
REAL-TIME DISTRIBUTED COMPUTING: CHOPS

Sean Lawlor, Patrick Diez, and Frank Ferrie

McGill University
Centre for Intelligent Machines

Montreal, Quebec

ABSTRACT
Recently there has been an emergence of large, indefinite length
data (video) streams as used in many computer vision problems.
There is now a requirement to transmit these streams between
remote locations where post-processing may occur and the re-
sults of this may be released to further remote locations for
additional post-processing. Using two main networking theories,
Chord and the Publish/Subscribe paradigm, ChoPS (Chord based
Publish/Subscribe) was conceived. ChoPS uses a distributed hash
table, notably Chord, which is demonstrated to have an average
of O(log2(n)) time in order to disseminate data to n hosts over
a unicast network such as the Internet. ChoPS also implements
the Publish/Subscribe paradigm, which is inherent in the anony-
mous video stream subscription application. Along with results
demonstrating the efficiency of Chord when used for such data
distribution, a full system layout and specification is provided for
an implementation of ChoPS.

Keywords-Multicast Protocols; Multicast Communication;
Peer to peer computing; IP Networks; Computer Network
Management

I. INTRODUCTION

As the Internet continues to expand as a collaborative device,
the constraint of unicast communication (in which data have a
single destination) becomes of ever-increasing cost. As per RFC
2770 [1] , the IPv4 address space 232.0.0.0/8 is reserved for IP
multicast (in which packets have multiple destinations), however, as
with IPv6, lack of support and availability of these addresses from
consumer ISPs and internet hubs makes this feature unreasonable
as a basis for internet-based multicast networking. Instead, as is
proposed here, the use of a distributed hash table, notably Chord,
provides a means of establishing a virtual multicast network with
commodity unicast internet connections that compares favorably
against the naı̈ve process of unicasting to each client. Extending
Chord, a Publish/Subscribe system and administration interface
is implemented to allow seamless collaboration between remote
processes.

II. CHORD AND PUBLISH/SUBSCRIBE

II-A. Background
For the purpose of this implementation, it is assumed that a

given Internet host’s (i’s) ability to transmit and receive data is
well-represented by two values: its transmission and receive costs,
ctx(i) and crx(i), which may be considered to have units of time,
and encompass both the latency (delay incurred by routing) and
transmission period (delay incurred by data rate, inversely propor-
tional to bandwidth). The primary implication of this assumption
is that transmission cost of a fixed-length packet from any host i
to any other host j is constant, and thus that the transmission cost
from i to j is:

ctx/rx(i, j) = ctx(i) + crx(j) (1)

The aforementioned naı̈ve process of unicasting to n clients
therefore has a total cost of:

Cnaive(i) =
n∑

j=1

ctx/rx(i, j)

= n× ctx(i) +
n∑

j=1

crx(j)

= O(n× ctx(i))

(2)

From equation (2), it is evident that the cost of multicasting from
i is proportional to the transmission cost for i and the number of
clients in the unicast network. In large-scale commercial applica-
tions, such as YouTube, the cost of this relationship is favored over
the cost of requiring that clients use custom software for multicast
communications. However, acquisition of high-bandwidth links for
finite-term and small-scale projects may be prohibitive, in which
case efficient use of lower-bandwidth links is preferred.

II-B. Chord
Chord is a distributed hash table (DHT) developed at MIT by

“Stoica et al. [2]” for the purpose of storing data across a large
network of n hosts, in which lookups, stores, the addition of a new
host, and the removal of a host each require O(log2(n)) time. The
core of Chord is a consistent hash function, h(k) = k′, which maps
host keys (called identifiers) and data keys to hashes. Hashes are
organized into a ring of 2m values, where m is the size (in bits)
of a hash, and must be significantly larger than log2(n) to avoid
hash collisions. The successor of a key k is then the host (or node)
successor(h(k)) such that h(successor(h(k))) > h(k) for the
smallest possible value of h(successor(h(k))) if such an identifier
exists, and the node with the smallest identifier hash otherwise. This
establishes the ring of hash values, called the Chord ring, in which
the successor of a key is the node with the next smallest identifier
hash value, and the successor of the key with the largest hash value
is the node with the smallest identifier hash value. A key k is
stored on node successor(h(k)) thus distributing the data stored
in the hash table evenly amongst the nodes in the ring, assuming
a sufficiently random hash function [2].

Minimally, to perform a lookup, each node i must store the IP
address of successor(h(i)). Then, if a lookup is performed for
key k, the node performing the lookup checks if it stores k. If
it does not, it performs a remote procedure call and requests that
successor(h(i)) lookup k. Given that such remote procedure calls
may, in the worst case, require a traversal of the entire ring, this
process is O(n) in time complexity [2].

To mitigate this lookup cost, Chord implements a finger table
on each node. Instead of storing only successor(h(i)), each node
i stores up to m finger nodes’ IP addresses in a table, where:

finger(i, j) = successor(h(i) + 2m−j−1), 0 ≤ j < m (3)

Clearly, depending on the value of n, not all fingers need to be
stored. As is shown in (3), the last finger that needs to be stored



is that for which the following condition applies:

finger(i, j) = successor(h(i) + 2m−j−1)
= successor(h(i))

(4)

Again, for a sufficiently random distribution of keys, this reduces
the size of the finger table from O(m) to O(log2(n)). Then, to
perform a lookup for k, the node i performing the lookup first
checks if it stores k. If it does not, it requests that finger(i, j)
performs the lookup, where j satisfies the condition:

h(finger(i, j)) > h(k) > h(finger(i, j + 1)) (5)

In equation (5), the greater-than relationship is evaluated while
taking into consideration the nature of the Chord ring. Since at each
step of the lookup, the use of the finger table reduces the range of
hosts left to query by a factor of two, the worst-case time for a
lookup is O(log2(n)) [2].

Details regarding the processes involved in inserting and remov-
ing hosts from the ring are not covered here, as the rest of this
section is dedicated to an analysis of a proposed modification for
Chord allowing multicasting.

II-C. Multicasting
If a given node i were to use the same lookup mechanism as

Chord to transmit data to a node j instead of requesting it, the
transmission time would be, logically, O(log2(n)). Naı̈vely, a mul-
ticast from i to the entire Chord ring would require O(n log2(n))
time, an increase of log2(n) over the naı̈ve unicasting process
presented in the introduction. However, during this multicast,
finger(i, j) would receive (redundantly) the same data to be
multicast 2m−j−1 times. Thus, optimally, transmitting the packet
once to each finger(i, j) would suffice. Each finger(i, j) would
then be required to transmit the packet to each finger(j, j+k) for
all k > 0, each finger(j, j+ k) to each finger(j+ k, j+ k+ l)
for all l > 0, and so on, as shown in Figure 1.

Fig. 1. Chord multicasting paths using 16 nodes

Assuming all transmission times between nodes are identical,
this process is O(log2(n)) by virtue of the fact that at each
time step, the number of nodes having received the multicast data
doubles. Additionally, this inherently provides the basis for the
publish/subscribe system, as all hosts participating in a Chord ring
will have to retransmit data multicast to the ring, irrespective of
their need of it. In this sense, the Chord network itself acts as
the broker (the host in publish/subscribe normally responsible for
matching data producers with data recipients).

Stoica et al. [2] focus on the cost to lookups of network latency,
whose analysis cannot be assumed to be reflected in the process of

multicasting. For the purpose of analyzing multicasting, we recast
the multicasting process as a recursively defined cost function:

Cmulticast(i, j) = ctx/rx(i, finger(i, j))+
0 for finger(i, j)

= finger(i, j + 1)
max(Cmulticast(i, j + 1),

Cmulticast(finger(i, j), j + 1))
otherwise

(6)

where Cmulticast(i, j) is the cost of multicasting from node i
to all nodes finger(i, k) for k ≥ j. Assuming ctx/rx(i, j) is not
constant, there exists at least one ordering of the nodes in the Chord
ring that minimizes Cmulticast(0, 0), the Chord multicasting cost
for node 0. Analysis of the directed graph of the Chord ring, in
which vertices are nodes and edges are weighted with transmission
costs is difficult, and expected (though not proven) to be at least
NP-hard by the following argument:

Since nodes are only capable of multicasting after hav-
ing received the data to multicast, maximizing the initial
slope of the function of the number of transmitting nodes
vs. time will in some sense minimize the multicast time.
In turn, maximizing this slope implies that the first nodes
to transmit ought to have the least transmission costs to
their fingers of any nodes in the ring. Conversely, the last
nodes to transmit ought to have the greatest transmission
cost. However, these nodes will be transmitting to their
successor along the “outside” (see Figure 1) of the Chord
ring. As maximizing the edge weights along the outside
of the Chord ring is equivalent to the traveling salesman
problem, a known NP-hard problem [3], this suggests
that the problem of minimizing the Chord multicasting
cost for a given set of nodes (by moving nodes in the
ring) is also an NP-hard problem.

Consequently, determining optimal-case and worst-case for a given
set of nodes is an unfeasible approach to evaluating the performance
of Chord multicasting, if the number of nodes is not impractically
small.

II-D. Results
Two sets of simulations were performed. For the purpose of

simulation, the Chord ring was simplified to ignore the hash
function, and instead consists only of evenly spaced nodes. This
simplification is considered to have a negligible effect on the
results, given that the number of nodes is small with respect to the
number of possible hash values. A variation of an exponential dis-
tribution was used to generate random host transmit and reception
costs in the interval (0.1, 1.0). Additionally, the expectation value
of the distribution is specified to mimic the uneven distribution of
high-speed and low-speed consumer connections on the Internet.
Each result was obtained from 1000 simulations performed with
different randomly-distributed transmit and reception costs.

Figure 2 shows the time required to multicast a single packet
with respect to the number of nodes. For these simulations, the
expected transmit and receive costs were 0.7 respectively. Clearly,
in 95% of all cases, the multicast cost increases logarithmically
with respect to the number of nodes in the ring. The second
simulations, whose results are in Figure 3, measured multicast
cost with respect to expected transmit and receive cost for 256
nodes. If all nodes were identical, these results would be perfectly
linear, since the Chord ring topology is optimal and invariant in
these simulations. However, these data have negative inflection,
suggesting that multicasting is negatively impacted by the variance
of the transmit and receive costs in the ring (which is largest when
the expected cost is the average of the bounds of the distribution,
making the latter uniform).

It is concluded from these data that Chord is applicable to
networks with varying point-to-point communication costs, and
thus is suitable for use for multicasting on the Internet.



10
1

10
2

10
3

4

6

8

10

12

14

16

18

Number of nodes in Chord Ring

A
v
e
ra

g
e
 d

e
la

y
 w

it
h
 9

5
%

 c
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l

Fig. 2. Graph of Multicast Cost vs. Number of Chord Nodes
(logarithmic) with a Transmit/Receive Cost Expectation Value of
0.7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

4

6

8

10

12

14

16

Transmit/Receive Cost Expectation Value

A
v
e
ra

g
e
 d

e
la

y
 w

it
h
 9

5
%

 c
o
n
fi
d
e
n
c
e
 i
n
te

rv
a
l

Fig. 3. Graph of Multicast Cost vs. Transmit/Receive Cost Expec-
tation Value with 256 Participant Nodes

III. IMPLEMENTATION WITH CHOPS

III-A. ChoPS
ChoPS is the name given to an implementation of the Chord

protocol combined with the Publish/Subscribe protocol as outlined
in this paper. It defines an implementation which employs both
concepts to create a distributed real-time system which allows
for indefinite length data to be transmitted without knowledge
of receivers (subscribers) nor the network transmission protocol.
ChoPS will also allow for data multicasting to be optimized,
providing that each client within a ChoPS network (projects),
maintains the ability to retransmit the data it has received to other
computers within a project (nodes).

ChoPS allows for a simple front-end to large, complex data trans-
missions (i.e. streams) to a largely distributed network through four
features: (1) Use of Chord for multicast data transmission. (2) Use
of the Publish/Subscribe paradigm to allow for a loosely coupled
network. (3) A simple server which manages all connections. (4) A

graphical user interface (GUI) to manage the entire system remotely
(administrative frontend).

III-B. Use of Chord and Publish/Subscribe in ChoPS

As previously outlined, Chord allows for data stream transmis-
sion to be optimized when sending data to a large number of nodes.
By using the Chord mechanisms we can create projects within
ChoPS. These projects allow for multiple nodes to communicate
with each other while remaining separated from other projects. This
guarantees that a node only contributes to stream transmissions of
the projects of which it is a member.

A ChoPS project is a Chord ring where the published stream
within that ring is of a defined topic as outlined in the Pub-
lish/Subscribe paradigm [4] . This design of building a Chord ring
for each project allows for projects to be separated from each
other, and guarantees that each node within a project will have
its maximum bandwidth to (re)transmit the stream it is receiving
to the other nodes within the project.

The data transmitted across a ChoPS project is of indefinite
length and format. It therefore could be of infinite length, such as
a security video stream, which never ends as long as the camera is
active. Granted a video stream is only one of a near-infinite number
of data types which can be transmitted with ChoPS, as ChoPS is
designed for generalized data stream transmission.

III-C. ChoPS Server

The ChoPS server is implemented as a system daemon, which
opens port(s) on a node, each of which can accept connections. The
server can handle multiple concurrent connections from multiple
administrative clients and/or project nodes. Each connection has its
own packet listener, which simply sleeps until a packet is received,
and then passes the packet to a centralized packet handler which
processes the packet information and sends a response accordingly.
Each client connection, whether from an administrative client or
simply a stream transmission through a project will get its own
connection information which the server is aware and can process
independently from other client connections.

Each node within the ChoPS network runs a local instance of
the ChoPS server. The server initially sleeps, only listening for
administrative connections until an administrator tells the node
to connect to a project and start (re)transmission of a stream.
Each node stores all the projects it is connected to, as well as
information about each project which is required to participate in
stream transmission within the project (finger-table, successor, etc.).

III-D. Administration

An administrator can log into the server through the GUI and
have two administrative roles. The first role is to administer a single
node, either shutting it down, starting a new project, joining a
project, or removing itself from a project. The second role is to
administer an entire project, either shutting down all participating
nodes (for that project only) or modifying some project setting such
as the administrative credentials. Each of these roles are separated
from each other for system stability when managing ChoPS.

III-E. Project Monitoring

A user can also log into a ChoPS project through a more
restricted account to simply get information about a project. They
cannot change any aspects of the running project nor are they able
to change any aspects of any node in the project. This mode is
designed for unprivileged users to be able to gather information
about the network and if necessary notify the administrator of a
change that needs to take place.



III-F. Server Data Processing
Once a node is a member of a project, and the project has been

notified that a new member node has been added, the node starts
receiving the data which is being published across that project.
The node may direct the data it received in one of two ways: it
may drop the data and simply participate in retransmission or may
subscribe to the data stream and begin processing it. Once the data
has been processed, the node also has the option to publish the data
into a new ChoPS project for other nodes to connect to and further
process/view/retransmit.

If the node is receiving the data and passing it into the userspace
(the computer system area where a users’ programs run in user-
editable memory), the node will create a local socket to which the
stream is passed and a system user can then connect to the stream
and process the incoming data as it is received. For example, the
user could connect to the local socket, process the data using a tool
such as Matlab, and then send the output to another stream which
can either be viewed locally or passed back to the ChoPS server to
become another publication in a new ChoPS project. However, even
if a user is processing data, should the node not be a data endpoint
in the Chord process, the node will still retransmit the data to the
nodes listed in its finger table. All nodes must participate in the
ChoPS data transmission protocol regardless of whether they are
reading and/or storing the stream locally.

III-G. Test System
A test system of ChoPS has been implemented currently trans-

mitting video within a closed network. As suggested in the original
Chord [2] paper, an SHA hash is utilized in this system to generate
node identifiers. This implementation was created in JavaTM, and
is fully cross-platform capable, allowing for many different system
types to be able to generate, process, and review data transmitted
through ChoPS. In this system, data was captured from a simple
laptop capturing JPEG frames from a webcam which was then
transmitted through a ChoPS ring consisting of variations of 4,
8, and 12 hosts (the last being specifically not a power of two
for the purpose of analyzing unbalanced Chord rings). A Canny
edge detector [5] was then performed and the resulting data stream
published into a small (2-node) ring which was then displayed,
alongside the original data stream.

Throughout all trials, ChoPS never exceeded 2% CPU utilization
of any single system (with processors no less than a single 1.7 GHz
code) and never exceeded 10 MiB of memory usage on any system.
These measurements were done on a video stream producing 20
frames per second with each frame being 16 KiB in size. None of
load these measurements include the edge detector or tools used to
capture and display the videos.

IV. FUTURE WORK
There are many applications for ChoPS in current research.

For example, it could be very helpful for multiple universities
participating in a research project where data is constantly being
generated and processed across a large physical distance requiring
transmission over the Internet.

Future work can be directed along a series of different avenues,
the first being applications other than video processing (as was
done with the Geoide project). Since ChoPS is not specific to what
types of data are being processed, it is not expected that ChoPS will
perform incorrectly, however it should be investigated to confirm
this theory.

Another avenue of future work would be to add auto-detection
and -correction of ring stability to ensure no nodes die unexpectedly
without a ring rebalancing to take place. However, this feature
would also need to make sure that bandwidth is not greatly reduced
for standard data transmission when adding the stability detection
message transmissions.

Finally, further testing should be performed for a full empirical
analysis of our time bound in real networks. So far, testing has only

been performed on closed, private networks and therefore other
traffic’s influence on ChoPS needs to be investigated.

V. CONCLUSION
There are many options to distributed computation, however,

many current systems do not take into account the possibility of
transmission of large, possibly infinite, data streams in a multicast
nature to many end hosts. Also the current implementation of the
IPv4 internet backbone does not allow for a simple multicasting
protocol to be implemented. To build a multicast network across a
large, distributed collection of hosts, there currently exists two main
options: to spend large sums of money and setup a dedicated routing
network which would allow the multicast protocol, or to tunnel all
traffic over a dedicated channel and increase network overhead.
By using the Chord DHT model coupled with a Publish/Subscribe
protocol, ChoPS can mitigate these problems by providing a stable
and efficient environment for these data transmissions.

The features outlined within the ChoPS administrative graphical
user interface allow for basic users to start right away with the
ChoPS system and begin processing their data. By leveraging
Chord’s proven stability, ChoPS guarantees that data transmission
will be consistent throughout a project’s life. ChoPS employs
practices which are standard with Unix based processes, which have
been shown to have superior security and stability. For example, all
commands to the ChoPS server are outlined as ASCII text, allowing
any system administrator to login without the GUI and control any
aspect of the system.

Finally due to ChoPS generic nature, the system is not limited to
video stream transmission, as was requisite for the Geoide PIV-17
project, the former parent project to ChoPS. ChoPS can be applied
to a data stream of any type and nature with a greatly increased
number of participants.

ACKNOWLEDGMENT

Thanks to Professor Frank P. Ferrie of McGill University and
Professor James H. Elder of York University for supporting this
system in Geoide PIV-17.

VI. REFERENCES
[1] D. M. of Cisco Systems and P. L. of Sprint, “Rfc 2770: Glop

addressing in 233/8,” Network Working Group, Tech. Rep.,
2000, http://www.rfc-editor.org/rfc/rfc2770.txt.

[2] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup protocol for internet applications,” Proc. IEEE/ACM
Transactions on Networking, vol. 11, no. 1, pp. 17 – 32, Feb
2003.

[3] R. M. Karp, Complexity of Computer Computations - Re-
ducibility Among Combinatorial Problems. New York, New
York: Plenum, 1972, pp. 85–103.

[4] T. J. K. Birman, “Exploiting virtual synchrony in distributed
systems,” in Proc. of the eleventh ACM Symposium on Oper-
ating systems principles, 1987, pp. 123–138.

[5] J. Canny, “A computational approach to edge detection,” Pat-
tern Analysis and Machine Intelligence, IEEE Transactions on,
vol. PAMI-8, no. 6, pp. 679 –698, Nov. 1986.


