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Introduction

» Probabilistic modeling allows for representing and modifying
uncertainty about models and predictions.

» This is done according to well defined rules.

» Probabilistic modeling has a central role in machine learning,
cognitive science and artificial intelligence.
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The Concept of Uncertainty

> Learning and intelligence depend on the amount of
uncertainty in the information extracted from data.

» Probability theory is the main framework for handling
uncertainty.

> Interestingly, in the recent progress of deep learning with deep
neural networks, which are based on learning from huge
amounts of data, the concept of uncertainty is somewhat
bypassed.

> In the years to come, we will see further advances in artificial
intelligence and machine learning within the probabilistic ’
framework. \\\%ﬁiﬁgﬁk
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The Role of a Model

» To make inference from data, one needs models.

» Models can be simple (like linear models) or highly complex
(like large and deep neural networks).

> In most settings, the models must be able to make predictions.

» Uncertainty plays a fundamental role in modeling observed
data and in interpreting model parameters, the results of
models, and the correctness of models.
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The Learning

» Probability distributions are used to represent uncertainty.

» Learning from data occurs by transforming prior distributions
(defined before seeing the data) to posterior distributions
(after seeing the data).

» The optimal transformation from information-theoretic point
of view is the Bayes rule.

» The beauty of the approach is the simplicity of the Bayes
mechanism.
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Gaussian Processes Regression

» Essentially, a GP can be seen as the distribution of a
real-valued function f(x),

f(x) ~ GP(m(x), ke (x;, x;))

» Some assumptions are often made when using GP regression

1. the mean function m(x) = 0 for simplicity, and

2. the observation noise is additive white Gaussian noise for
tractability.
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Gaussian Processes Regression (contd.)

Let X = {x;}¥., and y denote the collection of all input vectors
and all observations, respectively, with the above assumptions, i.e.,
y="f(X)+e€

where € ~ N(0,021). We also have
» Likelihood: p(y|f) = N(y|f,c?l), and

» Prior: p(f|X,0) = N(f|0,Kg), where Kg = k¢(X, X) and 0
denote the hyper-parameters in the covariance function.
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Gaussian Processes Regression (contd.)

The hyper-parameters @ can be learned from the training data
{X,y} by maximizing the log-marginal-likelihood

» Log-marginal-likelihood: log p(y|X, )

log p(y|X, 0) = log N'(y|0, K¢ + o2l)

= log NV (y|0, K)
1 .1 1 N
= ——y'K — —log|K| — = log?2
5Y y = 5 log|K| — = log 27
» The Occam's razor is embedded in the model. \
q\\\[sjtqnyB?t(;)k
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Gaussian Processes Regression (contd.)

Let X, and f, denote the collection of test inputs and the
corresponding latent function values, respectively. Then we can
express the predictive posterior as

» Predictive posterior: p(f.|X., X,y, 0) = N(f.|E(f.), cov(f,))

E(f.) = [Ke(X., X)IK™ 1y

cov(f,) = Ke(Xs, Xi) — [Ke(Xe, X) KK (Xs, X)] T
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Covariance Function

>

For example: Radial basis function (RBF) or squared
exponential (SE)

One dimensional form:
1
kb (i, 1) = 0 exp(—5 (xi = x;)°)

2

- ag . -

a% measures strength of signal, —% is equivalent to
€

signal-to-noise ratio (SNR).

The characteristic length scale ¢ encodes the model
complexity in that dimension.

r = ; measures the relevance of that dimension.
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Toy Example

v

Goal: learn f(x) from 5 noisy observations {x;, y;}2_;.

v

Ground truth: y = sin(x) + ¢, € ~ N(0,02?).

Test inputs: x, € R390%1 equally spaced from x = 0 to 27.

v

v

Test outputs: f, = f(x,)
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[Pconfidence interval
| —prior mean

test outputs ,

A5 4
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[Ficonfidence interval
|—predictive mean

© noisy observations|
| - ground truth

test outputs ,
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95% confidence interval
—mean prediction
+ observed samples
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Example: Recovery of Missing Samples in FHR?

» Goal: recover missing samples in FHR, using not only
observed FHR but also UA samples

» Model:
yi=yx;)=f(x;) +e

yi: i-th sample in an FHR segment

x; = [/, u;]" where u; is the i-th UA sample
€;: Gaussian white noise

f(x;): i-th latent noise-free FHR sample

vV vy vYyy

1 . L _ . q\\\‘ Stony Brook
Guanchao Feng, J Gerald Quirk, and Petar M Djuri¢. “Recovery of missing samples in fetal heart rate University

recordings with Gaussian processes”. In: Signal Processing Conference (EUSIPCO), 2017 25th European. |EEE

2017, pp. 261-265.

— Deep Gaussian Processes: Theory and Applications



Gaussian Processes
000000000080 00000

100 | | | | | | | | |
50 100 150 200 250 300 350 400 450 500
time[samples]
A

100 u\ T
80

"
I

A
40F I ATNA L .
NN NN NN A A
20
0 | | | | | |
0 50 100 150 200

250
time[samples]

q\\\w Stony Brook

University

Deep Gaussian Processes: Theory and Applications




Gaussian Processes
00000000000 e00000

FHR[BPM]

80
500
60 400 450

350
0 200 20 o
20 100 150

time[samples]

q\\\V Stony Brook

University

Deep Gaussian Processes: Theory and Applications



Gaussian Processes
000000000000 e0000

Experiment |

> 120 missing samples were randomly selected, and we tried to
recover their true values.

I I I I I I
0 50 100 150 200 250 300 350 400 450 500
time[samples]
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Experiment Il

» The percentage of missing samples was increased from 1% to

85% with a step size of 1%.

'I=MSE of GPs-based method

»i* MSE of cubic spline interpolation

log of MSE

dB

s =

"1* SNR of cubic spline interpolation|

-n
Lo
AT
v

"
YR

—SNR of GPs-baﬁsed method

Percentage of Missing Samples

Qi

Stony Brook
University

n Processes: Theory and Applications



Gaussian Processes
0000000000000 0e00

Experiment Il

> To demonstrate contribution of UA, we repeated the
experiment |, but excluded u; from the input vector x;.

Contribution of UA Signal
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Experiment VI (An Extreme Case)

» 10 seconds of consecutive missing samples.
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Limitations

» The general framework is computationally expensive, O(N3),

-1
due to the term K .

> Another limitation is the joint Gaussianity that is required by
the definition of GPs.
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Deep Gaussian Processes

D=~ @

» Y € RVXd: observations, output of the network

» N is the number of observation vectors.
» d, is the dimension of the vectors y,.

> {Xp}=l: intermediate latent states

> dimensions {d,}/_' are potentially different.

» Z € RN%%: the input to the network

» Z is observed for supervised learning.

s 5 . \
» Z is unobserved for unsupervised learning. 1\\\ %ﬁ“zggk
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Deep Gaussian Processes (contd.)

> The joint Gaussianity limitation is overcome because nonlinear
mappings generally will not preserve Gaussianity.

» DGPs immediately introduce intractabilities.

» One way of handling the difficulties is by introducing a set of
inducing points and where within the variational framework,
sparsity and a tractable lower bound on the marginal
likelihood are obtained.
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Example: Functions Sampled From DGP

» Gaussianity limitation is overcome by nonlinear function

composition.
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Example: Learning a Step Function?

» Standard GP (top), two- and four-layer DGP (middle,
bottom).

» DGPs achieved much better performance.

1
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Deep GPs and Deep Neural Networks (a comparison)

> A single layer of fully connected neural network with an
independent and identically distributed (iid) prior over its
parameters and with an infinite width is equivalent to a GP.

> Therefore, deep GPs are equivalent to neural networks with
multiple, infinitely wide hidden layers.

» Mappings of a DGP are governed by its GPs instead of
activation functions.

» A DGP allows for propagations and quantifications of
uncertainties through each layer as a fully Bayesian
probabilistic model.
q\\\\ Stony Brook
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Generative Process

DD

Figure: A two-layer DGP.

» The generative process takes the form:

Xnl = f,X(Z,,)—Fef,(,, [=1,...,dx, zp € R%

Yni = fiY(Xn)-I-G,\,/;, = 1""’d}” Xn ERdX

» X and €. are additive white Gaussian processes. v
Stony Brook
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Generative Process (contd.)

< ) X < ) fY @
» We assume Z is unobserved with a prior p(Z) = N (Z]0,1)

» If we have specific prior knowledge about Z, we should
quantify this knowledge into a prior accordingly.
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nclusions

Inference

nOny _

» The inference takes the reverse route, i.e., we observe
high-dimensional data Y, and we learn the low-dimensional
manifold Z (of dimension d,, where d, < dx < d,) that is
responsible for generating Y.
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Inference Challenges

The learning requires maximization of the log-marginal-likelihood,

o p(¥) = log | _p(YIX)p(X[Z)p(2)iXdZ

)

which is intractable.
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Augmentation of Probability Space
OO
» Original probability space:

p(Y, FY’ FX’ X, Z) :p(Y|FY)p(FY’X)p(X’FX)
x p(FX|Z)p(Z)

» Augmentation using inducing points:
> UX = fX(Z), Z € R">*9% and UX € RN-x%
> UY = £Y(X), X € R%>% and X € RMx%

> Np <N ‘\\\‘ Stony Brook

University
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Augmentation of Probability Space

» Augmented probability space:

p(Y7 FY’ FX’ X’ z7 UY’ UX’ x? 2)
= p(Y|FY)p(FY|UY, X)p(U"|X)
x p(X|FX)p(FX|UX, Z)p(U*|Z)p(Z)

» Problematic terms:
> A=p(F"|U",X)
» B = p(FX|UX,Z)
q\\\\ Stony Brook

University
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Variational Inference
> A variational distribution: @ = q(UY)q(X)q(UX)q(Z)

> By Jensen's inequality:

log p(Y) > F, = / Q- A-BlogGdFYdXdFXdzduXduY

v

The function G is defined as:

G(Y,FY,X,FX,Z, UX UY)
_ P(Y[FY)p(UY)p(X|FX)p(UX)p(Z)
& .

» F, is tractable for a collection of covariance functions, sinﬁ%
A and B are canceled out in G.

Stony Brook
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Studying Complex Systems

Used principles
» algorithmic compressibility,
> l|ocality, and

» deep probabilistic modeling.
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Applications-contd.

yk[t1] yjlta]
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Applications-contd.?

A) FPN Network B) Extracting network structure
Node 1 Node 2 Node 1 Node 2

vi,1 by’ Y21

Y1,2 WM’ Y22
1. Observations Y23

et 4V ’

2. Extracting latent processes

x1 Y X2 Y
«—
—_—

3. Identifying connectivity direction

N

Circuit map
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Example: Binary pH-based Classification®

» Goal: to have the DGP classify CTG recordings into health
and unhealthy classes.

» Features:

» 14 FHR features
» 6 (categorical) UA features

> Labeling:
» Positive (unhealthy): pH < 7.1
> Negative (healthy): pH > 7.2

4 . L X . . !\\\‘t Stony Brook
Guanchao Feng, J Gerald Quirk, and Petar M Djuri¢. “Supervised and Unsupervised Learning of Fetal H University
Rate Tracings with Deep Gaussian Processes”. In: 2018 14th Symposium on Neural Networks and Applications

(NEUREL). |EEE. 2018, pp. 1-6.
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» Structure of DGP: our DGP network had two layers, and in
each layer, we set the initial latent dimension to five.

» Performance metrics:

1. Sensitivity (true positive rate)
2. Specificity (true negative rate)

3. Geometric mean of specificity and sensitivity

q\\\‘ Stony Brook
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Features

Table: Features for FHR

Category Feature
Time domain Mean, Standard deviation, STV, STI, LTV, LTI
Non-linear Poincaré SD1, Poincaré SD2, CCM
Frequency domain VLF, LF, MF, HF, ratio

Table: Features for UA

Normal (0) Abnormal (1)
Frequency < 8 contractions > 8 UC (tachysystole)
Duration < 90s > 90s
Increased tonus  With toco Prolonged > 120s
Interval A Interval — peak to peak < 2min
Interval B Interval — offset of UC to < 1min

onset of next UC q\\\V Stony Brook

Rest time > 50% < 50% University
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Classification Results

» Support vector machine (SVM) was used as a benchmarking
model.

Table: Classification results

Classifier ~ Feature  Specificity Sensitivity ~Geometric Mean

FHR 0.82 0.73 0.77
SYM tiRiuA 082 0.82 0.82

FHR 0.01 0.73 0.82
Deep GP ririuA 082 0.91 0.86

q\\\‘ Stony Brook
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Unsupervised Learning for FHR Recordings

» Goal: to have the DGP learn informative low-dimensional
latent spaces that can generate the recordings.

> Labeling:
» pH-based labeling combined with obstetrician’s evaluation.

> Labels are only used for evaluation of learning results.

> Data:
» The last 30 minutes of 10 FHR recordings, Y € R10x7200,

Stony Brook

» Three of them are abnormal and 7 are normal. ‘\\\‘
University
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Performance Metric and Network Structure

» Performance metric: the number of errors in the latent space
for one nearest neighbor.

» Structure of DGP: a five-layer DGP, and the initial dimensions
of the latent spaces in the layers were dy,., = [6,5,5,4,3]".
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Automatic Structure Learning
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Visualization of the Latent Spaces with 2-D Projection.

» Red: the normal recordings
» Blue: the abnormal recordings
» Pixel intensity: proportional to precision

» The total errors in layers 1 to 5 are 2, 2, 1, 1, 0, respectively.

2 .
o Dm
2 . -
, 3
0
1

ry 2 1 o 1 2
Layer 2 —— —
S— e —— R —
p—
1 05 0 05 i 15
1
Layer3 0
. .
o8 06 0 02 0 02 04 o5 08 T
06 S -
83| -
L .
ayerd 9
83 . —
08 06 04 02 0 02 04 06 08 1
‘ .
Layer5 g ‘
1 q\\\ Stony Brook
1.5 1 0.5 0 05 1 15 Unjversity

aussian Processes: Theory and Applications



Gaussian Pro s Applications

[e]e] le]e]ele]e]e]

Example: Deep Gaussian Processes with Convolutional

Kernels®

» Goal: multi-class image classification

» Database: MNIST (handwritten digits)

» Methods:

1.

2.
3.
4

SGP: Sparse Gaussian processes

DGP: Deep Gaussian processes

CGP: Convolutional Gaussian processes
CDGP: Convolutional deep Gaussian processes

5Vinayak Kumar et al. “Deep Gaussian Processes with Convolutional Kernels”. [n: arXiv preprint

q\\\‘ Stony Brook
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Model Layer 1 |Layer 2 |[Layer 3 |[Layer 4 [Accuracy% |NLPP
SGP RBF — — — 97.48 —
DGP1 RBF RBF — — 97.94 0.073
DGP2 RBF RBF RBF - 97.99 0.070
CGP1 Conv — — - 95.59 0.170
CGP2 Weconv — - - 97.54 0.103
CDGP1 Wconv RBF — - 98.66 0.046
CDGP2 Conv RBF — — 98.53 0.536
CDGP3 Conv RBF RBF — 98.40 0.055
CDGP4 Conv RBF RBF RBF 98.41 0.051
CDGP5 Wconv Wconv RBF - 98.44 0.048
CDGP6 Wconv Wconv RBF RBF 98.60 0.046

Deep Gaussian Processes: Theory and Applications
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Example: Identification of Atmospheric Variable Using
Deep Gaussian Processes®

» Goal: modeling temperature using meteorological variables
(features).

» Domain of interest: 25Km x 25Km around the nuclear power
plant in Krgko, Slovenia.

» Features: relative humidity, atmosphere stability, air pressure,
global solar radiation, wind speed.

q\\\‘ Stony Brook
6 University

Mitja Janéig, Jus Kocijan, and Bostjan Grasgi¢. “ldentification of Atmospheric Variable Using Deep Gaussian
Processes”. In: IFAC-PapersOnLine 51.5 (2018), pp. 43-48.
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The Geographical Features of the Surrounding Terrain

» The plant and its measurement station (marked as STOLP —
Postaja) are situated in the basin surrounded by hills and
valleys, which influence micro-climate conditions.
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One-Step-Ahead Prediction

» Prediction results:

Deep GP
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Example: Deep Gaussian Process for Crop Yield Prediction
Based on Remote Sensing Data’

» Goal: predicting crop yields before harvest

» Model: CNN and LSTM combined with GP

Baselines Deep models
. o ) LSTM CNN
Year Ridge Tree DNN LSTM +GP CNN +GP

2011 9.00 798 997 5.83 ] 5.76 5.7
2012 695 740 758 6.22 6.23 591 5.68
2013 731 813  9.20 6.39 596 550 583
2014 846 750 7.66 6.42 570 527 4.89
2015 810 7.64 7.19 6.47 549 640 5.67

Avg 796 773 832 6.27 5.83 ST 9.55

q\\\‘ Stony Brook
University
7 Jiaxuan You et al. “Deep Gaussian Process for Crop Yield Prediction Based on Remote Sensing Data.”. In
AAAI 2017, pp. 4559-4566.
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Comparing County-Level Error Maps
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» The color represents the prediction error in bushel per acre.
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Conclusions

> A case was made for using probability theory in treating
uncertainties in inference from data.

» Deep probabilistic modeling based on deep Gaussian processes
was addressed.

» The use of DGPs in studying complex interacting systems was
described.

» Applications in various fields using DGPs were provided.

» Although the development of DGPs is still in its relatively
early stages, DGPs showed great potentials in many
challenging machine learning tasks. QI stony Brook

University
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