
IMPLEMENTATION OF THE DAUM-HUANG EXACT-FLOW PARTICLE FILTER

Tao Ding and Mark J. Coates

McGill University
Department of Electrical and Computer Engineering

3480 University Street, Montreal, Quebec, Canada H3A 2A7

ABSTRACT

Several versions of the Daum-Huang (DH) filter have been
introduced recently to address the task of discrete-time non-
linear filtering. The filters propagate a particle set over time to
track the system state, but, in contrast to conventional particle
filters, there is no proposal density or importance sampling in-
volved. Particles are smoothly migrated using a particle flow
derived from a log-homotopy relating the prior and the pos-
terior. Impressive performance has been demonstrated for a
wide range of systems, but the implemented algorithms rely
on an extended/unscented Kalman filter (EKF/UKF) that is
executed in parallel. We illustrate through simulation that the
performance of the exact flow DH filter can be compromised
when the UKF and EKF fail. By introducing simple but im-
portant modifications to the exact flow DH filter implementa-
tion, the performance can be improved dramatically.

Index Terms— Daum-Huang filter, log-homotopy, parti-
cle filter, particle flow, exact flow

1. INTRODUCTION

Non-linear filtering for high-dimensional systems is an im-
portant problem that arises in a number of settings, including
computational finance, meteorological system analysis, and
multi-target tracking [1]. The performance of the particle fil-
ter can deteriorate significantly when the state dimension is
large [2, 3]. Several mechanisms have been introduced to ad-
dress this, including Markov Chain Monte Carlo (MCMC)
steps in the particle sampling phase [4], accept/reject mech-
anisms [5], and the insertion of an annealing SMC sampler
between filtering steps [3]. For some problems, these mech-
anisms can be very effective, but it is not clear that they can
provide stable filtering solutions for general systems unless
the number of particles (and hence computational cost) is al-
lowed to grow exponentially with the state dimension [3].

Daum and Huang introduced an alternative non-linear fil-
tering approach in [6–9]. In the Daum-Huang (DH) filters, a
homotopy is introduced between the logarithms of the unnor-
malized prior and posterior densities at each time step. This
homotopy defines a particle flow, described as the solution to
a partial differential equation. The particle flow allows one to

incrementally migrate a set of particles to regions where the
posterior is large in value.

Impressive performance of the DH filters has been demon-
strated for a variety of non-linear filtering systems [7, 8, 10].
When inspecting the implementation for the exact and in-
compressible flow DH filters, however, we observe that
there is a reliance on an extended or unscented Kalman
filter (EKF/UKF) that is executed in parallel [8, 10]. This
limitation is probably eradicated in recent work introducing
a Coulomb’s law DH-filter [9]. We also note that it is not an
intrinsic component of the exact flow filter of [8], but it is
specified in [10], which provides more algorithmic detail.

We focus on the case where the system and observation
noises are Gaussian, the system map is linear, but the ob-
servations are highly non-linear. We are interested in chal-
lenging filtering problems where the EKF and UKF fail. For
such systems, the DH-filter implementation described in [10]
performs relatively poorly. We introduce a modified imple-
mentation of the exact flow DH-filter of [8]. Our modifi-
cations are almost embarrassingly simple, but they have a
dramatic impact on performance for some complex filtering
problems. There are two significant modifications: (i) we
introduce feedback between the Daum-Huang filter and the
EKF/UKF; (ii) we linearize the system and calculate the mi-
gration parameters at each individual particle, rather than at
a single representative state. The latter modification signifi-
cantly increases the computational cost of the algorithm, but
we find that it is essential for complex likelihood functions.

We provide simulation results for a multi-target tracking
problem with state dimension 16 (four targets with position
and velocity). The modified DH-filter implementation, us-
ing only 100 particles, significantly outperforms an MCMC
particle filter (500 particles), a bootstrap particle filter (105

particles), and the unmodified DH-filter (500 particles).

In Section 2, we clarify the filtering problem that we ad-
dress and provide a brief introduction to the Daum-Huang fil-
ter. In Section 3, we discuss the filter implementation and in-
troduce our proposed modifications. Section 4 presents simu-
lation results and in Section 5, we make concluding remarks.



2. PROBLEM STATEMENT AND BACKGROUND

We address a discrete-time non-linear filtering task for the
case where the target dynamics and observations are de-
scribed by the following Markovian state-space signal model:

xk = fk(xk−1) + wk (1)
yk = γk(xk) + vk. (2)

In this model, xk is a dx × 1 target state vector at time-step
k, yk is a dy × 1 measurement vector, wk and vk are sys-
tem excitation and measurement noises, respectively, fk is a
nonlinear system map fk : Rdx → Rdx , and γk is a nonlin-
ear measurement map γk : Rdx → Rdy . We focus on the
case where wk and vk are drawn from Gaussian distributions
and the system map fk is linear, i.e. it can be described as
xk = Ψkxk−1 + wk. Our goal is to recursively estimate the
system state xk at each time step k. We denote by y1:k the set
of measurements from time-steps 1 to k.

2.1. The Daum-Huang Filter

Multiple versions of the Daum-Huang filter have been intro-
duced [6–9]. Our summary in this section is based on the
material in these papers and in [10]. The key idea in all ver-
sions is the introduction of a particle flow to smoothly migrate
particles from the prior at each time step to the posterior.

Bayes’ rule can be used to identify an unnormalized
marginal posterior density:

p̃(xk|y1:k) = p(yk|xk)p(xk|y1:k−1). (3)

Denoting h(xk) = p(yk|xk) and g(xk) = p(xk|y1:k−1),
Daum and Huang introduce a homotopy function φ(xk, λ):

φ(xk, λ) = log g(xk) + λ log h(xk), (4)

where λ is a real valued parameter that varies from 0 to 1. The
homotopy defines a continuous deformation from log g(xk)
(when λ = 0) to the log of the unnormalized posterior density
log p̃(xk|y1:k) (when λ = 1).

The homotopy is used to induce a particle flow. In the
original incompressible flow filter [6, 7], the flow was devel-
oped by requiring that the homotopy function remain constant
as λ evolved, i.e. dφ

dλ = 0. This requirement leads to the par-
tial differential equation:

∂φ

∂x

dx
dλ

+
∂φ

∂λ
= 0. (5)

The flow of particles is computed by solving (5). Daum and
Huang identified the unique minimum norm solution using
the generalized inverse (see [7] for details). The induced
flow of particles is in the direction of the gradient of the log-
homotopy, with speed proportional to log(h), and the flow
stops when the gradient is zero.

Daum and Huang generalized and improved the filter
in [8], introducing the exact flow DH filter. Suppose that
the particle flow obeys the ordinary differential equation
dx
dλ = ψ(x, λ). Using the Fokker-Planck equation, Daum and
Huang derived the following relationship [8]:

∂φ

∂x
ψ(x, λ) + log(h) = −Tr(

∂ψ

∂x
) (6)

The solution to this equation specifies the exact flow of the
probability density.

For problems in which log(h) and log(g) are polynomi-
als in the components of x (Gaussian and other exponential
distributions), a closed-form solution of dx

dλ can be derived
from (6). For the linear Gaussian model, let x denote the
predicted value of x and denote by P the covariance matrix
of the prediction error. Let H be the measurement matrix
(yk = Hxk + vk), and let R be the covariance matrix of the
measurement noise. Daum and Huang derive the following
solution for the linear Gaussian scenario [8]:

dx
dλ

= A(λ)x+ b(λ) (7)

where

A = −1

2
PHT (λHPHT +R)−1H (8)

b = (I + 2λA)[(I + λA)PHTR−1z +Ax]. (9)

For non-linear models, Taylor series expansions can be em-
ployed. An estimate of x can be formed from the particles and
a linearization of the measurement model can be conducted to
construct a measurement matrix Hx.

3. DH EXACT FLOW FILTER IMPLEMENTATION

In this section we detail the primary contribution of the paper.
Algorithm 2 provides pseudocode for the exact-flow particle
filter, based on the presentation in [10]. In this algorithm,N is
the number of particles and T is the number of timesteps. The
EKF/UKF state and covariance matrix estimates are denoted
by m and P . Particle migration is performed by calculating
dx
dλ at Nλ discrete values of λ (lines 7-16).

A UKF or EKF is run in parallel to the exact flow filter
(lines 6 and 17). The UKF/EKF provides covariance matrix
estimates that are used both when evaluating A and b for the
particle migration (line 10) and when forming the estimates
xk and x̂k (lines 15 and 18). The measurement matrix Hx is
calculated by linearizing at the current estimate xk (line 9). A
and b are evaluated using Hx; the same values of A and b are
applied to calculate the update for every particle.

As discussed in the introduction, our modifications are
simple. We replace the pseudocode in lines 7-19 of Algo-
rithm 1 with the pseudocode in Algorithm 2. There are two
major changes. For each particle, we perform the lineariza-
tion of the measurement function at the particle location to



Algorithm 1: Original Exact Flow Daum-Huang Filter

Initialization : Draw {xi0}Ni=1 from the prior p(x0);1

Set x̂0 and m0 as the mean; P0 as the covariance2

matrix.
for k = 1 to T do3

Propagate particles xik−1 = fk(xik−1) + vk ;4

Calculate the mean value xk;5

Apply UKF/EKF prediction:6

(mk−1|k−1, Pk−1|k−1)→ (mk|k−1, Pk|k−1) ;
for j = 1, . . . , Nλ do7

Set λ = j∆λ ;8

Calculate Hx by linearizing γk() at xk ;9

Calculate A and b from (8) and (9) using10

Pk|k−1, x and Hx ;
for i = 1, . . . , N do11

Evaluate dxi
k

dλ for each particle from (7) ;12

Migrate particles: xik = xik + ∆λ · dx
i
k

dλ ;13

endfor14

Re-evaluate xk using the updated particles xik.15

endfor16

Apply UKF/EKF update:17

(mk|k−1, Pk|k−1)→ (mk|k, Pk|k) ;
Estimate x̂k from the particles xik using Pk|k ;18

Optional: redraw particles xik ∼ N(x̂k, Pk|k);19

endfor20

obtain Hi (line 10). We calculate individual values of Ai and
bi for each particle using the matrix Hi (line 11), and use
these in (7) to calculate the migration step for xik. In line 19,
we replace the mean estimate from the UKF/EKF with the
state estimate from the Daum-Huang filter.

4. SIMULATION EXPERIMENTS

We illustrate the importance of our modifications with a
multi-target tracking problem1, adapted from [11]. We model
a wireless sensor network consisting of 25 acoustic amplitude
sensor nodes deployed on a jittered grid within a rectangular
region of size 40m × 40m. Four targets move independently
in the x-y plane. The p-th target is represented by the state
vector x

(p)
k = (x

(p)
k , y

(p)
k , ẋ

(p)
k , ẏ

(p)
k ), containing the position

and velocity. The overall state vector is the concatenation of
these four individual vectors (and thus has dimension 16).

Each target state evolves according to x(p)k = Gpx
(p)
k−1 +

Wpu
(p)
k where u(p)k ∼ N(0, Cp) is an i.i.d. Gaussian driv-

1We acknowledge that the problem we present here is well-suited to Rao-
Blackwellization, which can effectively reduce the dimension from 16 to 8.
Our purpose is to compare particle filters and DH filters operating on (rela-
tively) high dimensional systems, so we do not employ the technique here.
It is relatively straightforward to construct a slightly modified version of the
system we analyze for which standard Rao-Blackwellization is not possible.

Algorithm 2: Modified Local Exact Flow Daum-Huang
Filter (replaces lines 7-19 of Algorithm 1)

for j = 1, . . . , Nλ do7

Set λ = j∆λ ;8

for i = 1, . . . , N do9

Calculate Hxi by linearizing γk() at xi ;10

Calculate Ai and bi from (8) and (9) using11

Pk|k−1, x and Hxi
;

Evaluate dxi
k

dλ for each particle from (7) ;12

Migrate particles: xik = xik + ∆λ · dx
i
k

dλ ;13

endfor14

Re-evaluate xk using updated particles xik.15

endfor16

Apply UKF/EKF update:17

(mk|k−1, Pk|k−1)→ (mk|k, Pk|k) ;
Estimate x̂k from the particles xik using Pk|k ;18

Set mk|k = x̂k;19

Optional: redraw particles xik ∼ N(x̂k, Pk|k);20

ing noise. Gp ∈ R4×4 and Wp ∈ R4×2 are system ma-
trices that will be specified below. Each target p emits a
sound with a (root mean squared) amplitude Ap that is as-
sumed constant and known. At the position of sensor j, de-
noted ξjk, the sound amplitude due to target p is modeled as

Ap/
(∥∥ρ(p)k − ξjk∥∥κ + d0

)
, where ρ(p)k = (x

(p)
k , y

(p)
k )T is the

position of target p and κ is the path loss exponent, and d0 is
a threshold that determines the maximum measurable ampli-
tude. The measurement yjk obtained by sensor j at time k is
then:

yjk = γjk(xk) + vjk (10)

with

γjk(xk) =

P∑
p=1

Ap∥∥ρ(p)k − ξjk∥∥κ + d0
(11)

where vjk ∼ N(0, σ2
v) are zero mean Gaussian variables of

common variance σ2
v .

In our simulations, the number of targets is P = 4. The
system matrix Gp and Wp are identical for the four targets
and correspond to a constant-velocity motion model with
some additional independent position error.

Gp =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 ; Wp =


0.5 0 0.2 0
0 0.5 0 0.2
1 0 0 0
0 1 0 0


The diagonal elements of the driving noise covariance ma-
trix Cp are set to 0.00035. Each of the target emits a sound
of amplitude Ap = 10; the measurement noise variance
is σ2

v = 0.1 and the path loss exponent is κ = 1. We
set the threshold d0 = 0.1. The targets are initialized
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Fig. 1. Mean position error (averaged over the four targets
and 50 trials) for the extended Kalman filter (EKF); the boot-
strap particle filter (105 particles); the MCMC particle filter
[4] (500 particles); the original Daum-Huang filter (500 par-
ticles); and the modified Daum-Huang filter (100 particles).

with states [12, 6, 0.001, 0.002], [32, 32,−0.001,−0.005],
[20, 13,−0.1, 0.01] and [15, 35, 0.002, 0.002]. The EKF is
initialized by sampling m0 from a Gaussian centred at the
true initial states, with variance 0.1 for the position elements
and 0.0005 for the velocity elements. Particles are then drawn
from the same Gaussian, but centred at m0.

Fig. 1 compares the mean position errors for the modified
and original DH filters, the MCMC particle filter from [4],
and the bootstrap particle filter. The computation times per
time step (Matlab code executed on a 1.8GHz Intel Core i7
dual core, 4GB machine) are approximately 0.015s for the
original DH filter, 0.3s for the modified DH filter, 0.8s for
the bootstrap filter, and 5.4s for the MCMC filter. These
values should be interpreted with care, because they are
implementation-dependent. The MCMC particle filter code
is slower in Matlab because it is challenging to vectorize the
Markov chain sampling. Fig. 2 shows box plots of the errors
for the MCMC particle filter and for the modified DH particle
filter. The median error of the DH filter is stable over the
course of the simulation, with values under 1m (growth in the
mean is due to a few lost tracks). By contrast, the median
error of the MCMC particle filter grows over time.

5. CONCLUDING REMARKS

We introduced modifications to the implementation of the
Daum-Huang exact-flow particle filter. We provide feedback
from the DH filter to the parallel EKF/UKF filter and calcu-
late linearizations of the measurement function at all particle
locations instead of just at the current state estimate. This
substantially increases the computational overhead but makes
the filter much more robust. We demonstrated the value of
these modifications for a multi-target tracking problem.
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Fig. 2. Box plots of the position error (averaged over the four
targets) for the MCMC particle filter (top) and the modified
Daum-Huang filter (bottom).
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