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Abstract—Current microwave breast cancer imaging algo-
rithms focus primarily on generating an image, and provide
little machinery for interpretation of the image. Within-image
contrast is commonly used as a performance metric, but a better
reflection of the tumour detection capability of an algorithm is
the difference between the maximum voxel intensities observed
in images from scans of tumour-free and tumour-bearing breasts.
This paper extends existing imaging algorithms by incorpo-
rating an automatic tumour detection technique that involves
classification based on maximum voxel intensities. We compare
results obtained from different algorithms on the data collected
from healthy breast scans performed during clinical trials of a
microwave radar system. We artificially inject tumour signals
that are constructed based on the transmission properties of the
radar system and the estimated breast tissue properties. The
results provide insights into which algorithms are sufficiently
robust to handle discrepancies between the real measurement
data and the modeling assumptions.

Index Terms—microwave breast cancer detection, clinical trial,
imaging algorithms.

I. INTRODUCTION

Microwave breast imaging techniques have been proposed
to complement the standard methods of x-ray mammography
(for screening), and ultrasound and magnetic resonance imag-
ing (MRI) (for diagnosis). Microwave methods offer potential
for comfortable, cost-effective breast scans that do not involve
ionizing radiation [1]. The techniques are based on a reported
inherent contrast in the dielectric properties of healthy and
malignant tissues, over the microwave frequency range.

There are two types of microwave imaging techniques: to-
mographic and radar. Microwave tomography aims to recover
a map of the electrical properties of the breast tissue [2]. It
involves solving an ill-conditioned inverse problem that can
be computationally expensive, and generally requires a large
number of antennas located around the breast in order to
enable high definition in the recovered map. For these reasons,
we focus only on backscattered radar methods.

The most common radar method, confocal microwave
imaging (CMI) [3], and its variant, delay-multiply-and-sum
(DMAS) [4], are based on time shifting and summing of
backscattered signals. Other well-known radar imaging meth-
ods include microwave imaging via space-time beamforming
(MIST) [5], robust weighted Capon beamforming (RWCB) [6],
and multistatic adaptive microwave imaging [7]. All of these
methods focus on generating images; a clinical expert must
then examine the images to determine the tumour existence.

Another type of microwave imaging technique is to view the
breast cancer imaging challenge as a hypothesis testing prob-
lem for each voxel, with the null hypothesis representing the
tumour-free case. A generalized likelihood ratio test (GLRT) is
formulated to detect the tumour presence on a voxel-to-voxel
basis in [8]. Its performance is assessed with numerical and
experimental breast phantoms.

Although the GLRT algorithm is formulated as a detection
problem, the detection is at the voxel level (is the voxel a
scatterer or not?). It does not strive to make a global decision
about the presence or absence of a tumour in a breast. In the
study presented here, we use the maximum voxel intensity ob-
tained by applying various imaging algorithms to breast scan
data as the input to a classifier. We examine the performance
of the delay-multiply-and-sum (DMAS) algorithm [4], the
MIST algorithm from [5], the weighted Capon beamforming
(WCB) [6], and the GLRT algorithm of [8].

The use of a classifier allows us to make a global decision
as to whether a breast contains a tumour. We can then compare
different algorithms based on their detection performance. Our
experiments involve signals obtained using an experimental
system applied to volunteers with healthy breasts. The tumour
signals are constructed numerically based on the transmission
properties of the system and the estimated breast tissue proper-
ties. The analysis thus provides insights into which algorithms
are sufficiently robust to handle discrepancies between the real
measurement data and the modeling assumptions.

The paper is organized as follows. We introduce the problem
statement in Section II. The detection algorithm is proposed
in Section III. Section IV introduces the clinical data and
injected tumour responses. Finally, we present the classifier
performance for the different algorithms in Section V.

II. PROBLEM STATEMENT

A common setup for a microwave imaging system is that
each antenna of the array surrounding the breast sequentially
sends an ultra-wide bandwidth (UWB) pulse to the breast and
collects the backscattered signal. Thus, there are M = R(R−1)
directed antenna pairs for the R antennas. One measurement
contains received pulses for each antenna pair.

Suppose that we have access to a set of measurements
from different people. We assume that we have multiple
measurements from each individual, taken at monthly or yearly
intervals. The first scan from each individual is considered



a “baseline”; we assume that it corresponds to a healthy
breast state, confirmed through scans using other modalities. In
subsequent measurements the breast may remain tumour-free
(“nominal”), or a tumour may develop. Now we are provided
with measurements from a new patient, from which we have
baseline and tumour-free measurements collected as before.
We want to decide from her current measurements whether
a tumour has developed or not. In making this decision, we
need to control the trade-off between the false-alarm rate and
detection power.

III. IMAGING-BASED CLASSIFIER

The microwave breast cancer detection algorithm we pro-
pose consists of two stages. In the first stage, the breast
region is divided into small voxels. We use different imaging
algorithms to generate different image intensities for each
voxel. The maximum voxel intensity for each measurement
is then used to decide whether a tumour is present.

A. Imaging algorithms

Four well-known microwave breast imaging algorithms
are used to generate the classifier input in this paper. The
delay-multiply-and-sum algorithm (DMAS) [4] first extracts
the backscatters from signals in each channel and estimates
their time delays for each voxel position. The time-aligned
backscatters are then multiplied pair-wisely before a summing
and integration operation outputs the imaging intensities for
each voxel. It exploits the fact that the synthetically aligned
backscatters with the correct tumour location will be corre-
lated, which results in a higher image intensity for that voxel.

Microwave imaging via space-time beamforming
(MIST) [5] compensates for the frequency-dependent
time delay by passing the time-aligned signal to finite
impulse response (FIR) filters. The filter signals are then
summed to produce the beamformer output.

The robust weighted Capon beamforming (RWCB)
method [6] has a weighted combination of time-aligned signals
in different channels to improve image resolution and suppress
interference. The robust part of the approach involves solving
an optimization problem for each voxel, which makes the
algorithm prohibitively slow for batch processing of a large
number of measurements, since we usually construct tens of
thousands of voxels for the image generation. Thus we adopt
the weighted Capon beamforming (WCB) algorithm.

A generalized likelihood ratio test (GLRT)-based breast
cancer imaging algorithm [8] instead considers the imag-
ing as hypothesis testing problems for each voxel, with the
null hypothesis representing the tumour-free case. It requires
knowledge of the signal template, which is a model for the
backscattered signal with respect to each focus position.

B. Classification

Once an image is generated, it is used in the second stage
to determine the presence of a tumour. For all measurements
other than the first measurement (baseline) of each volunteer,
we generate a 3-D image I and use the maximum intensity

max(I) as the classifier score. This is compared with a
threshold η to decide whether a tumour is present. We do
not discuss the choice of η in this paper; instead we examine
performance of the different imaging algorithms as η is varied
over a reasonable range of values.

IV. CLINICAL DATA AND SIMULATED TUMOUR RESPONSE

A. Clinical trial

We performed breast scans on 12 healthy volunteers through
a clinical trial using a time-domain multistatic radar system.
A detailed description of the system prototype can be found
in [9]. The scans were conducted over 48 patient visits
spanning an 8-month period, with each volunteer visiting up to
once per month. The data set includes scans from volunteers
who visited a minimum of two and a maximum of six times.
The volunteers ranged in age from 21 to 77, with bra cup sizes
from A to D. Each breast scan contains 240 signals, one from
each transmit-receive antenna pair (with 16 antennas overall).
The data were collected with a sampling rate of 40GHz and
a signal length of 1024 samples.

We treat the measurements of the left breast and the right
breast from the same people as independent. There are two
measurements for each breast during one visit. The latter one
is taken after the volunteer re-positions herself. We use the
48 × 2 = 96 sets of the first measurement of each visit to
represent the tumour-free data from different breasts, which
can be denoted by {pij}, where i ∈ {1,2, . . . ,24} is the index
of breasts, and j = 1,2, . . . , J(i) is the index of volunteer
visits. For breast i, we can use the first set of tumour-free
measurements pi1 as the baseline, and generate the differential
signals bij = pi(j+1) − pi1 as the tumour-free differential data,
for j = 1,2, . . . , J(i) − 1. Thus, there will be 96 − 24 = 72
different Bij .

Since we only have clinical data from healthy volunteers,
there are no tumour-bearing breast measurements in our origi-
nal dataset. However, we can simulate the tumour responses ri
for volunteer i, based on the transmitted pulses g(n) and the
dielectric properties of breast tissue and tumour. We then add
them to the 48 × 2 = 96 sets of the measurements taken after
volunteers re-positioned themselves, wij , to form the tumour-
bearing measurements qij = wij + ri, for j = 2, . . . , J(i). In
this way, we obtain 96 − 24 = 72 tumour-bearing differential
data tij = qi(j+1) − pi1, for j = 1,2, . . . , J(i) − 1.

A diagram of the number of measurements for each of the
24 breasts is shown in Table I.

TABLE I
NUMBER OF TUMOUR-FREE MEASUREMENTS FOR EACH VISITOR. ODD i

CORRESPONDS TO A VOLUNTEER’S LEFT BREAST, WHILE EVEN i
CORRESPONDS TO A VOLUNTEER’S RIGHT BREAST.

i 1 3 5 7 9 11 13 15 17 19 21 23 Total2 4 6 8 10 12 14 16 18 20 22 24
J(i) 3 3 4 5 2 6 6 4 4 4 3 4 96



B. Injected tumour response

To simulate the tumour response, we need to first simulate
the 16-element antenna array system which is used to collect
the data. The radome is modeled by a hemisphere x2/a2 +
y2/b2+z2/c2 = 1, where z ≥ 0 is the depth information, a = b =
c = 7.3cm. The antenna’s positions in x and y axis mimic our
real multi-static radar system. The breast is assumed to be in
a smaller hemisphere, where a′ = b′ = c′ = 7cm. The geometry
of the breast model is shown here in Figure 1. The space

Fig. 1. The breast shape model, the antenna positions, and a tumour at
(1,1,1)cm.

between the antennas and the breast is assumed to be filled
with lossless non-dispersive immersion medium with εrb = 9.6
to reduce the artefacts.

We simulate the transmitted pulse g(n) using the sampled
pulse fed into each antenna collected from a real multi-static
radar system [9]. When a tumour exists at r0, the frequency
domain representation for the noise-free backscattered signal
rm for antenna pair m is denoted as in [5]

Rm(ω) = ΓR̃m(ω) = ΓG(ω)Hm(r0, ω), (1)

where Γ is the portion of the signals propagating through the
breast that will be reflected by the tumour. Γ is set to 0.2
which approximates the calculated values from the desired
inserted tumour and breast tissue permittivity values. G(ω) is
the Fourier transform of g(n), and Hm(r0, ω) is the frequency
response of the propagation from the transmitting antenna
to the tumour at r0 then back to the receiving antenna, for
antenna pair m. Hm(r0, ω) can be represented as

Hm(r0, ω) = e−j(kbdb+kndn). (2)

kb and kn are the wavenumber for the coupling medium and
the breast tissue, respectively. db and dn are the lengths of
the direct path for antenna pair m, in the coupling medium
and the breast tissue, respectively. kb = 2π/λrb(ω) =

√
εrbω/c,

and kn = 2π/λr(ω) =
√
εr(ω)ω/c where εr is estimated using

Debye model

εr(ω) = ε∞ +
∆ε

1 + jωτ
+ σs
jωε0

. (3)

We randomly set Debye parameters (ε∞,∆ε, τ, σs) to different
values for different breasts according to uniform distributions:
∆ε ∼ U(20,32.08), σs ∼ U(0.36,0.52). τ ∼ U(8.68,13) ×
10−12. ε∞ is set to 5.57, and ε0 = 8.854 × 10−12 is the
permittivity of free-space. The range of the uniform dis-
tribution is chosen according to clinical experiment results
from [10], [11] to produce permittivity values within the
range of the values estimated from our experimental data.
Different εr values will lead to tumour responses of different
time delay and attenuation. To add more variability to the
tumour responses, we also randomly choose different tumour
positions for different volunteers. It is unlikely for the tumours
to develop in the skin layer, so we randomly sample the tumour
positions within a hemisphere of radius 6cm.

Figure 2 shows the clinical experimental data and the
simulated tumour-bearing data from Antenna pair A8-A12, for
the first two visits of Volunteer 6. Antenna pair A8-A12 is
chosen because it has the largest tumour responses among all
of the antenna pairs for Volunteer 6.
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Fig. 2. The tumour-free and tumour-bearing breast measurements of
Volunteer 6 from antenna pair A8-A12. The tumour position is (x, y, z) =
(−0.3,−0.1,2.9)cm. Γ is set to 0.2.



V. EXPERIMENT RESULTS

We divide the possible tumour locations (a hemisphere with
radius 6cm) into voxels of dimension 2× 2× 2mm. This leads
to 56552 voxels inside the region.

We estimate average εr for each breast using the tumour-
free measurements to calculate the average propagation speed
required in the algorithms. Some of the values are significantly
different than the values we used to generate the tumour
responses. This mimics the real scenario where we often have
limited knowledge about the exact tissue permittivity of the
patients. For the same reason, we use a fixed set of Debye pa-
rameters (ε∞ = 5.57,∆ε = 26.04, τ = 10.84×10−12, σs = 0.44)
to generate signal templates for the GLRT algorithm. The FIR
filter length in the MIST algorithm is used to control the time
alignment, which is set to 10 for computational efficiency. The
number of frequency samples used in MIST is 100, uniformly
covering the range from 1GHz to 6GHz.

The imaging results of the four algorithms on the first
nominal and tumour-bearing breast measurements from the left
breast of Volunteer 2 are shown in the top rows of Figure 3–6.
We show these images because they represent typical images
from those algorithms. The top two images show slices where
the maximum voxel intensity occurs in the 3D images.

The maximum image intensity of the tumour-bearing
DMAS image is higher than the nominal image. But the
tumour-bearing image is noisy, showing clutter of high in-
tensity regions away from the true tumour position. It is very
difficult to distinguish between the MIST images from the
nominal and tumour-bearing measurements, since there are
significant image processing artefacts. The frequency-related
compensation of the signal delays does not appear to work
since the real signal propagation environment is varying and
unknown. The WCB tumour-bearing image does not show any
patterns related to the tumours. The WCB algorithm requires
a highly accurate description of the tumour response, which
is unavailable in the real dataset. The GLRT image for the
tumour-bearing measurement clearly indicates the presence of
the tumour. Its maximum image intensity is also much higher
than that from the nominal measurement.

We can observe from the bottom rows of Figure 3–6 that
there is less overlap between the maximum GLRT image
intensities from the tumour-bearing measurements and those
from the nominal measurements, compared to the results from
the other algorithms. This indicates that we can achieve higher
predictive power by applying a global threshold to the GLRT
outputs, which is confirmed in Figure 7.

We can use maximum image intensities from the 72 tumour-
free and 72 tumour-bearing differential measurements as clas-
sifier score values to perform classification. We use a leave-
8-out approach to generate 18 different ROC curves to obtain
the average ROC curve in Figure 7. For the GLRT algorithm,
the classifier is able to control the false positive rate at 0.1
while achieving a detection rate of 0.55. The performance of
the other algorithms is much poorer; for the false positive rate
of 0.1, the detection rate is only 0.1.
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Fig. 3. Top: the DMAS imaging results at the slice where the max-
imum voxel intensity occurs, from the second visit of tumour-free (left)
and tumour-bearing (right) measurements of Volunteer 2 (tumour position
(x, y, z) = (−1.5,−0.5,2.7)cm). Bottom: the maximum voxel intensities
from the DMAS output of each measurement for all volunteers.
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Fig. 4. The MIST results on the same data used in Figure 3.
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Fig. 5. The WCB results on the same data used in Figure 3.
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Fig. 6. The GLRT results on the same data used in Figure 3.
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Fig. 7. Performance of classifiers based on different imaging algorithms.

VI. CONCLUSIONS

In this paper, we have compared classification techniques
based on different imaging algorithms on clinical trial data.
Tumour response signals are constructed based on the trans-
mission properties of the system and the estimated breast
tissue properties. Current results demonstrate that GLRT-based
classification algorithm has better sensitivity and specificity
than the other imaging algorithms-based classification. Future
research directions include investigating more robust classifiers
based on the imaging results.
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