Rd is the process noise
and wk ∈ RS is the measurement noise. We assume that
p(x0) = N (x0|µ̄0, P̄0) and vk ∼ N (0, Qk) is Gaussian.
We model wk ∼ ΣNj=1βk,jN (ζk,j , Rk,j), as being distributed
according to a Gaussian mixture.



III. GAUSSIAN SUM FILTER

Assume at time k that the predictive distribution is:

p(xk|z1:k−1) = ΣMm=1αk,mN (xk|µ̄k,m, P̄k,m) , (4)

and

p(zk|xk) = ΣNn=1βk,nN (zk|hk(xk) + ζk,n, Rk,n) . (5)

Then the posterior approaches

p(xk|z1:k) ≈ ΣMm=1ΣNn=1γk,mnN (xk|µk,mn, Pk,mn) , (6)

uniformly in xk as P̄k,m → 0 [36]. From the interaction of the
m-th component in the prior and the n-th component of the
likelihood, we have the usual extended Kalman filter update:

µk,mn = µ̄k,m +Kk,mn(zk − ζk,n − hk(µ̄k,m)) , (7)
Pk,mn = (I −Kk,mnHk,m)P̄k,m , (8)

Hk,m =
∂hk(x)

∂x
|x=µ̄k,m , (9)

Kk,mn = P̄k,mH
T
k,m(Hk,mP̄k,mH

T
k,m +Rk,n)−1 . (10)

The mixture proportion γk,mn is given as follows:

γk,mn =
δk,mn

ΣMi=1ΣNj=1δk,ij
, (11)

δk,ij = αk,iβk,jN (zk|hk(µ̄k,i) + ζk,j , Hk,iP̄k,iH
T
k,i +Rk,j).

(12)

If the predictive prior and likelihood have M and N
Gaussian components respectively, then the posterior will have
MN components. We perform resampling of the components,
as in [35], to reduce the number of components in the final
representation to M . The posterior is then approximated as:

p(xk|z1:k) ≈ ΣMm=1γ̂k,mN (xk|µ̂k,m, P̂k,m) . (13)

With p(xk|z1:k) approximated as (13), the updated predic-
tive distribution approaches

p(xk+1|z1:k) ≈ ΣMm=1αk+1,mN (xk+1|µ̄k+1,m, P̄k+1,m) ,
(14)

uniformly in xk as P̂k,m → 0, where,

αk+1,m = γ̂k,m , (15)
µ̄k+1,m = gk+1(µ̂k,m) , (16)

Gk+1,m =
∂gk+1(x)

∂x
|x=µ̂k,m , (17)

P̄k+1,m = Gk+1,mP̂k,mG
T
k+1,m +Qk+1 . (18)

Each component of the predictive and posterior distribution
follows extended Kalman filter (EKF) equations. We can
recursively track the posterior by employing parallel EKFs.
However, in higher dimensions, if gk or hk is highly non-
linear, this approach breaks down. In this paper, we use particle
flow to alleviate this problem. In the following section we
review the exact particle flow equations for the case when
the prior is represented using a single Gaussian and the
measurement model is Gaussian and can be linearized.

IV. EXACT PARTICLE FLOW (SINGLE GAUSSIAN)
Suppose that we have a set of Np particles {xik−1}

Np
i=1

approximating the posterior distribution at time k−1. After
propagating particles using the dynamic model, we obtain
particles {x̃ik}

Np
i=1 that represent the predictive posterior dis-

tribution at time k. Particle flow then migrates the particles so
that they approximate the posterior distribution at time k.

We can model the particle flow as a background stochastic
process ηλ in a pseudo time interval λ ∈ [0, 1]. To simplify
notation, we temporarily omit the time index k because the
particle flow only concerns particle migration between two
adjacent time steps. We denote by ηiλ the stochastic process’s
i-th realization, and set ηi0 = x̃ik, for i = 1, 2, . . . , Np.

The zero diffusion particle flow filters [22]–[25], [38], [39]
involve no random displacements of particles; the flows are
deterministic. The trajectory of ηiλ for realization i follows the
ordinary differential equation (ODE):

dηiλ
dλ

= f(ηiλ, λ) , (19)

where f : Rd → Rd is governed by the Fokker-Planck
equation and additional flow constraints [25].

Equation (19) can lead to a variety of particle flow filters.
The problem is analytically tractable when the predictive
posterior and the likelihood distributions are both Gaussian
and the measurement model is linear, i.e., ηi0 ∼ N(η̄0, P̄ ), z =
Hηiλ+w ∼ N(Hηiλ, R). The predictive covariance P̄ and the
measurement covariance R are both positive definite, and H
is the measurement matrix.

A. The localized exact Daum and Huang filter
The localized exact Daum and Huang filter (LEDH) [37]

linearizes the system and updates the drift term for each
individual particle. For the i-th particle, the drift term is

f(ηiλ, λ) = Ai(λ)ηiλ + bi(λ) , (20)

where

Ai(λ) =− 1

2
P̄Hi(λ)T (λHi(λ)P̄Hi(λ)T +R)−1Hi(λ),

bi(λ) =(I + 2λAi(λ))[(I + λAi(λ))P̄Hi(λ)TR−1(z−
ei(λ)) +Ai(λ)η̄0]. (21)

Here Hi(λ) =
∂h(η)

∂η

∣∣∣∣
η=ηiλ

and ei(λ) = h(ηiλ)−Hi(λ)ηiλ.

B. Numerical Implementation
The ODE is solved approximately using discretized pseudo-

time integration. We identify a sequence of discrete steps at
Nλ positions, [λ1, λ2, . . . , λNλ ], where 0 = λ0 < λ1 < . . . <
λNλ = 1. We allow the step size εj = λj − λj−1 for j =

1, . . . , Nλ to vary but require that
∑Nλ
j=1 εj = λNλ−λ0 = 1. In

the LEDH, we need to linearize Hi(λj) to update Ai(λj) and
this is performed at ηiλj−1

. The functional mapping becomes

ηiλj = f iλj (η
i
λj−1

)

= ηiλj−1
+ εj(A

i(λj)η
i
λj−1

+ bi(λj)) . (22)



V. GAUSSIAN SUM PARTICLE FLOW FILTER

The proposed filter combines exact particle flow with the
Gaussian sum filter. Particles associated with each Gaussian
in the mixture representing the predictive prior are migrated
using particle flow to form one component of the mixture
representing the posterior. Extended Kalman filters are run
in parallel (one for each component of the mixture), but the
means of these EKFs are updated using the component means
calculated from the migrated particles. The particle flow filter
and the parallel EKFs are thus intertwined, with the covariance
matrices being computed by the EKF used for particle flow
and the means being computed by particle flow used for EKF
updates. The algorithm is summarized in Algorithm (1).

The filter is initialized at time k = 0, by sampling Np par-
ticles from the initial density N (µ̄0, P̄0). As there is only one
Gaussian component in the initial density, we set xi0,1 = xi0.
At time k = 1, the number of Gaussian components in the
predictive prior, M = 1. For successive time steps, we set
M = N .

At each time step, the posterior is approximated by an
M component Gaussian mixture, via resampling of Gaussian
components (line 21 in Algorithm (1)). The particles associated
with each of those M components are propagated through the
Gaussian dynamic model to be distributed according to the
corresponding components of the predictive prior for the next
time step. The mixture proportions, means and covariances of
components of predictive prior are calculated based on parallel
EKF predictions (15), (16) and (18).

We loop over each component in the Gaussian mixture,
applying particle flow to the particles that correspond to the
component (lines 4-17 in Algorithm (1)). A separate flow
is applied for each of the N components in the mixture
representing the observation model, so at the end of this loop
we have MN sets of particles, each representing a different
component of the posterior. The mean of each component is
estimated using the sample mean of the particles associated
with that component. Parallel EKFs update the covariances
and proportions of the mixture components (8), (11).

The most computationally demanding part of the algorithm
is the inverse operations in calculating Aimn(λp) and bimn(λp).
Since individual flow parameters are calculated for each of
Np particles, and there are a total of MN separate flows
at each time step with Nλ pseudo time steps, the total
computational complexity of the matrix inverse operations is
O(MNNpNλS

3), where S is the measurement dimension.

VI. NUMERICAL EXPERIMENTS AND RESULTS

We conduct numerical simulations for two scenarios. The
first is a linear scenario, which allows us to compare the
performance of the proposed filter with an (almost) optimal
solution in the form of the Gaussian mixture model Kalman
filter. The second is a nonlinear scenario that requires the use
of a particle filter to obtain accurate state estimates. We also
compare our method with the Gaussian Sum Particle Filter
(GSPF), proposed in [35].

Algorithm 1 Particle flow for GMM predictive distribution
and likelihood (PF-GMM).

1: Initialization: Draw {xi0}
Np
i=1 from the initial probability

density p(x0). Set µ̄0 and P̄0 to be the mean and covari-
ance of p(x0), respectively. Set λ0 = 0.

2: for k = 1 to K do
3: Apply parallel EKF prediction :
{γ̂k−1,m, µ̂k−1,m, P̂k−1,m}Mm=1 → {αk,m, µ̄k,m, P̄k,m}Mm=1

4: for m = 1, . . . ,M do
5: for i = 1, . . . , Np do
6: Propagate particles through dynamical model

ηi0,m = gk(xik−1,m) + vk
7: for n = 1, . . . , N do
8: Set ηiλ0,mn

= ηiλ0,m

9: for p = 1, . . . , Nλ do
10: Set λp = λp−1 + εp
11: Calculate Aimn(λp) and bimn(λp) from (21)

with linearization performed at ηiλp−1,mn
, and

with z = zk − ζk,n P̄ = P̄k,m and R = Rk,n

12: Migrate particles: ηiλp,mn = ηiλp−1,mn
+

εp(A
i
mn(λp)η

i
λp−1,mn

+ bimn(λp))
13: end for
14: Set xik,mn = ηi1,mn
15: end for
16: end for
17: end for
18: Apply parallel EKF update: {αk,m, µ̄k,m, P̄k,m}Mm=1 →

{γk,mn, µk,mn, Pk,mn}M,N
m=1,n=1

19: Set µk,mn = 1/Np
∑Np
i=1 x

i
k,mn

20: Estimate x̂k =
∑M
m=1

∑N
n=1 γk,mnµk,mn

21: Resample Gaussian components:
{γk,mn, µk,mn, Pk,mn}M,N

m=1,n=1 → {γ̂k,m, µ̂k,m, P̂k,m}Mm=1

22: Keep only the particles corresponding to the compo-
nents retained after resampling {xik,m}

M,Np
m=1,i=1

23: (Optional) Redraw particles {xik,m}
Np
i=1 ∼ N (µ̂k,m, P̂k,m)

24: end for

1) Linear Model: We adapt the spatial sensor network setup
proposed in [7]. There are d sensors deployed uniformly on a
two-dimensional grid {1, 2, . . . ,

√
d}×{1, 2, . . . ,

√
d}, and d is

set to 64 in this example. Each sensor collects measurements,
independently of the other sensors, about the underlying state
at its physical location. Denote the state at the c-th sensor’s
position at time k by xck ∈ R, and its measurement as zck ∈ R.
Then the full state at all sensor positions at time k is denoted
by xk = [x1

k, x
2
k, . . . , x

d
k]′ ∈ Rd, and all measurements at time

k form the measurement vector zk = [z1
k, z

2
k, . . . , z

d
k ]′ ∈ Rd.

The dynamic model and the measurement model are:

xk = αxk−1 + vk , (23)
zk = xk + wk , (24)

where α = 0.9, vk ∼ N (0d×1,Σd×d). The (i, j)-th entry of Σ

is given as, Σi,j = α0e
− ||R

i−Rj ||22
β +α1δi,j , where Ri ∈ R2 is



TABLE I: Average, 5th and 95th percentile of MSE and
average execution time per step for the linear scenario of
Section (VI-1), among 100 simulation trials.

Algorithm No. of
Particles

Avg.
MSE

5th and 95th
percentile
of MSE

Exec.
time
(s)

EKF-
GMM N/A 0.19 (0.007, 1.353) 0.016

PF-
GMM

50 per
comp. 0.19 (0.008, 1.383) 2.42

GSPF 104

per comp. 14.31 (8.15, 22.59) 1.78

UKF N/A 2.04 (1.06, 3.46) 0.007
LEDH 500 2.06 (1.06, 3.55) 3.25
BPF 106 13.50 (7.28, 22.30) 3.55

the physical position of sensor i and δi,j is the Kronecker delta
symbol (δi,i = 1 and δi,j = 0 for i 6= j). Following [7], we set
α0 = 3, α1 = 0.01, β = 20. wk ∼ 1/3N (5.1d×1, σ

2
zId×d) +

1/3N (0d×1, σ
2
zId×d) + 1/3N (−5.1d×1, σ

2
zId×d), is drawn

from a GMM. We set σz = 0.1 to simulate informative mea-
surements. The true state starts with x0 = 0. For the proposed
PF-GMM algorithm, we set M = N = 3. The experiment is
executed 100 times for 50 time steps. Table [I] summarizes the
results, reporting the mean-squared error (MSE) in the state
estimation. From Table [I], our method performs as well as
the EKF-GMM algorithm, which is optimal in the linear case
except for the error introduced by component resampling after
each measurement update. It outperforms the LEDH filter and
the UKF, as they run based on an incorrect Gaussian likelihood
approximation. The BPF and the GSPF suffer from severe
weight degeneracy, even if many particles are employed.

2) Nonlinear Model: We consider a nonlinear dynamical
model gk : Rd → Rd and measurement function hk : Rd →
Rd. The c-th element of the measurement vector is hck(xk) =
(xck)2

20 . Each element c of the state vector is defined as follows:

gck(xk−1) = 0.5xck−1 + 8 cos(1.2(k − 1))

+


2.5

xc+1
k−1

1+(xck−1)2
, if c = 1

2.5
xc+1
k−1

1+(xc−1
k−1)

2 , if 1 < c < d

2.5
xck−1

1+(xc−1
k−1)

2 , if c = d

(25)

We set d = 64 and M = N = 3. The distributions of vk
and wk are the same as those for the linear model. The true
state starts at x0 = 0. The experiment is executed 100 times
for 50 time steps. Table [II] summarizes the results, reporting
the mean-squared error (MSE) in the state estimation.

For this challenging nonlinear problem, the EKF-GMM
algorithm and the UKF fail. The BPF and the GSPF suffer
from severe weight degeneracy. The LEDH filter, based on
the incorrect approximation of a single Gaussian likelihood,
performs reasonably, but the proposed PF-GMM algorithm
achieves significantly better accuracy. It is also faster than the
LEDH filter and the BPF. All numerical simulations are carried
out using an Intel i7-4770K, 3.50GHz CPU and 32GB RAM.

TABLE II: Average, 5th and 95th percentile of MSE and
average execution time per step for the nonlinear scenario of
Section (VI-2), among 100 simulation trials.

Algorithm No. of
Particles

Avg.
MSE

5th and 95th
percentile
of MSE

Exec.
time
(s)

EKF-
GMM N/A 103.64 (13.44, 255.35) 0.017

PF-
GMM

50 per
comp. 1.62 (0.17, 6.93) 2.75

GSPF 104

per comp. 6.91 (3.46, 11.70) 1.64

UKF N/A 21.56 (4.45, 57.72) 0.007
LEDH 500 2.18 (0.35, 6.31) 3.35
BPF 106 6.31 (2.85, 10.90) 3.88
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Fig. 1: MSE (averaged over 100 trials) vs time step for the
nonlinear simulation scenario of Section VI-2.

VII. CONCLUSION

In this paper, we developed a Gaussian sum particle flow fil-
ter that can address the scenario when the prior and likelihood
models are mixtures of Gaussians. The proposed method can
be employed to address challenging high-dimensional filtering
problems with multi-modal posteriors. Future research will
investigate avenues for reducing the computational overhead
and assess performance when the Gaussian mixture models
are only approximations to the true behaviour of the system.
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