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Discrete-time Filtering

o Fixed observations yi, ..., y, with y, € R%.

e Hidden Markov chain Xo, ..., X, with X, € E9.

e Initial distribution Xo ~ pu(dxo).

@ Probability transition kernel K(dx¢|x;—1) such that:

Pr(X; € AlXe 1 = xe_1) = / Kldalxe) (1)
A

@ Observations conditionally independent of X and have
marginal distribution:

Pr(Y: € 81X = x) = [ gldnlx) (2)



Bayes' Recursion

@ Paths of signal and observation processes from time k to I
Xit = (Xis Xig1s- -5 X1)s Yici = (Y, Ykt -5 Y1)
@ Define probability distribution:
Thetjm(dxket) = P(Xker € ¥t Yiim = yi:m)

@ Bayes theorem leads to the following relationship:

t

moeeje(dxo:e) o (o) [ [ K(cbaalxi-1)g(velxe) — (3)
k=1



Bayes' Recursion

@ Prediction:
To:t|e—1(dx0:t) = To.p—1)e—1(dx0:e-1) K (dxe|xt-1)

o Update:

-1
7TO:t|t(dX0:t) = [/]Rd 770:t|t—1(dX0:t)] g(}/t|Xt)7TO:t|t—1(dX0:t)

Yy
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Particle Filtering

Recursive algorithm.

Produce particle cloud with empirical measure close to ;.

N particle paths {xt y

Associated empirical measure:

7Tt|t dXt =

i (dxt) (4)
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Particle Filtering

Initialization: Sample xéi)
Fort>1

Importance sampling: Sample )”(Ei) ~ 7T£V_1|t_1K(dXt)-

~ mojo(dx0)-

Weight evaluation:

w oc g(yel); Zw (5)

(1)

Resample: Sample x;"/ ~ ﬁi\llt(dxt).



Variation of Importance Weights

@ Distn. of particles {)"(t(')}fvzl is approx. mye_1 = me_1i—1 K.

@ The algorithm can be inefficent if this is “far” from ;.
@ Then the ratio:
7rt\t(dxt)

m o g(ye|xt)

can generate weights with high variance.




Variation induced by resampling

)

@ Proposed resampling generates Ng'. copies of the i-th particle.

@ These are drawn from a multinomial distribution, so:
ENDYy = Nl
var(N) = M (1 — wi)
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Sequential Importance Sampling/Resampling

()

Initialization: Sample Xol
Fort>1

Importance sampling: Sample it(i) ~ 7Ttl_“v—1|t—lk(dxt)'

~ 7r0|0(d><0)-

Weight evaluation:

WD o K(dXt|X§I_)1)g(Yt|>~<§I))_ ZN:

()
~ i y Wt — ]. (6)
R (dxelxy) =

Resample: Sample xt(i) ~ %?{t(dxt).
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Sequential Importance Sampling/Resampling

@ Algorithm is the same as the bootstrap with a new dynamic
model.

Pf(Xt € AXt = x¢—1, Yr = )/t) = / R(dXt|Xt717}/t)
A

Pr(Ye € B Xt—1 = x¢—1, Xt = x¢) = / w(Xe—1, Xt, dyt)
B

@ Only true if we assume observations are fixed!
o With this model, po.tjt—1 7 To:¢jt—1 but po.ejr = To.¢)¢-

o If K has better mixing properties, or w(x¢—1, X, yt) is a flatter
likelihood, then algorithm will perform better.
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Almost Sure Convergence

Assume that the transition kernel K is Feller and that the

likelihood function g is bounded, continuous and strictly positive,
then Nll_r;n ﬂ'{.\‘lt = Tyt almost surely.
oo

@ Feller: for ¢ a continuous bounded function, K¢ is also a
continous bounded function.

@ Intuition: we want two realizations of the signal that start
from “close” positions to remain ‘“close” at subsequent times.

o Define (i, ¢) = /gpu.

o We write lim pV = pif lim (1", ¢) = (1, ) for any
N—oc0 N—o0
continuous bounded function ¢.
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Proof discussion

Let (E, d) be a metric space

Let (a:)72; and (b:)72; be two sequences of continuous
functions a;, by : E — E.

Let k; and kq.; be defined:

ki =atob; kit =ktoki_10---0ky. (7)

Perturb k; and ki.: using function N

k,_{V:CNoatocNobt kll\:/t:ktNoktN_lo--'oklN. (8)

Assume that as N becomes larger, perturbations become
smaller; ¢V converges to the identity function on E.

Does this mean that k' and k', converge?
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Counterexample

o Let E=10,1] and d(, B) = |a — .
o Let a; and b; be equal to identity / on E; so k; is also identity.
Q@ .
a+ —, if a €[0,1/2]
N 1 1 11 1
+a_1 if e(f+l1)
N2 s TN

o Now lim c"(a)=a forall a € [0,1].
N—o0

1 1 1
But Nllm k" (%) Nllm c <2+2N) 1
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Proof Discussion

@ So successive small perturbations may not always lead to a

small perturbation overall.

N

@ We need a stronger type of convergence for ¢'*: a uniform

manner.
e For all € > 0 there exists N(e) such that d(c"(e),i(e)) < e
for all N > N(e).

o This implies that lim eV =e= lim cV(ey) =e.
N—o0 N—oo

o Then lim kN = k; and lim ki, = ki.;
N—oo N—oo ™
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Filtering Application

E = P(RY): set of probability measures over RY endowed
with topology of weak convergence.

@ up converges weakly if limy_oo(pn, ) = (1, @) for all
continuous bounded functions .

o Here (1, ) = /sou-

e Define b(v)(dx;) = /Rd K (dx¢|xt—1)v(dxi—1).

@ So Te|e—1 = bt(ﬂ-t71|t71)'

o Let a;(v) be a probability measure: (a;,v) = (v, ) (v, vg)
for any continuous bounded function ¢.

e Then et = at(ﬂt\t—l) =at o bt(ﬂ't—l|t—1)-
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Filtering Application

@ Assume a; is continuous; slight variation in conditional
distribution of X; will not result in big variation in conditional
distribution after y; taken into account.

@ One way: assume g(y:|-) is continuous, bounded strictly
positive function.

@ Positivity ensures the normalizing denominator is never 0.

o Particle filtering: perturbation c" is random, but with

probability 1 we have the properties outlined above.
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Convergence of the Mean Square Error

e Different convergence: Nlim E[((un; ) — (1, 9))?] = 0.
— 00

@ Expectation over all realizations of the random particle
method.

@ Assumption: g(y¢|-) is a bounded function in argument x;.

There exists c¢;; independent of N such that for any continous

bounded function p:

E ((Wti‘P)—(Wﬂta%D))Q < Gt N (9)
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Convergence of the Mean Square Error

o If one uses a kernel K instead of K, we need that ||w|| < co.

@ "In other words, particle filtering methods beat the curse of
dimensionality as the rate of convergence is independent of
the state dimension d."

@ “However to ensure a given precision on the mean square
error...the number of particles N also depends on c¢;|;, which
can depend on d.” [Crisan and Doucet, 2002]
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Uniform Convergence

We have shown that (ﬂ'é\‘lt,(p) converges to (¢, ¢) in the
mean-square sense.

@ Rate of convergence is in 1/N.
@ But how does ¢;|; behave over time?

@ If the true optimal filter doesn’t forget its initial conditions,
then errors accumulate over time.

@ Need mixing assumptions on dynamic model (and thus on the
true optimal filter).

@ Uniform convergence results can be obtained [Del Moral
2004].
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Curse of dimensionality

Let's consider the batch setting.

Observe Yi.,; try to estimate the hidden state X,.

Let g(y1:n|Xx) be the likelihood and f(x) the prior density.
Suppose f(x) is chosen as the importance density.

RMSE convergence can be bounded [Leglande, Oudjane 2002]
as:

E ()~ (roes)?] < Fttfllel (10)

where

_ SUng(y1;n|X)
I(F.8)= fRd g(y1:n|x)f(x)dx (D



Curse of dimensionality

@ We can consider that the term /(f, g) characterizes the
Monte Carlo (MC) error.

As / g(y1:n|Xx)f(x)dx tends towards zero, the MC error
Rd

increases.

The integral represents the discrepancy between the prior and
the likelihood.

Weight variance:

var(w() ~

1 Jpeglyalx)?F)dx
N2 ((fRdg(yl;n\x)f(X)dX)z 1) (12)

(Quang et al. 2011) provide a case-study showing that the
MC error grows exponentially with the dimension.
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More advanced algorithms?

Insert an annealing SMC sampler between consecutive time
steps, updating entire trajectory xi.p.
Algorithm is stable as d — oo with cost O(n*d>N).

Not an online algorithm.

Assumes MCMC kernels have uniform mixing with respect to
time; probably not true unless one increases the
computational effort with time.

Can we just sample x, (freezing the other coordinates)?

24 /28



SMC sampler

d
e Consider example where g(yx|xk) = exp Z h(yis Xk j)
j=1
d
and transition density F(Xk’kal) = H f(Xk,j‘kal,j)-
j=1

@ In idealized case, we sample exactly from the final target
density of the SMC sampler.

@ This is the conditionally optimal proposal and the incremental
weight is

d
/Ed g(y"’X”)F(Xn|anl) = H /E eh(yn?xnyjf(Xn,j|Xn—1J)an7j'
j=1

@ Then weights generally have exponentially increasing variance
in d.
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Daum-Huang filter

Use log-homotopy to smoothly migrate the particles from the
prior to the posterior.

Flow of particles is similar to the flow in time induced by the
Fokker-Planck equation.

Since Bayes' rule operates at discrete points in time, it is
difficult to create a flow in time.

@ Insert a scalar valued parameter X\ acting as time, which varies
from 0 to 1 at each discrete time.
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Daum-Huang filter

Unnormalized Bayes' rule can be written as p(x) = f(x)g(x)

Here g(x) = p(xk|y1.k—1) is the predicted prior density and
h(x) = p(yk|xx) is the likelihood.

Take the logarithm of both sides:

log(p(x)) = log((x)) + log(g(x)).

Then define a homotopy function:

log(p(x, A)) = log(f(x)) + Alog(g(x)).
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@ Particle filter convergence depends heavily on the properties
of the likelihood function and the Markov kernel.

Best case: relatively flat likelihood and strongly mixing kernel.
MSE converges at rate O(1/N).

But: be careful of dimensionality!

Number of particles required for given accuracy grows
exponentially in the state dimension.

@ No particle filtering algorithm has been proven stable as the
dimension grows.

@ Techniques like Daum-Huang offer a promising approach to
mitigating effects of high-dimension.
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