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Discrete-time Filtering

Fixed observations y1, . . . , yn with yk ∈ Rdy .

Hidden Markov chain X0, . . . ,Xn with Xk ∈ Ed .

Initial distribution X0 ∼ µ(dx0).

Probability transition kernel K (dxt |xt−1) such that:

Pr(Xt ∈ A|Xt−1 = xt−1) =

∫
A
K (dxt |xt−1) (1)

Observations conditionally independent of X and have
marginal distribution:

Pr(Yt ∈ B|Xt = xt) =

∫
B
g(dyt |xt) (2)
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Bayes’ Recursion

Paths of signal and observation processes from time k to l :

Xk:l = (Xk ,Xk+1, . . . ,Xl); Yk:l = (Yk ,Yk+1, . . . ,Yl).

Define probability distribution:

πk:l |m(dxk:l) = P(Xk:l ∈ dxk:l |Y1:m = y1:m)

Bayes theorem leads to the following relationship:

π0:t|t(dx0:t) ∝ µ(dx0)
t∏

k=1

K (dxk |xk−1)g(yk |xk) (3)
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Bayes’ Recursion

Prediction:

π0:t|t−1(dx0:t) = π0:t−1|t−1(dx0:t−1)K (dxt |xt−1)

Update:

π0:t|t(dx0:t) =

[∫
Rd
y

π0:t|t−1(dx0:t)

]−1
g(yt |xt)π0:t|t−1(dx0:t)
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Particle Filtering

Recursive algorithm.

Produce particle cloud with empirical measure close to πt|t .

N particle paths {x (i)t }Ni=1.

Associated empirical measure:

πNt|t(dxt) =
1

N

N∑
i=1

δ
x
(i)
t

(dxt) (4)
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Particle Filtering

Initialization: Sample x
(i)
0 ∼ π0|0(dx0).

For t ≥ 1

Importance sampling: Sample x̃
(i)
t ∼ πNt−1|t−1K (dxt).

Weight evaluation:

w
(i)
t ∝ g(yt |x̃ (i)t );

N∑
i=1

w
(i)
t = 1 (5)

Resample: Sample x
(i)
t ∼ π̃Nt|t(dxt).
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Drawbacks

Variation of Importance Weights

Distn. of particles {x̃ (i)t }Ni=1 is approx. πt|t−1 = πt−1|t−1K .

The algorithm can be inefficent if this is “far” from πt|t .

Then the ratio:

πt|t(dxt)

πt|t−1(dxt)
∝ g(yt |xt)

can generate weights with high variance.
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Drawbacks

Variation induced by resampling

Proposed resampling generates N
(i)
t copies of the i-th particle.

These are drawn from a multinomial distribution, so:

E (N
(i)
t ) = Nw

(i)
t

var(N
(i)
t ) = Nw

(i)
t (1− w

(i)
t )
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Sequential Importance Sampling/Resampling

Initialization: Sample x
(i)
0 ∼ π0|0(dx0).

For t ≥ 1

Importance sampling: Sample x̃
(i)
t ∼ πNt−1|t−1K̃ (dxt).

Weight evaluation:

w
(i)
t ∝

K (dxt |x (i)t−1)g(yt |x̃ (i)t )

K̃ (dxt |x (i)t−1)
;

N∑
i=1

w
(i)
t = 1 (6)

Resample: Sample x
(i)
t ∼ π̃Nt|t(dxt).
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Sequential Importance Sampling/Resampling

Algorithm is the same as the bootstrap with a new dynamic
model.

Pr(Xt ∈ A|Xt = xt−1,Yt = yt) =

∫
A
K̃ (dxt |xt−1, yt)

Pr(Yt ∈ B|Xt−1 = xt−1,Xt = xt) =

∫
B
w(xt−1, xt , dyt)

Only true if we assume observations are fixed!

With this model, ρ0:t|t−1 6= π0:t|t−1 but ρ0:t|t = π0:t|t .

If K̃ has better mixing properties, or w(xt−1, xt , yt) is a flatter
likelihood, then algorithm will perform better.
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Almost Sure Convergence

Theorem

Assume that the transition kernel K is Feller and that the
likelihood function g is bounded, continuous and strictly positive,
then lim

N→∞
πNt|t = πt|t almost surely.

Feller: for ϕ a continuous bounded function, Kϕ is also a
continous bounded function.

Intuition: we want two realizations of the signal that start
from “close” positions to remain “close” at subsequent times.

Define (µ, ϕ) =

∫
ϕµ.

We write lim
N→∞

µN = µ if lim
N→∞

(µN , ϕ) = (µ, ϕ) for any

continuous bounded function ϕ.
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Proof discussion

Let (E , d) be a metric space

Let (at)
∞
t=1 and (bt)

∞
t=1 be two sequences of continuous

functions at , bt : E → E .

Let kt and k1:t be defined:

kt = at ◦ bt k1:t = kt ◦ kt−1 ◦ · · · ◦ k1. (7)

Perturb kt and k1:t using function cN :

kNt = cN ◦ at ◦ cN ◦ bt kN1:t = kNt ◦ kNt−1 ◦ · · · ◦ kN1 . (8)

Assume that as N becomes larger, perturbations become
smaller; cN converges to the identity function on E .

Does this mean that kNt and kN1:t converge?
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Counterexample

Let E = [0, 1] and d(α, β) = |α− β|.
Let at and bt be equal to identity i on E ; so kt is also identity.

cN(α) =


α +

α

N
, if α ∈ [0, 1/2]

1− (N − 1)|1
2

+
1

2N
− α|, if α ∈ (

1

2
,

1

2
+

1

N
)

α +
α− 1

N − 2
, if α ∈ (

1

2
+

1

N
, 1)

Now lim
N→∞

cN(α) = α for all α ∈ [0, 1].

But lim
N→∞

kN(
1

2
) = lim

N→∞
cN
(

1

2
+

1

2N

)
= 1
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Proof Discussion

So successive small perturbations may not always lead to a
small perturbation overall.

We need a stronger type of convergence for cN : a uniform
manner.

For all ε > 0 there exists N(ε) such that d(cN(e), i(e)) < ε
for all N ≥ N(ε).

This implies that lim
N→∞

eN = e ⇒ lim
N→∞

cN(eN) = e.

Then lim
N→∞

kNt = kt and lim
N→∞

kN1:t = k1:t
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Filtering Application

E = P(Rd): set of probability measures over Rd endowed
with topology of weak convergence.

µN converges weakly if limN→∞(µN , ϕ) = (µ, ϕ) for all
continuous bounded functions ϕ.

Here (µ, ϕ) =

∫
ϕµ.

Define bt(ν)(dxt) =

∫
Rd

K (dxt |xt−1)ν(dxt−1).

So πt|t−1 = bt(πt−1|t−1).

Let at(ν) be a probability measure: (at , ν) = (ν, g)−1(ν, ϕg)
for any continuous bounded function ϕ.

Then πt|t = at(πt|t−1) = at ◦ bt(πt−1|t−1).
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Filtering Application

Assume at is continuous; slight variation in conditional
distribution of Xt will not result in big variation in conditional
distribution after yt taken into account.

One way: assume g(yt |·) is continuous, bounded strictly
positive function.

Positivity ensures the normalizing denominator is never 0.

Particle filtering: perturbation cN is random, but with
probability 1 we have the properties outlined above.
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Convergence of the Mean Square Error

Different convergence: lim
N→∞

E [((µN , ϕ)− (µ, ϕ))2] = 0.

Expectation over all realizations of the random particle
method.

Assumption: g(yt |·) is a bounded function in argument xt .

Theorem

There exists ct|t independent of N such that for any continous
bounded function ϕ:

E
[
((πNt|t , ϕ)− (πt|t , ϕ))2

]
≤ ct|t

||ϕ||2

N
(9)
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Convergence of the Mean Square Error

If one uses a kernel K̃ instead of K , we need that ||w || <∞.

“In other words, particle filtering methods beat the curse of
dimensionality as the rate of convergence is independent of
the state dimension d .”

“However to ensure a given precision on the mean square
error...the number of particles N also depends on ct|t , which
can depend on d .” [Crisan and Doucet, 2002]
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Uniform Convergence

We have shown that (πNt|t , ϕ) converges to (πt|t , ϕ) in the
mean-square sense.

Rate of convergence is in 1/N.

But how does ct|t behave over time?

If the true optimal filter doesn’t forget its initial conditions,
then errors accumulate over time.

Need mixing assumptions on dynamic model (and thus on the
true optimal filter).

Uniform convergence results can be obtained [Del Moral
2004].
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Curse of dimensionality

Let’s consider the batch setting.

Observe Y1:n; try to estimate the hidden state Xn.

Let g(y1:n|x) be the likelihood and f (x) the prior density.

Suppose f (x) is chosen as the importance density.

RMSE convergence can be bounded [Leglande, Oudjane 2002]
as:

E
[
((πNt|t , ϕ)− (πt|t , ϕ))2

]1/2
≤ c0√

N
I (f , g)||ϕ|| (10)

where

I (f , g) =
supx g(y1:n|x)∫

Rd g(y1:n|x)f (x)dx
(11)
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Curse of dimensionality

We can consider that the term I (f , g) characterizes the
Monte Carlo (MC) error.

As

∫
Rd

g(y1:n|x)f (x)dx tends towards zero, the MC error

increases.

The integral represents the discrepancy between the prior and
the likelihood.

Weight variance:

var(w (i)) ≈ 1

N2

( ∫
Rd g(y1:n|x)2f (x) dx

(
∫
Rd g(y1:n|x)f (x) dx)2

− 1

)
(12)

(Quang et al. 2011) provide a case-study showing that the
MC error grows exponentially with the dimension.
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More advanced algorithms?

Insert an annealing SMC sampler between consecutive time
steps, updating entire trajectory x1:n.

Algorithm is stable as d →∞ with cost O(n2d2N).

Not an online algorithm.

Assumes MCMC kernels have uniform mixing with respect to
time; probably not true unless one increases the
computational effort with time.

Can we just sample xn (freezing the other coordinates)?

24 / 28



SMC sampler

Consider example where g(yk |xk) = exp

 d∑
j=1

h(yk , xk,j)


and transition density F (xk |xk−1) =

d∏
j=1

f (xk,j |xk−1,j).

In idealized case, we sample exactly from the final target
density of the SMC sampler.

This is the conditionally optimal proposal and the incremental
weight is∫
Ed

g(yn|xn)F (xn|xn−1) =
d∏

j=1

∫
E
eh(yn,xn,j f (xn,j |xn−1,j)dxn, j .

Then weights generally have exponentially increasing variance
in d .
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Daum-Huang filter

Use log-homotopy to smoothly migrate the particles from the
prior to the posterior.

Flow of particles is similar to the flow in time induced by the
Fokker-Planck equation.

Since Bayes’ rule operates at discrete points in time, it is
difficult to create a flow in time.

Insert a scalar valued parameter λ acting as time, which varies
from 0 to 1 at each discrete time.
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Daum-Huang filter

Unnormalized Bayes’ rule can be written as p(x) = f (x)g(x)

Here g(x) = p(xk |y1:k−1) is the predicted prior density and
h(x) = p(yk |xk) is the likelihood.

Take the logarithm of both sides:
log(p(x)) = log(f (x)) + log(g(x)).

Then define a homotopy function:
log(p(x , λ)) = log(f (x)) + λ log(g(x)).
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Summary

Particle filter convergence depends heavily on the properties
of the likelihood function and the Markov kernel.

Best case: relatively flat likelihood and strongly mixing kernel.

MSE converges at rate O(1/N).

But: be careful of dimensionality!

Number of particles required for given accuracy grows
exponentially in the state dimension.

No particle filtering algorithm has been proven stable as the
dimension grows.

Techniques like Daum-Huang offer a promising approach to
mitigating effects of high-dimension.
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