
Geoide PIV-17 : 3 Dimensional Surveilance Networks
Real-Time Distributed Computing

Patrick Diez
McGill University

Centre for Intelligent Machines
Montreal, Quebec

Email: technocratik@gmail.com

Sean Lawlor
McGill University

Centre for Intelligent Machines
Montreal, Quebec

Email: slawlor@slawlor.com

Frank P. Ferrie
McGill University

Centre for Intelligent Machines
Montreal, Quebec

Email: ferrie@cim.mcgill.ca

Abstract—A new application of a distributed hash table,
notably Chord is demonstrated to allow O(log(n)) time dis-
tribution of data to n hosts over a unicast network such as
the internet. The publish/subscribe paradigm is inherent in
this application, and combined with Chord makes the basis
of the ChoPS system. Along with results demonstrating the
near-optimality of Chord when used for such distribution,
a full system layout and specification is provided for a real
implementation of ChoPS.

Keywords-project; node; chord; chops; publish-subscribe;

I. INTRODUCTION

As the internet continues to expand as a collaborative de-
vice, the constraint of unicast communication(in which data
have a single destination) becomes of ever-increasing cost.
As per RFC 2770 [1] , the IPv4 address space 232.0.0.0/8
is reserved for IP multicast (in which data have multiple
destinations), however, as with IPv6, lack of support and
availability of these addresses from consumer ISPs and
internet hubs makes this feature unreasonable as a basis
for an internet-based multicast networking. Instead, as is
proposed here, the use of a distributed hash table, notably
Chord, provides a means of establishing a virtual multicast
network with commodity unicast internet connections that
compares favorably against the naive process of unicasting
to each client. Extending Chord, a Publish/Subscribe system
and administration interface will be implemented to allow
seamless collaboration between remote processes.

II. CHORD AND PUBLISH/SUBSCRIBE

A. Background

For the purpose of this implementation, it is assumed that
a given internet host’s, i’s, ability to transmit and receive
data is well-represented by two values: its transmission and
receive costs, ctx(i) and crx(i), which may be considered
to have units of time, and encompass both the latency
(delay incurred by routing) and transmission period (delay
incurred by data rate, inversely proportional to bandwidth).
The primary implication of this assumption is that routing
costs from any host i to any other host j (i.e. the cost of data
transmission aside from that incurred by the connections of

i and j to their respective ISPs) is constant, and thus that the
transmission cost from i to j is:

ctx/rx(i, j) = ctx(i) + crx(j) (1)

The aforementioned naive process of unicasting to n
clients therefore has a total cost of:

Cnaive(i) =
n∑

j=1

ctx/rx(i, j) = n× ctx(i) +
n∑

j=1

crx(j)

= O(n× ctx(i))
(2)

From equation 2, it is evident that the cost of multicasting
from i is proportional to the transmission cost for i and the
number of hosts in the virtual multicast network. In large-
scale commercial applications, such as YouTube, the cost of
this relationship is favoured over the cost of requiring that
clients use custom software for multicast communications.
However, acquisition of high-bandwidth links for finite-term
and small-scale projects may be prohibitive, in which case
efficient use of lower-bandwidth links is essential.

B. Chord

Chord is a distributed hash table (DHT) developed by MIT
for the purpose of storing data across a large network of n
hosts, in which lookups, stores, the addition of a new host,
and the removal of a host require O(log(n)) time. The core
of Chord is a consistent hash function, h(k) = k′, which
maps host keys (called identifiers) and data keys to hashes.
Hashes are organized into a ring of 2m values, where m
is the size (in bits) of a hash, and must be significantly
larger that log2(n) to avoid hash collisions. The successor
of a key k is then the host (or node) successor(h(k)) such
that h(successor(h(k))) > h(k) for the smallest possible
value of h(successor(h(k))) if such an identifier exists,
and the node with the smallest identifier hash otherwise.
This establishes the ring of hash values, called the Chord
ring, in which the successor of a key is the node with the
next smallest identifier hash value, and the successor of the
key(s) with the largest hash value(s) is the node with the



smallest identifier hash value. A key k is stored on node
successor(h(k)) thus distributing the data stored in the
hash table evenly amongst the nodes in the ring, assuming
a sufficiently random hash function [2].

Minimally, to perform a lookup, each node i must store the
IP address of successor(h(i)). Then, if a lookup is performed
for key k, the node performing the lookup checks if it
stores k. If it does not, it performs a remote procedure call
and requests that successor(h(i)) lookup k. Given that such
remote procedure calls may, in the worst case, require a
traversal of the entire ring, this process is O(n) [2].

To mitigate this lookup cost, Chord implements a finger
table on each node. Instead of storing only successor(h(i)),
each node i stores up to m finger nodes’ IP addresses in a
table, where:

finger(i, j) = successor(h(i)+2m−j−1), 0 ≤ j < m (3)

Clearly, depending on the value of n, not all fingers need
to be stored. As shown in 3, the last finger that needs to be
stored is that for which the condition:

finger(i, j) = successor(h(i)+2m−j−1 = successor(h(i))
(4)

Again, for a sufficiently random distribution of keys, this
reduces the size of the finger table from O(m) to O(log(n)).
Then, to perform a lookup for k, the node i performing the
lookup first checks if it stores k. If it does not, if requests
that finger(i, j) performs the lookup, where j satisfies the
condition:

h(finger(i, j)) > h(k) > h(finger(i, j + 1)) (5)

In equation 5, the greater-than relationship is evaluated
while taking into consideration the nature of the Chord ring.
Since at each step of the lookup, the use of the finger table
reduces the range of identifiers left to query by a factor of
two, the worst-case time for a lookup is O(log(n)) [2].

Details regarding the processes involved in inserting and
removing hosts from the ring are not covered here, as the
rest of this section is dedicated to an analysis of a proposed
modification for Chord allowing multicasting.

C. Multicasting

If a given node i were use the same lookup mechanism as
Chord to transmit data to a node j instead of requesting it, the
transmission time would be, logically, O(log(n)). Naively,
a multicast from i to the entire Chord ring would require
O(nlog(n)) time, an increase of log(n) over the naive
unicasting process presented in the introduction. However,
during this multicast, finger(i, j) would receive (redun-
dantly) the same data to be multicast 2m−j−1 times. Thus,
optimally, transmitting the packet once to each finger(i, j)

would suffice. Each finger(i, j) would then be required to
transmit the packet to each finger(j, j + k) for all k > 0,
each finger(j, j + k) to each finger(j + k, j + k + l) for
all l > 0, and so on, as shown in Figure 1.

Figure 1. Chord Multicasting

Assuming all transmission times between nodes are iden-
tical, this process is O(log(n)) by virtue of the fact that
at each timestep, the number of nodes having received the
multicast data doubles. Additionally, this inherently provides
the basis for the publish/subscribe system, as all hosts
participating in a Chord ring will have to retransmit data
multicast to the ring, irrespective of their need of it. In this
sense, the Chord network itself acts as the broker (the host
in publish/subscribe normally responsible for matching data
producers with data recipients).

Stoica et al. [2] focus on the cost to lookups of network
latency, whose analysis cannot be assumed to be reflected
in the process of multicasting. For the purpose of analyzing
multicasting, we recast the multicasting process as a recur-
sively defined cost function:

Cmulticast(i, j) = ctx/rx(i, finger(i, j))+
0 for finger(i,j)

= finger(i,j+1)
max(Cmulticast(i, j + 1),

Cmulticast(finger(i, j), j + 1)
otherwise

(6)

where Cmulticast(i, j) is the cost of multicasting from
node i to all nodes finger(i, k) for kj. Assuming
ctx/rx(i, j) is not constant, there exists at least one or-
dering of the nodes in the Chord ring that minimizes
Cmulticast(0, 0), the Chord multicasting cost for node 0.
Analysis of the directed graph of the Chord ring, in which
vertices are nodes and edges are weighted with transmission



costs is difficult, and expected (though not proven) to be at
least NP-hard by the following argument:

Since nodes are only capable of multicasting after
having received the data to multicast, maximizing
the slope of the function of the number of trans-
mitting nodes vs. time will minimize the multicast
time, as the area under that function is constant
(and equal to n − 1). In turn, maximizing this
slope implies that the first nodes to transmit ought
to have the least transmission costs to their fingers
of any nodes in the ring. Conversely, the last nodes
to transmit ought to have the greatest transmission
cost. However, these nodes will be transmitting to
their successor along the outside of the Chord ring.
As maximizing the values along the outside of the
Chord ring is equivalent to the travelling salesman
problem, a known NP-hard problem [3], so is
the problem of minimizing the Chord multicasting
cost for a given Chord ring.

D. Results

Two sets of simulations were performed. For the purpose
of simulation, the Chord ring was simplified to ignore the
hash function, and instead consist only of evenly spaced
nodes. This simplification is considered to have a negligible
effect on the results, given that the number of nodes is
small. A variation of an exponential distribution was used to
generate random host transmit and reception costs, in which
the likelihood of a host having a given cost is inversely
proportional to that cost. Finally, the ratio of maximum
cost to minimum cost is specified and provides a means
of controlling the variance of the cost on the network.

The first simulations compared number of nodes to multi-
cast cost. Maximum and minimum broadcast times represent
worst-case and best-case, respectively. Results were taken
from the average of 1000 simulations, each performed with
different transmit and reception costs, and each consisting
of n! broadcasts (one for each permutation).

As is seen in Figure 2 , there exists roughly a 53%
time advantage in the optimal case over the average case.
However, this factor remains relatively constant, that is, the
growth of the worst case is proportional to the growth of
the average case. In this sense, the performance of Chord
is considered good, in that its computational complexity is
(empirically) O(log(n)) in all cases.

From Figure 3, it becomes apparent that Chord performs
best when the nodes in the Chord have similar bandwidths
(or, more precisely, transmission and reception costs). These
data suggest that Chord multicasting is susceptible to a
“rotten apple spoiling the barrel, that is, that as the number
of low-bandwidth computers increases, the overall network
speed quickly drops.

It is concluded from these data that, without modifying the
structure of Chord, any improvement to the time required to

Figure 2. Graph of Multicast Cost vs. Number of Chord Nodes, with
logarithimic regressions

Figure 3. Graph of Multicast Cost vs. Bandwidth Ratio, with linear
regressions

multicast from the unoptimized case will result in at most a
constant factor of reduction, and that there is no difference in
order of complexity between the unoptimized and optimized
cases.

III. IMPLEMENTATION WITH CHOPS

A. ChoPS

ChoPS is the name given to an implementation of the
Chord protocol with the Publish/Subscribe protocol as out-
lined in this paper. It defines an implementation which
utilizes both theories to create a distributed real-time system
which allows for indeterminate length data to be transmit-
ted without knowledge of receivers (subscribers) nor the
network transmission protocol. ChoPS will also allow for
data transmission to be optimized, providing that each client
within a ChoPS network (projects), maintains the ability to
retransmit the data it has received to other computer within
a project (nodes).

ChoPS allows for a simple front-end to large, complex
data transmissions (I.e. streams), to a largely distributed



network through four features: Use of Chord for distributed,
optimized data transmission, use of the Publish/Subscribe
paradigm to allow for a loosely coupled network, a simple
server which manages all connections, and a graphical user
interface (GUI) to manage the entire system remotely.

B. Use of Chord and Publish/Subscribe in ChoPS

As previously outlined in Section II-B of this report,
Chord allows for data stream transmission to be optimized
when sending data to a large number of nodes. By utilizing
the Chord mechanisms we can create projects within ChoPS.
These projects allow for multiple nodes to communicate to
each other whilst remaining separated from other projects.
This guarantees that a node only contributes to stream
transmission on the projects it is a member.

A ChoPS project is a Chord ring where the published
stream within that ring is of a defined topic as outlined in
Publish/Subscribe [4] . This design of building a Chord ring
for each project allows for projects to be separated from
each other, and guarantees that each node within a project
will have its maximum bandwidth to (re)transmit the stream
it is receiving to the other nodes in the project. The data
transmitted across a ChoPS project is of indeterminate length
and format. It therefore could be of infinite length, such
as a security video stream, which never ends as long as
the camera is active. Also a video format is only one of
an infinite amount of data types which can be transmitted,
meaning that ChoPS is truly a generalized data stream
transmission system.

C. ChoPS Server

The ChoPS Server is implemented as a system daemon,
which opens port(s) on a node, each of which can accept
connections. The server implements a connection listener
which can spawn multiple concurrent connections from
multiple administrative clients and/or project nodes. Each
connection has its own packet listener, which will simply
sleep until a packet is received, and then will pass the
packet to a centralized packet handler which processes the
packet information and sends a response accordingly. Each
client connection, whether from an administrator or simply
a stream transmission through a project, will get its own
connection information, which the server knows about and
can process independently from the other client connections.
The server however, as currently implemented is a single
packet handler with multiple clients connecting to it, each
being processed in series, and therefore must be and is
thread-safe.

Each node within the ChoPS network runs a local instance
of the ChoPS server. The server initially sleeps, only listen-
ing for administrative connections until an administrator tells
the node to connect to a project and start (re)transmission
of a stream. Each node stores all the projects it is connected
to, as well as information about each project which is

required to participate in stream transmission within the
project (finger-table, successor, etc).

D. Administrative Server Connections

To administer a node’s local ChoPS server instance, an
administrator must log into the node with the node’s local
administrative username and password. This information is
stored locally on the node, in a secure hash. Once connected,
all data transmissions are through console commands as
typical with a standard Unix server process. When the server
receives a new console command, it processes the command
and sends a response.

Only commands which do not affect a ChoPS project as
a whole are accessible as an local administrator. Meaning
that only commands which affect the local server instance,
and will not affect nodes other than itself are accessible.
However a local instance of the project settings can be made,
and because the changes don’t propagate, they will not be
pushed to the rest of the nodes within the modified project.

From this authenticated mode, projects can also be added
or removed from a node. If removed, a notification is sent to
all members of the project notifying the other member nodes
that the original node has dropped from the project and the
finger tables as well as hashes need to be updated. Adding
a project works in a similar manner. One node within the
new project needs to be made aware that a new node wishes
to join the current project. Once that node is notified of a
new addition, all the finger tables and hashes of each node
within the project are updated per a update request from the
original connected node, not the joining node.

E. Administrative Project Connections

To administer an entire ChoPS Project, an administrator
must log into a single member node of the project with
the project’s administrative username and password. Once
authenticated, all commands which allow for changes to an
entire ChoPS project are available to the administrator.

Project administration can be viewed as a series of
changes that will effect an entire ChoPS project. They
include the ability to stop a project and remove it completely,
effectively shutting down all member nodes’ access to that
project’s data, as well as changing how data is routed
through the project. Once a change has been made on the
node to which the administrator is connected, the change
in immediately pushed to all subsequent nodes within the
project so the change takes place on all nodes.

As similar to an administrative server connection, project
administration cannot affect any local node’s instance, ex-
cept in relation to the project for which it is currently
authenticated.

F. Project Monitoring

A user can also log into a ChoPS project through a
more restricted account to simply get data about a project.



They cannot change any aspects of the running project,
including disconnecting nodes. They cannot change aspects
about any single system as well. This mode is designed for
non-authorized users to still be able to gather data about
the network, and if necessary notify the administrator of a
change that needs to take place.

G. Server Data Processing

Once a node is a member of a project, and the project has
been notified that a new member node has been added, then
the node starts receiving the data which is being published
across that project. The node now has two abilities, it can
either drop the data and simply participate in retransmission,
or it can subscribe to the data stream and begin processing
it. Once the data has been processed, the node also has the
option to publish the data into a new ChoPS project for other
nodes to connect to and process/view/transmit.

If the node is receiving the data and passing it into
the userspace (the computer system area where a users’
programs run in user-editable memory), the node will create
a local socket to which the stream is passed, and a system
user can then connect to the stream an process the incoming
data as it is received. For example the user could connect
to the local socket, process the data using a tool such as
MatlabTM , and then send the output to another stream
which can either be viewed locally or passed back to the
ChoPS server to become another publication in a new ChoPS
project. However even if a user is processing data, if the
node is not a data endpoint in the Chord process, the
node will still retransmit the data to the nodes listed in its
finger table. All nodes must participate in the ChoPS data
transmission protocol regardless of whether they are reading
and/or storing the stream locally.

H. ChoPS Administration GUI

The ChoPS administration graphical user interface is built
so that it is a remote administration module to the ChoPS
system. To run the administration GUI, one does not need
to have a local instance of the ChoPS server running. The
administration GUI is built around the console command
system, which means that the GUI will send commands to
any system it is connected through as console ASCII text,
and receive responses the same way. This allows an user
to connect to a ChoPS server simply through a telnet [5]
session without the need for the GUI if they so wish.

I. ChoPS Administration Console

The ChoPS administration GUI can open a series of con-
soles, which allow an administrator to override the default
GUI interface, and send system commands directly to the
node. Each console can support only one connection to a
server, however one can have multiple consoles open, each
with its own connection.

J. ChoPS Administration GUI Interfaces

The ChoPS administration GUI also has graphical repre-
sentation to any command that can be passed through the
console. This allows for two modes of administration, as
shown as well with the ChoPS server in sections III-D and
III-E, only certain aspects can be changed depending on how
the administrator is logged into the Node.

The administrative GUI interfaces are designed for each of
use, with features to aid the user such as tool-tips and labels
describing behavior of functions. The goal of the ChoPS
administration GUI is to allow any user, without knowledge
of the underlying system, to start a publication of a stream
and allow the stream to be transmitted effectively. Ideally it
would even reach the point where no documentation would
need to be read to use the system.

IV. CONCLUSION

There are many options to distributed computation, how-
ever many current systems do not take into account the
possibility of large, possibly infinite, data streams being
transmitted in a multicast nature to many end hosts. Also
the current implementation of the IPv4 internet backbone
doesn’t allow for a simple multicasting protocol to be
implemented. To build a multicast network across a large,
distributed collection of hosts there currently exists two main
options. They are to spend large sums of money, and setup a
dedicated routing network which would allow the multicast
protocol, or to tunnel all traffic over a dedicated channel,
and increase network overhead. By utilizing the Chord
DHT model, coupled with a Publish/Subscribe protocol,
ChoPS can get around these problems by providing a stable
environment for these data transmissions.

The features outlined with the ChoPS administrative
graphical user interface allow for basic users to start right
away with the ChoPS system and begin processing their data.
By utilizing Chord’s proven stability, ChoPS also guarantees
that data transmission will be stable throughout a project’s
life. ChoPS also utilizes practices which are standard with
Unix based processes, which have been shown to have
superior security and stability. For example, all commands
to the ChoPS server are outlined as ASCII text, allowing any
system administrator to login without the GUI and control
any aspect of the system.

Finally due to ChoPS generic nature, the system is not
limited to video stream transmission, as will mostly be
utilized by the Geoide PIV-17 project, the parent project to
ChoPS. ChoPS can be applied to a data stream of any type
and nature with an infinite number of participants, when
properly applied.

ACKNOWLEDGMENT

Thanks to Professor Frank P. Ferrie of McGill University
and Professor James H. Elder of York University for sup-
porting this system in Geoide PIV-17.



REFERENCES

[1] D. M. of Cisco Systems and P. L. of Sprint, “Rfc 2770 - glop
addressing in 233/8,” Network Working Group, Tech. Rep.,
2000, http://www.rfc-editor.org/rfc/rfc2770.txt.

[2] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” MIT Laboratory for Computer Science,
Tech. Rep., 2001, http://pdos.lcs.mit.edu/chord/.

[3] R. M. Karp, Complexity of Computer Computations - Re-
ducibility Among Combinatorial Problems. New York, New
York: Plenum, 1972, pp. 85–103.

[4] T. J. K. Birman, “Exploiting virtual synchrony in distributed
systems,” in Proceedings of the eleventh ACM Symposium on
Operating systems principles, 1987, pp. 123–138.

[5] M. McKenzie, “Rfc 495 - telnet protocol specification,”
Network Working Group, Tech. Rep., 1973, ftp://ftp.rfc-
editor.org/in-notes/rfc495.txt.


