Deep Gaussian Processes: Theory and Applications

Petar M. Djurić

Bellairs Workshop, Barbados

February 13, 2019
Introduction

- Probabilistic modeling allows for representing and modifying uncertainty about models and predictions.
- This is done according to well defined rules.
- Probabilistic modeling has a central role in machine learning, cognitive science and artificial intelligence.
The Concept of Uncertainty

- Learning and intelligence depend on the amount of uncertainty in the information extracted from data.
- Probability theory is the main framework for handling uncertainty.
- Interestingly, in the recent progress of deep learning with deep neural networks, which are based on learning from huge amounts of data, the concept of uncertainty is somewhat bypassed.
- In the years to come, we will see further advances in artificial intelligence and machine learning within the probabilistic framework.
The Role of a Model

- To make inference from data, one needs models.
- Models can be simple (like linear models) or highly complex (like large and deep neural networks).
- In most settings, the models must be able to make predictions.
- Uncertainty plays a fundamental role in modeling observed data and in interpreting model parameters, the results of models, and the correctness of models.
The Learning

- Probability distributions are used to represent uncertainty.
- Learning from data occurs by transforming prior distributions (defined before seeing the data) to posterior distributions (after seeing the data).
- The optimal transformation from information-theoretic point of view is the Bayes rule.
- The beauty of the approach is the simplicity of the Bayes mechanism.
Gaussian Processes Regression

- Essentially, a GP can be seen as the distribution of a real-valued function $f(x)$,

$$f(x) \sim \mathcal{GP}(m(x), k_f(x_i, x_j))$$

- Some assumptions are often made when using GP regression

1. the mean function $m(x) = 0$ for simplicity, and
2. the observation noise is additive white Gaussian noise for tractability.
Let $\mathbf{X} = \{\mathbf{x}_i\}_{i=1}^N$ and \mathbf{y} denote the collection of all input vectors and all observations, respectively, with the above assumptions, i.e.,

$$\mathbf{y} = \mathbf{f}(\mathbf{X}) + \epsilon$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$. We also have

- **Likelihood:** $p(\mathbf{y}|\mathbf{f}) = \mathcal{N}(\mathbf{y}|\mathbf{f}, \sigma^2 \mathbf{I})$, and

- **Prior:** $p(\mathbf{f}|\mathbf{X}, \theta) = \mathcal{N}(\mathbf{f}|\mathbf{0}, \mathbf{K}_{ff})$, where $\mathbf{K}_{ff} = \mathbf{k}_f(\mathbf{X}, \mathbf{X})$ and θ denote the hyper-parameters in the covariance function.
Gaussian Processes Regression (contd.)

The hyper-parameters θ can be learned from the training data $\{X, y\}$ by maximizing the log-marginal-likelihood.

- Log-marginal-likelihood: $\log p(y|X, \theta)$

\[
\log p(y|X, \theta) = \log \mathcal{N}(y|0, K_{ff} + \sigma^2 \epsilon I) \\
= \log \mathcal{N}(y|0, K) \\
= -\frac{1}{2} y^T K^{-1} y - \frac{1}{2} \log |K| - \frac{N}{2} \log 2\pi
\]

- The Occam’s razor is embedded in the model.
Gaussian Processes Regression (contd.)

Let X_* and f_* denote the collection of test inputs and the corresponding latent function values, respectively. Then we can express the predictive posterior as

\[
\text{Predictive posterior: } p(f_*|X_*, X, y, \theta) = \mathcal{N}(f_*|\mathbb{E}(f_*), \text{cov}(f_*))
\]

\[
\mathbb{E}(f_*) = [K_f(X_*, X)]K^{-1}y
\]

\[
\text{cov}(f_*) = K_f(X_*, X_*) - [K_f(X_*, X)]K^{-1}[K_f(X_*, X)]^T
\]

\[
\text{cov}(f_*) = K_f(X_*, X_*) - [K_f(X_*, X)]K^{-1}[K_f(X_*, X)]^T
\]

\[
E_f(f_*) = [K_f(X_*, X)]K^{-1}y
\]

\[
\text{cov}(f_*) = K_f(X_*, X_*) - [K_f(X_*, X)]K^{-1}[K_f(X_*, X)]^T
\]
Covariance Function

- For example: Radial basis function (RBF) or squared exponential (SE)

One dimensional form:

\[k_{rbf}(x_i, x_j) = \sigma_f^2 \exp\left(-\frac{1}{\ell}(x_i - x_j)^2\right) \]

- \(\sigma_f^2\) measures strength of signal, \(\frac{\sigma_f^2}{\sigma_e^2}\) is equivalent to signal-to-noise ratio (SNR).

- The characteristic length scale \(\ell\) encodes the model complexity in that dimension.

- \(r = \frac{1}{\ell}\) measures the relevance of that dimension.

- Automatic relevance determination (ARD)
Toy Example

- Goal: learn $f(x)$ from 5 noisy observations $\{x_i, y_i\}_{i=1}^{5}$.

- Ground truth: $y = \sin(x) + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2_\epsilon)$.

- Test inputs: $x_* \in \mathbb{R}^{300 \times 1}$ equally spaced from $x = 0$ to 2π.

- Test outputs: $f_* = f(x_*)$
Prior Distribution
Predictive (Posterior) Distribution
Another Toy Example: The Function $\sin \frac{x}{x}$
Example: Recovery of Missing Samples in FHR

- **Goal:** recover missing samples in FHR, using not only observed FHR but also UA samples

- **Model:**

 \[y_i = y(x_i) = f(x_i) + \epsilon_i \]

 - \(y_i \): \(i \)-th sample in an FHR segment
 - \(x_i = [i, u_i]' \) where \(u_i \) is the \(i \)-th UA sample
 - \(\epsilon_i \): Gaussian white noise
 - \(f(x_i) \): \(i \)-th latent noise-free FHR sample

1 Guanchao Feng, J Gerald Quirk, and Petar M Djurić. “Recovery of missing samples in fetal heart rate recordings with Gaussian processes”. In: Signal Processing Conference (EUSIPCO), 2017 25th European. IEEE.
CTG Segment for Experiments
CTG Segment for Experiments
Experiment 1

- 120 missing samples were randomly selected, and we tried to recover their true values.
Experiment II

- The percentage of missing samples was increased from 1% to 85% with a step size of 1%.

![Graphs showing log of MSE and SNR for cubic spline interpolation and GPs-based method over percentage of missing samples.]
Experiment III

- To demonstrate contribution of UA, we repeated the experiment I, but excluded u_i from the input vector x_i.

![Contribution of UA Signal](image)
Experiment VI (An Extreme Case)

- 10 seconds of consecutive missing samples.
Limitations

- The general framework is computationally expensive, $O(N^3)$, due to the term $K_{N \times N}^{-1}$.

- Another limitation is the joint Gaussianity that is required by the definition of GPs.
Deep Gaussian Processes

- $Y \in \mathbb{R}^{N \times d_y}$: observations, output of the network
 - N is the number of observation vectors.
 - d_y is the dimension of the vectors y_n.

- $\{X_h\}_{h=1}^{H-1}$: intermediate latent states
 - dimensions $\{d_h\}_{h=1}^{H-1}$ are potentially different.

- $Z \in \mathbb{R}^{N \times d_z}$: the input to the network
 - Z is observed for supervised learning.
 - Z is unobserved for unsupervised learning.
Deep Gaussian Processes (contd.)

- The joint Gaussianity limitation is overcome because nonlinear mappings generally will not preserve Gaussianity.

- DGPs immediately introduce intractabilities.

- One way of handling the difficulties is by introducing a set of inducing points and where within the variational framework, sparsity and a tractable lower bound on the marginal likelihood are obtained.
Example: Functions Sampled From DGP

- Gaussianity limitation is overcome by nonlinear function composition.
Example: Learning a Step Function

- Standard GP (top), two- and four-layer DGP (middle, bottom).
- DGPs achieved much better performance.

Deep GPs and Deep Neural Networks (a comparison)

- A single layer of fully connected neural network with an independent and identically distributed (iid) prior over its parameters and with an infinite width is equivalent to a GP.
- Therefore, deep GPs are equivalent to neural networks with multiple, infinitely wide hidden layers.
- Mappings of a DGP are governed by its GPs instead of activation functions.
- A DGP allows for propagations and quantifications of uncertainties through each layer as a fully Bayesian probabilistic model.
- There is ARD at each layer.
Generative Process

The generative process takes the form:

\[x_{nl} = f^X_l(z_n) + \epsilon^X_{nl}, \quad l = 1, \ldots, d_x, \quad z_n \in \mathbb{R}^{d_z} \]
\[y_{ni} = f^Y_i(x_n) + \epsilon^Y_{ni}, \quad i = 1, \ldots, d_y, \quad x_n \in \mathbb{R}^{d_x} \]

\(\epsilon^X_{nl} \) and \(\epsilon^Y_{ni} \) are additive white Gaussian processes.
Generative Process (contd.)

- We assume Z is unobserved with a prior $p(Z) = \mathcal{N}(Z|0, I)$
- If we have specific prior knowledge about Z, we should quantify this knowledge into a prior accordingly.
Inference

The inference takes the reverse route, i.e., we observe high-dimensional data Y, and we learn the low-dimensional manifold Z (of dimension d_z, where $d_z < d_x < d_y$) that is responsible for generating Y.
Inference Challenges

The learning requires maximization of the log-marginal-likelihood,

$$\log p(Y) = \log \int_{X,Z} p(Y|X)p(X|Z)p(Z)dXdZ$$

which is intractable.
Augmentation of Probability Space

- Original probability space:
 \[
 p(Y, F^Y, F^X, X, Z) = p(Y|F^Y)p(F^Y|X)p(X|F^X) \times p(F^X|Z)p(Z)
 \]

- Augmentation using inducing points:
 - \(U^X = f^X(\tilde{Z}), \tilde{Z} \in \mathbb{R}^{N_p \times d_Z} \) and \(U^X \in \mathbb{R}^{N_p \times d_x} \)
 - \(U^Y = f^Y(\tilde{X}), \tilde{X} \in \mathbb{R}^{N_p \times d_x} \) and \(\tilde{X} \in \mathbb{R}^{N_p \times d_x} \)
 - \(N_p \leq N \)
Augmentation of Probability Space

- Augmented probability space:

\[
p(Y, F^Y, F^X, X, Z, U^Y, U^X, \tilde{X}, \tilde{Z}) \\
= p(Y|F^Y)p(F^Y|U^Y, X)p(U^Y|\tilde{X}) \\
\times p(X|F^X)p(F^X|U^X, Z)p(U^X|\tilde{Z})p(Z)
\]

- Problematic terms:
 - \(A = p(F^Y|U^Y, X) \)
 - \(B = p(F^X|U^X, Z) \)
Variational Inference

- A variational distribution: \(Q = q(U^Y)q(X)q(U^X)q(Z) \)
- By Jensen’s inequality:

\[
\log p(Y) \geq \mathcal{F}_v = \int Q \cdot A \cdot B \log \mathcal{G} \, dF^Y dX dF^X dZ dU^X dU^Y
\]

- The function \(\mathcal{G} \) is defined as:

\[
\mathcal{G}(Y, F^Y, X, F^X, Z, U^X, U^Y) = \frac{p(Y|F^Y)p(U^Y)p(X|F^X)p(U^X)p(Z)}{Q}
\]

- \(\mathcal{F}_v \) is tractable for a collection of covariance functions, since \(A \) and \(B \) are canceled out in \(\mathcal{G} \).
Studying Complex Systems

Used principles

- algorithmic compressibility,
- locality, and
- deep probabilistic modeling.
Applications
Applications-contd.

\[
\begin{align*}
 y_k[t_1] & \quad L_{kj} & \quad P_k \\
 y_j[t_2] & \quad L_{jk} & \quad P_j \\
 y_i[t_3] & \quad L_{ji} & \quad L_{ij} & \quad P_i
\end{align*}
\]
Applications-contd.³

Figures obtained by Sima Mofakham and Chuck Mikell.
Example: Binary pH-based Classification

- Goal: to have the DGP classify CTG recordings into health and unhealthy classes.

- Features:
 - 14 FHR features
 - 6 (categorical) UA features

- Labeling:
 - Positive (unhealthy): pH < 7.1
 - Negative (healthy): pH > 7.2

4 Guanchao Feng, J Gerald Quirk, and Petar M Djurić. “Supervised and Unsupervised Learning of Fetal Heart Rate Tracings with Deep Gaussian Processes”. In: *2018 14th Symposium on Neural Networks and Applications (NEUREL)*. IEEE. 2018, pp. 1–6.
Structure of DGP: our DGP network had two layers, and in each layer, we set the initial latent dimension to five.

Performance metrics:

1. Sensitivity (true positive rate)
2. Specificity (true negative rate)
3. Geometric mean of specificity and sensitivity
Features

Table: Features for FHR

<table>
<thead>
<tr>
<th>Category</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time domain</td>
<td>Mean, Standard deviation, STV, STI, LTV, LTI</td>
</tr>
<tr>
<td>Non-linear</td>
<td>Poincaré SD1, Poincaré SD2, CCM</td>
</tr>
<tr>
<td>Frequency domain</td>
<td>VLF, LF, MF, HF, ratio</td>
</tr>
</tbody>
</table>

Table: Features for UA

<table>
<thead>
<tr>
<th>Normal (0)</th>
<th>Abnormal (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>≤ 8 contractions</td>
</tr>
<tr>
<td></td>
<td>> 8 UC (tachysystole)</td>
</tr>
<tr>
<td>Duration</td>
<td>< 90s</td>
</tr>
<tr>
<td></td>
<td>> 90s</td>
</tr>
<tr>
<td>Increased tonus</td>
<td>With toco</td>
</tr>
<tr>
<td></td>
<td>Prolonged > 120s</td>
</tr>
<tr>
<td>Interval A</td>
<td>Interval – peak to peak</td>
</tr>
<tr>
<td></td>
<td>< 2min</td>
</tr>
<tr>
<td>Interval B</td>
<td>Interval – offset of UC to onset of next UC</td>
</tr>
<tr>
<td></td>
<td>< 1min</td>
</tr>
<tr>
<td>Rest time</td>
<td>> 50%</td>
</tr>
<tr>
<td></td>
<td>< 50%</td>
</tr>
</tbody>
</table>
Classification Results

- Support vector machine (SVM) was used as a benchmarking model.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Feature</th>
<th>Specificity</th>
<th>Sensitivity</th>
<th>Geometric Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>FHR</td>
<td>0.82</td>
<td>0.73</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>FHR+UA</td>
<td>0.82</td>
<td>0.82</td>
<td>0.82</td>
</tr>
<tr>
<td>Deep GP</td>
<td>FHR</td>
<td>0.91</td>
<td>0.73</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>FHR+UA</td>
<td>0.82</td>
<td>0.91</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Table: Classification results
Unsupervised Learning for FHR Recordings

- **Goal:** to have the DGP learn informative low-dimensional latent spaces that can generate the recordings.

- **Labeling:**
 - pH-based labeling combined with obstetrician’s evaluation.
 - Labels are only used for evaluation of learning results.

- **Data:**
 - The last 30 minutes of 10 FHR recordings, $\mathbf{Y} \in \mathbb{R}^{10 \times 7200}$.
 - Three of them are abnormal and 7 are normal.
Performance Metric and Network Structure

- Performance metric: the number of errors in the latent space for one nearest neighbor.

- Structure of DGP: a five-layer DGP, and the initial dimensions of the latent spaces in the layers were $d_{x_{1:5}} = [6, 5, 5, 4, 3]^T$.
Automatic Structure Learning
Visualization of the Latent Spaces with 2-D Projection.

- Red: the normal recordings
- Blue: the abnormal recordings
- Pixel intensity: proportional to precision
- The total errors in layers 1 to 5 are 2, 2, 1, 1, 0, respectively.
Example: Deep Gaussian Processes with Convolutional Kernels

- **Goal**: multi-class image classification
- **Database**: MNIST (handwritten digits)
- **Methods**:
 1. SGP: Sparse Gaussian processes
 2. DGP: Deep Gaussian processes
 3. CGP: Convolutional Gaussian processes
 4. CDGP: Convolutional deep Gaussian processes

MNIST

<table>
<thead>
<tr>
<th>Model</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Layer 3</th>
<th>Layer 4</th>
<th>Accuracy%</th>
<th>NLPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGP</td>
<td>RBF</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>97.48</td>
<td>–</td>
</tr>
<tr>
<td>DGP1</td>
<td>RBF</td>
<td>RBF</td>
<td>–</td>
<td>–</td>
<td>97.94</td>
<td>0.073</td>
</tr>
<tr>
<td>DGP2</td>
<td>RBF</td>
<td>RBF</td>
<td>RBF</td>
<td>–</td>
<td>97.99</td>
<td>0.070</td>
</tr>
<tr>
<td>CGP1</td>
<td>Conv</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>95.59</td>
<td>0.170</td>
</tr>
<tr>
<td>CGP2</td>
<td>Wconv</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>97.54</td>
<td>0.103</td>
</tr>
<tr>
<td>CDGP1</td>
<td>Wconv</td>
<td>RBF</td>
<td>–</td>
<td>–</td>
<td>98.66</td>
<td>0.046</td>
</tr>
<tr>
<td>CDGP2</td>
<td>Conv</td>
<td>RBF</td>
<td>–</td>
<td>–</td>
<td>98.53</td>
<td>0.536</td>
</tr>
<tr>
<td>CDGP3</td>
<td>Conv</td>
<td>RBF</td>
<td>RBF</td>
<td>–</td>
<td>98.40</td>
<td>0.055</td>
</tr>
<tr>
<td>CDGP4</td>
<td>Conv</td>
<td>RBF</td>
<td>RBF</td>
<td>RBF</td>
<td>98.41</td>
<td>0.051</td>
</tr>
<tr>
<td>CDGP5</td>
<td>Wconv</td>
<td>Wconv</td>
<td>RBF</td>
<td>–</td>
<td>98.44</td>
<td>0.048</td>
</tr>
<tr>
<td>CDGP6</td>
<td>Wconv</td>
<td>Wconv</td>
<td>RBF</td>
<td>RBF</td>
<td>98.60</td>
<td>0.046</td>
</tr>
</tbody>
</table>
Example: Identification of Atmospheric Variable Using Deep Gaussian Processes

- Goal: modeling temperature using meteorological variables (features).

- Domain of interest: $25Km \times 25Km$ around the nuclear power plant in Krško, Slovenia.

- Features: relative humidity, atmosphere stability, air pressure, global solar radiation, wind speed.
The Geographical Features of the Surrounding Terrain

- The plant and its measurement station (marked as STOLP – Postaja) are situated in the basin surrounded by hills and valleys, which influence micro-climate conditions.
One-Step-Ahead Prediction

- Prediction results:

![Graph showing prediction results for Deep GP.](image)
Example: Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data

- Goal: predicting crop yields before harvest
- Model: CNN and LSTM combined with GP

<table>
<thead>
<tr>
<th>Year</th>
<th>Ridge</th>
<th>Tree</th>
<th>DNN</th>
<th>LSTM</th>
<th>LSTM + GP</th>
<th>CNN</th>
<th>CNN + GP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>9.00</td>
<td>7.98</td>
<td>9.97</td>
<td>5.83</td>
<td>5.77</td>
<td>5.76</td>
<td>5.7</td>
</tr>
<tr>
<td>2012</td>
<td>6.95</td>
<td>7.40</td>
<td>7.58</td>
<td>6.22</td>
<td>6.23</td>
<td>5.91</td>
<td>5.68</td>
</tr>
<tr>
<td>2013</td>
<td>7.31</td>
<td>8.13</td>
<td>9.20</td>
<td>6.39</td>
<td>5.96</td>
<td>5.50</td>
<td>5.83</td>
</tr>
<tr>
<td>2014</td>
<td>8.46</td>
<td>7.50</td>
<td>7.66</td>
<td>6.42</td>
<td>5.70</td>
<td>5.27</td>
<td>4.89</td>
</tr>
<tr>
<td>2015</td>
<td>8.10</td>
<td>7.64</td>
<td>7.19</td>
<td>6.47</td>
<td>5.49</td>
<td>6.40</td>
<td>5.67</td>
</tr>
<tr>
<td>Avg</td>
<td>7.96</td>
<td>7.73</td>
<td>8.32</td>
<td>6.27</td>
<td>5.83</td>
<td>5.77</td>
<td>5.55</td>
</tr>
</tbody>
</table>

Comparing County-Level Error Maps

- The color represents the prediction error in bushel per acre.
Conclusions

- A case was made for using probability theory in treating uncertainties in inference from data.

- Deep probabilistic modeling based on deep Gaussian processes was addressed.

- The use of DGPs in studying complex interacting systems was described.

- Applications in various fields using DGPs were provided.

- Although the development of DGPs is still in its relatively early stages, DGPs showed great potentials in many challenging machine learning tasks.