

Fast-Lipschitz Optimization for Non-convex and Convex Problems

Bellairs McGill University

February 18-th, 2013

Carlo Fischione

ACCESS Linnaeus Center, Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden web: <u>http://www.ee.kth.se/~carlofi</u> e-mail: <u>carlofi@kth.se</u>

Optimization is pervasive over networks

Parallel computing

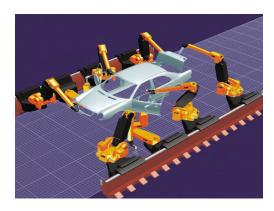
Environmental monitoring

Intelligent transportation systems

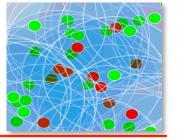
Smart grids

Smart buildings

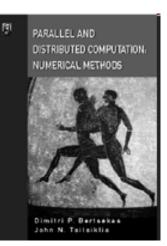
Industrial control



Optimization over networks

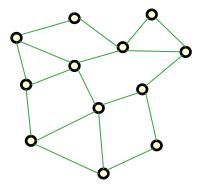


- Optimization needs fast solver algorithms of low complexity
 - > Time-varying networks, little time to compute solution
 - Distributed computations
 - E.g., networks of parallel processors, cross layer networking, distributed detection, estimation, content distribution,
- Parallel and distributed computation
 - Fundamental theory for optimization over networks
 - > Drawback over energy-constrained wireless networks: the cost for communication not considered
- An alternative theory is needed
 - > In a number of cases, Fast-Lipschitz optimization



- Motivating example: distributed detection
- Definition of Fast-Lipschitz optimization
- Computation of the optimal solution
- Problems in canonical form
- Examples
- Conclusions

Distributed binary detection



 $\Gamma_i(s) = w_i(s)$ if H_0 $\Gamma_i(s) = E + w_i(s)$ if H_1 measurements at node i

hypothesis testing with S measurements and threshold x_i

$$P_{\text{fa}}^{(i)}(x_i) = \Pr[T_i > x_i | H_0]$$
$$P_{\text{md}}^{(i)}(x_i) = \Pr[T_i \le x_i | H_1]$$

 $T_i = \frac{1}{S} \sum_{i=1}^{S} \Gamma_i(s) \gtrless x_i$

probability of false alarm probability of misdetection

- A threshold minimizing the prob. of false alarm maximizes the prob. of misdetection.
- How to choose optimally the thresholds when nodes exchange opinions?

Threshold optimization in distributed detection

$$\min_{\boldsymbol{x}} \sum_{i=1}^{n} P_{\text{fa}}^{(i)}(x_i)$$
s.t.
$$\sum_{j=1}^{n} b_{i,j} P_{\text{md}}^{(j)}(x_j) \leq c_i, \quad i = 1, \dots, n,$$

$$0 \prec \boldsymbol{x} \prec E \mathbf{1}.$$

- How to solve the problem by distributed operations among the nodes?
- The problem is convex
 - Lagrangian methods (interior point) can be applied
 - Drawback: too many message passing (Lagrangian multipliers) among nodes to compute iteratively the optimal solution
- An alternative method: Fast-Lipschitz optimization

C. Fischione, "Fast-Lipschitz Optimization with Wireless Sensor Networks Applications", *IEEE TAC*, 2011

- Motivating example: distributed detection
- Definition of Fast-Lipschitz optimization
- Computation of the optimal solution
- Problems in canonical form
- Examples
- Conclusions

$$\begin{split} \max_{\boldsymbol{x}} & f_0(\boldsymbol{x}) \\ \text{s.t.} & x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l \\ & x_i = h_i(\boldsymbol{x}), \quad i = l+1, \dots, n \\ & \boldsymbol{x} \in \mathscr{D}, \end{split}$$

 $f_i(x): \mathscr{D} \to \mathbb{R}, \qquad i = 1, \dots, l$

 $f_0(x): \mathscr{D} \to \mathbb{R}$,

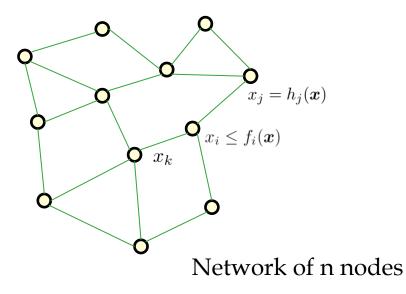
 $h_i(x): \mathscr{D} \to \mathbb{R}, \qquad i = l+1, \dots, n$

 $\mathscr{D} \subset \mathbb{R}^n$ nonempty compact set containing the vertexes of the constraints

Computation of the solution

 $\max_{\boldsymbol{x}} \quad f_0(\boldsymbol{x})$

s.t. $x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l$ $x_i = h_i(\boldsymbol{x}), \quad i = l+1, \dots, n$ $\boldsymbol{x} \in \mathcal{D},$



- Centralized optimization
 - > Problem solved by a central processor
- Distributed optimization
 - Decision variables and constraints are associated to nodes that cooperate to compute the solution in parallel

Pareto Optimal Solution

$$\begin{split} \max_{\boldsymbol{x}} & f_0(\boldsymbol{x}) \\ \text{s.t.} & x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l \\ & x_i = h_i(\boldsymbol{x}), \quad i = l+1, \dots, n \\ & \boldsymbol{x} \in \mathscr{D}, \end{split}$$

Definition : Consider the following set

$$\mathscr{A} = \{ \boldsymbol{x} \in \mathscr{D} : x_i \leq f_i(\boldsymbol{x}), i = 1, \dots, l, \\ x_i = h_i(\boldsymbol{x}), i = l+1, \dots, n \},\$$

and let $\mathscr{B} \in \mathbb{R}^l$ be the image set of $f_0(x)$, namely $f_0(x)$: $\mathscr{A} \to \mathscr{B}$. Then, we make the natural assumption that the set \mathscr{B} is partially ordered in a natural way, namely if $x, y \in \mathscr{B}$ then $x \succeq y$ if $x_i \ge y_i \ \forall i$ (e.g., \mathbb{R}^l_+ is the ordering cone).

Definition (Pareto Optimal): A vector x^* is called a Pareto optimal (or an Edgeworth-Pareto optimal) point if there is no $x \in \mathscr{A}$ such that $f_0(x) \succeq f_0(x^*)$ (i.e., if $f_0(x^*)$ is the maximal element of the set \mathscr{B} with respect to the natural partial ordering defined by the cone \mathbb{R}^l_+).

$$\mathbf{F}(\boldsymbol{x}) = \begin{bmatrix} F_1(\boldsymbol{x}) \\ F_2(\boldsymbol{x}) \\ \vdots \\ F_n(\boldsymbol{x}) \end{bmatrix} F_i(\boldsymbol{x}) : \mathbb{R}^n \to \mathbb{R} \ \forall i$$

$$\nabla \mathbf{F}(\boldsymbol{x}) = \begin{bmatrix} \frac{dF_1(\boldsymbol{x})}{dx_1} & \frac{dF_2(\boldsymbol{x})}{dx_1} & \cdots & \frac{dF_n(\boldsymbol{x})}{dx_1} \\ \frac{dF_1(\boldsymbol{x})}{dx_2} & \frac{dF_2(\boldsymbol{x})}{dx_2} & \cdots & \frac{dF_n(\boldsymbol{x})}{dx_2} \\ \vdots & \vdots & \ddots & \cdots \\ \frac{dF_1(\boldsymbol{x})}{dx_n} & \frac{dF_2(\boldsymbol{x})}{dx_n} & \cdots & \frac{dF_n(\boldsymbol{x})}{dx_n} \end{bmatrix}$$

$$|\nabla \mathbf{F}(\boldsymbol{x})|_{\infty} = \max_{j} \sum_{i=1}^{n} \left| \frac{dF_{i}(\boldsymbol{x})}{dx_{j}} \right|$$

Norm infinity: sum along a row

$$\nabla \mathbf{F}(\boldsymbol{x})|_1 = \max_j \sum_{i=1}^n \left| \frac{dF_j(\boldsymbol{x})}{dx_i} \right|$$

Norm 1: sum along a column

Now that we have introduced basic notation and concepts, we give some conditions for which a problem is Fast-Lipschitz

1.a
$$\nabla f_0(x) \succ 0$$
, i.e., $f_0(x)$ is strictly increasing,
1.b $|\nabla \mathbf{F}(x)|_{\infty} < 1$,
and either
2.a $\nabla_j F_i(x) \ge 0 \quad \forall i, j$,
or
3.a $\nabla_i f_0(x) = \nabla_j f_0(x)$,
3.b $\nabla_j F_i(x) \le 0 \quad \forall i, j$,
3.c $|\nabla \mathbf{F}(x)|_1 < 1$,
or
4.a $f_0(x) \in \mathbb{R}$,
4.b $|\nabla \mathbf{F}(x)|_1 \le \frac{\delta}{\delta + \Delta}$,
 $\delta = \min_{i,x \in \mathscr{D}} \nabla_i f_0(x)$,
 $\Delta = \max_{i,x \in \mathscr{D}} \nabla_i f_0(x)$.

$$\begin{split} \max_{\boldsymbol{x}} & f_0(\boldsymbol{x}) \\ \text{s.t.} & x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l \\ & x_i = h_i(\boldsymbol{x}), \quad i = l+1, \dots, n \\ & \boldsymbol{x} \in \mathscr{D}, \end{split}$$

$$\mathbf{f}(\boldsymbol{x}) = [f_1(\boldsymbol{x}), f_2(\boldsymbol{x}), \dots, f_l(\boldsymbol{x})]^T$$
$$\mathbf{h}(\boldsymbol{x}) = [h_{l+1}(\boldsymbol{x}), h_{l+2}(\boldsymbol{x}), \dots, h_n(\boldsymbol{x})]^T$$
$$\mathbf{F}(\boldsymbol{x}) = [F_i(\boldsymbol{x})] = [\mathbf{f}(\boldsymbol{x})^T \ \mathbf{h}(\boldsymbol{x})^T]^T$$

Functions may be non-convex

- Motivating example: distributed detection
- Definition of Fast-Lipschitz optimization
- Computation of the optimal solution
- Problems in canonical form
- Examples
- Conclusions

$$\begin{split} \max_{\boldsymbol{x}} & f_0(\boldsymbol{x}) \\ \text{s.t.} & x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l \\ & x_i = h_i(\boldsymbol{x}), \quad i = l+1, \dots, n \\ & \boldsymbol{x} \in \mathscr{D}, \end{split}$$

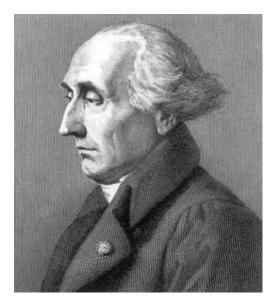
Theorem: Let an F-Lipschitz optimization problem be feasible. Then, the problem admits a unique optimum $x^* \in \mathscr{D}$ given by the solution of the set of equations

$$x_i^* = f_i(x^*)$$
 $i = 1, ..., l$
 $x_i^* = h_i(x^*)$ $i = l + 1, ..., n$.

- The Pareto optimal solution is just given by a set of (in general nonlinear) equations.
- Solving a set of equations is much easier than solving an optimization problem by traditional Lagrangian methods!

• Let's have a closer look at the Lagrangian methods, which are normally used to solve optimization problems

 Lagrangian methods are the essential to solve, for example, convex problems



G. L. Lagrange, 1736-1813

"The methods I set forth require neither constructions nor geometric or mechanical considerations. They require only algebraic operations subject to a systematic and uniform course"

 $\begin{array}{ll} \max_{\boldsymbol{x}} & f_0(\boldsymbol{x}) \\ \text{s.t.} & x_i \leq f_i(\boldsymbol{x}) \,, \quad i = 1, \dots, l \\ & x_i = h_i(\boldsymbol{x}) \,, \quad i = l+1, \dots, n \\ & \boldsymbol{x} \in \mathscr{D} \,, \end{array}$

Theorem: Consider a feasible F-Lipschitz problem. Then, the KKT conditions are necessary and sufficient.

▹ KKT conditions:

$$x_{i} - f_{i}(\boldsymbol{x}^{*}) \leq 0 \quad i = 1, ..., l$$

$$x_{i} - h_{i}(\boldsymbol{x}^{*}) = 0 \quad i = l + 1, ..., n$$

$$\lambda_{i}^{*} \geq 0 \qquad i = 1, ..., n$$

$$\lambda_{i}^{*} f_{i}(\boldsymbol{x}^{*}) = 0 \quad i = 1, ..., n$$

$$\nabla_{\boldsymbol{x}} L(\boldsymbol{x}^{*}, \boldsymbol{\lambda}^{*}) = 0,$$

$$L(\boldsymbol{x},\boldsymbol{\lambda}) = -f_0(\boldsymbol{x}) + \sum_{i=1}^l \lambda_i (x_i - f_i(\boldsymbol{x})) + \sum_{i=l+1}^n \lambda_i (x_i - h_i(\boldsymbol{x}))$$
 Lagrangian

 $\begin{aligned} \boldsymbol{x}(k+1) &= \boldsymbol{x}(k) - \beta \nabla_{\boldsymbol{x}} L(\boldsymbol{x}(k), \boldsymbol{\lambda}(k)) \\ \boldsymbol{\lambda}(k+1) &= \boldsymbol{\lambda}(k) - \beta \nabla_{\boldsymbol{\lambda}} L(\boldsymbol{x}(k), \boldsymbol{\lambda}(k)) \end{aligned}$

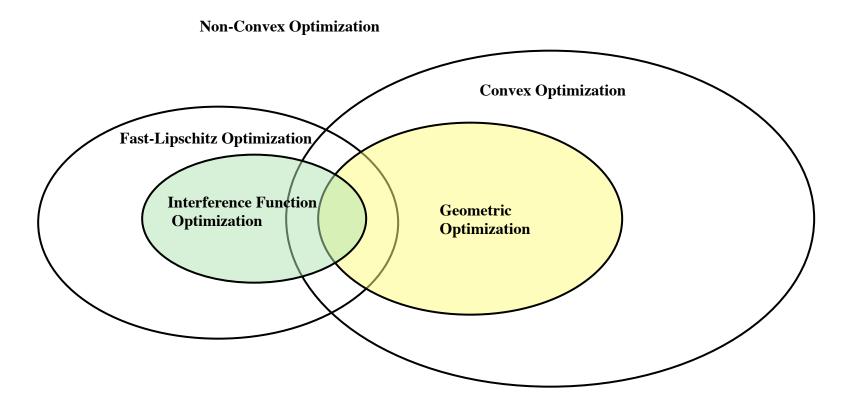
Lagrangian methods to compute the solution

$$\begin{split} \max_{\boldsymbol{x}} & f_0(\boldsymbol{x}) \\ \text{s.t.} & x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l \\ & x_i = h_i(\boldsymbol{x}), \quad i = l+1, \dots, n \\ & \boldsymbol{x} \in \mathscr{D}, \end{split}$$

$$L(\boldsymbol{x},\boldsymbol{\lambda}) = -f_0(\boldsymbol{x}) + \sum_{i=1}^l \lambda_i (x_i - f_i(\boldsymbol{x})) + \sum_{i=l+1}^n \lambda_i (x_i - h_i(\boldsymbol{x}))$$
 Lagrangian

$$\boldsymbol{x}(k+1) = \boldsymbol{x}(k) - \beta \nabla_{\boldsymbol{x}} L(\boldsymbol{x}(k), \boldsymbol{\lambda}(k))$$
$$\boldsymbol{\lambda}(k+1) = \boldsymbol{\lambda}(k) - \beta \nabla_{\boldsymbol{\lambda}} L(\boldsymbol{x}(k), \boldsymbol{\lambda}(k))$$

- Lagragian methods need
 - 1. a central computation of the Lagrangian function
 - 2. an endless collect-and-broadcast iterative message passing of primal and dual variables
- Fast-Lipschitz methods avoid the central computation and substantially reduce the collect-and-broadcast procedure



Fast-Lipschitz optimization problems can be convex, geometric, quadratic, interference-function,...

Let us see how a Fast-Lipschitz problem is solved without Lagrangian methods

 The optimal solution is given by iterative methods to solve systems of non-linear equations (e.g., Newton methods)

$$\boldsymbol{x}(k+1) = \boldsymbol{x}(k) - \beta \left(\boldsymbol{x}(k) - \boldsymbol{F}(\boldsymbol{x}(k)) \right)$$

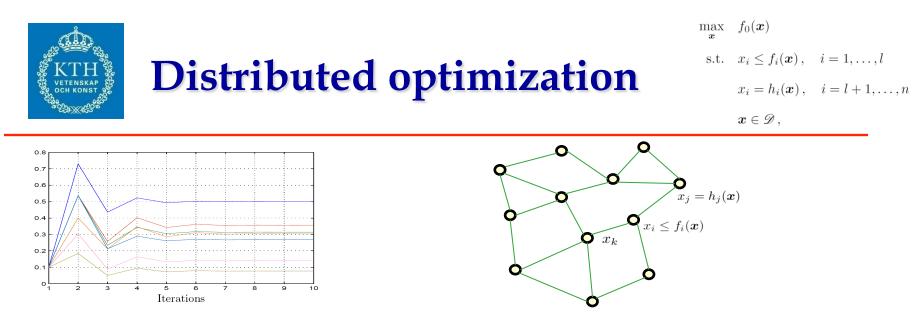
$$\mathbf{f}(\boldsymbol{x}) = [f_1(\boldsymbol{x}), f_2(\boldsymbol{x}), \dots, f_l(\boldsymbol{x})]^T$$

$$\mathbf{h}(\boldsymbol{x}) = [h_{l+1}(\boldsymbol{x}), h_{l+2}(\boldsymbol{x}), \dots, h_n(\boldsymbol{x})]^T$$

$$\mathbf{F}(\boldsymbol{x}) ~=~ [\mathbf{f}(\boldsymbol{x})^T \mathbf{h}(\boldsymbol{x})^T]^T$$

 β is a matrix to ensure and maximize convergence speed

• Many other methods are available, e.g., second-order methods



Proposition : Let $x(0) \in$ be an initial guess of the optimal solution to a feasible F-Lipschitz problem. Let $x^i(k) = [x_1(\tau_1^i(k)), x_2(\tau_2^i(k)), \ldots, x_n^i(\tau_n(k))]$ the vector of decision variables available at node i at time $k \in \mathbb{N}_+$, where $\tau_j^i(k)$ is the delay with which the decision variable of node j is communicated to node i. Then, the following iterative algorithm converges to the optimal solution:

$$x_i(k+1) = [f_i(x^i(k))]^{\mathscr{D}} \quad i = 1, \dots, l$$

$$x_i(k+1) = h_i(x^i(k)) \quad i = l+1, \dots, n$$

where $k \in \mathbb{N}_+$ is an integer associated to the iterations.

- Motivating example: distributed detection
- Definition of Fast-Lipschitz optimization
- Computation of the optimal solution
- Problems in canonical form
- Examples
- Conclusions

Problems in canonical form

Canonical form

Bertsekas, Non Linear Programming, 2004

$$\begin{array}{ll} \min_{\boldsymbol{x}} & g_0(\boldsymbol{x}) \\ \text{s.t.} & g_i(\boldsymbol{x}) \leq 0, \quad i = 1, \dots, l \\ & p_i(\boldsymbol{x}) = 0, \quad i = l+1, \dots, n \\ & \boldsymbol{x} \in \mathscr{D}, \end{array}$$

Fast-Lipschitz form

$$\begin{aligned} \max_{\boldsymbol{x}} & f_0(\boldsymbol{x}) \\ \text{s.t.} & x_i \leq f_i(\boldsymbol{x}), \quad i = 1, \dots, l, \\ & x_i = h_i(\boldsymbol{x}) \quad i = l+1, \dots, n, \\ & \boldsymbol{x} \in \mathscr{D}, \end{aligned}$$

$$f_0(\boldsymbol{x}) = -g_0(\boldsymbol{x}),$$

$$f_i(\boldsymbol{x}) = x_i - \gamma_i g_i(\boldsymbol{x}), \qquad \gamma_i > 0$$

$$h_i(\boldsymbol{x}) = x_i - \mu_i p_i(\boldsymbol{x}), \qquad \mu_i \in \mathbb{R}$$

 $\begin{array}{ll} \min_{\boldsymbol{x}} & g_0(\boldsymbol{x}) \\ \text{s.t.} & g_i(\boldsymbol{x}) \leq 0 \,, \quad i = 1, \dots, l \\ & p_i(\boldsymbol{x}) = 0 \,, \quad i = l+1, \dots, n \\ & \boldsymbol{x} \in \mathscr{D} \,, \end{array}$

Theorem : Consider the optimization problem in canonical form. Suppose that $\forall x \in \mathscr{D}$

 $\begin{aligned} 1.a \quad \nabla g_0(x) \prec 0, \\ 1.b \quad \nabla_i G_i(x) > 0 \quad \forall i, \\ \text{and either} \\ 2.a \quad \nabla_j G_i(x) \leq 0 \quad \forall j \neq i, \\ 2.b \quad \nabla_i G_i(x) > \sum_{j \neq i} |\nabla_i G_j(x)| \quad \forall i, \\ \text{or} \\ 3.a \quad g_0(x) = -c \mathbf{1}^T x \quad c \in \mathbb{R}^+, \\ 3.b \quad \nabla_j G_i(x) \geq 0 \quad \forall j \neq i, \end{aligned}$

3.c
$$\nabla_i G_i(x) > \sum_{j \neq i} |\nabla_i G_j(x)| \quad \forall i,$$

or

4.a
$$g_0(x) \in \mathbb{R}$$
,
4.b $\frac{\delta}{\delta + \Delta} \nabla_i G_i(x) > \sum_{j \neq i} |\nabla_i G_j(x)| \quad \forall i$.

Then, the problem is F-Lipschitz.

\varTheta 🔿 🔿 🛛 🛛 🕹 F-Lipschitz O	ptimization Tool
- Problem definition	Choose solver and compute solution
Customized function:	Solver: Distributed algorithm
Objective function:	Algorithm: Interior point \$
Gradient:	Start point:
Library objective function:	X tolerance: 1e-06
Function type:	Function tolerance: 1e-06
Define parameters	Constraint tolerance: 1e-06
Constraints: Constraint function:	
Gradient:	Compute Plot
Bounds: Lower: Upper:	Clear results Save to workspace
Advanced	Results:
Check feasibility Skip verification Clear status	
Status:	
	Complete form Beset Close

M. Leithe, Introducing a Matlab Toolbox for Fast-Lipschitz optimization, Master Thesis KTH, 2011

- Motivating example: distributed detection
- Definition of Fast-Lipschitz optimization
- Computation of the optimal solution
- Problems in canonical form
- Examples
- Conclusions

Example 1: from canonical to Fast-Lipschitz

 $\min_{x,y} \quad ae^{-x_1} + be^{-x_2} \qquad a > 0, \ b > 0$

- s.t. $x_1 0.5x_2 1 \le 0$
 - $-x_1 + 2x_2 \le 0$

$$x_1 \ge 0, \quad x_2 \ge 0,$$

• The problem is both convex and Fast-Lipschitz:

$$\nabla_x (x - 0.5y - 1) = 1 > |\nabla_y (x - 0.5y - 1)| = 0.5,$$

$$\nabla_y (-x + 2y) = 2 > |\nabla_x (-x + 2y)| = 1,$$

Diagonal
dominance

Off diagonal

• The optimal solution is given by the constraints at the equality, trivially $x_1 - 0.5x_2 - 1 = 0$ $x_1 = 4/3$ $-x_1 + 2x_2 = 0$, $x_2 = 2/3$

Example 2: hidden Fast-Lipschitz

• Non Fast-Lipschitz

 $\min_{x,y,z} \quad ae^{-x} + be^{-y} + ce^z$

s.t. $2x - 0.5y + z + 3 \le 0$

$$-x + 2y - z^{-1} + 1 \le 0$$

$$-3x - y + z^{-2} + 2 \le 0$$

 $x_{\min} \le x \le x_{\max}, \quad y_{\min} \le y \le y_{\max}, \quad z_{\min} \le z \le z_{\max},$

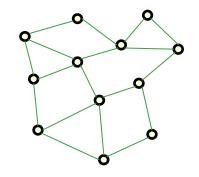
• Simple variable transformation, $t = z^{-1}$, gives a Fast-Lipschitz form $\max_{x,y,t} - ae^{-x} - be^{-y} - ce^{-t}$

s.t. $2x - 0.5y + t^{-1} + 3 \le 0$ $-0.5x + 2y - t + 1 \le 0$ $-0.5x - y + t^2 + 2 \le 0$ $x_{\min} \le x \le x_{\max}, \quad y_{\min} \le y \le y_{\max}, \quad 1/z_{\max} \le t \le 1/z_{\min}$

Threshold optimization in distributed detection

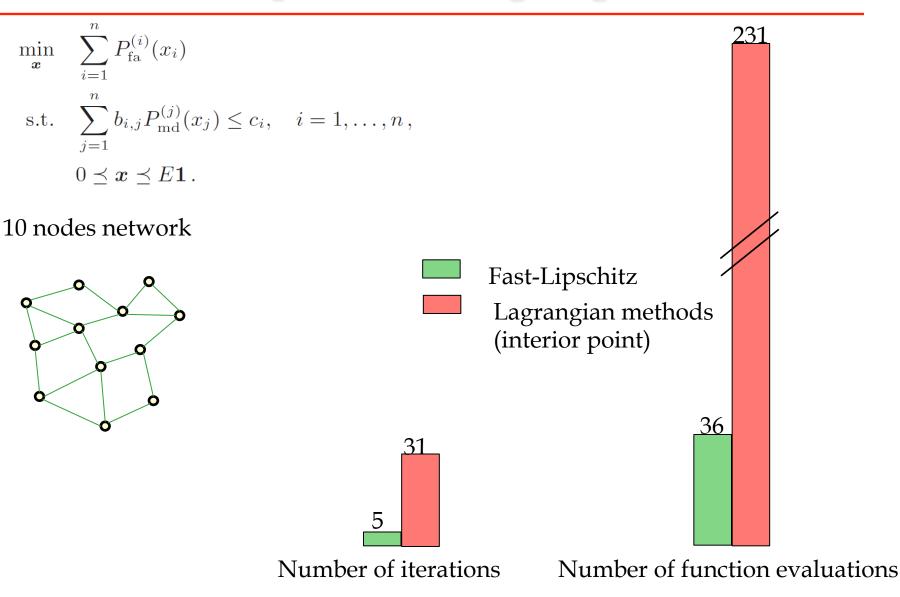
$$\min_{\boldsymbol{x}} \sum_{i=1}^{n} P_{\text{fa}}^{(i)}(x_i)$$

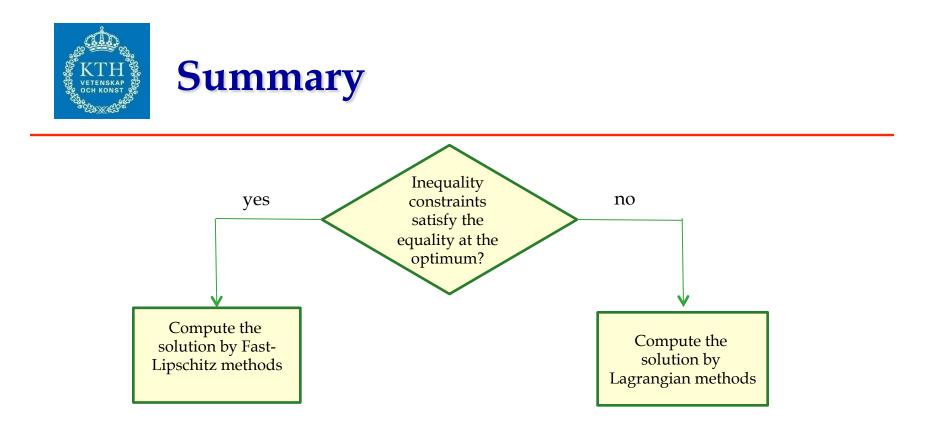
s.t.
$$\sum_{j=1}^{n} b_{i,j} P_{\text{md}}^{(j)}(x_j) \leq c_i, \quad i = 1, \dots, n,$$
$$0 \leq \boldsymbol{x} \leq E \mathbf{1}.$$



- How to solve the problem by parallel and distributed operations among the nodes?
- The problem is convex
 - > Lagrangian methods (interior point methods) could be applied
 - Drowback: too many message passing (Lagrangian multipliers) among nodes to compute iteratively the optimal solution
- An alternative method: F-Lipschitz optimization

Distributed detection: Fast-Lipschitz vs Lagrangian methods





- Fast-Lipschitz optimization: a class of problems for which all the constraints are active at the optimum
- Optimum: the solution to the set of equations given by the constraints
- No Lagrangian methods, which are computationally expensive, particularly on wireless networks

- Existing methods for optimization over networks are too expensive
- Proposed the Fast-Lipschitz optimization
 > Application to distributed detection, many other cases
- Fast-Lipschitz optimization is a panacea for many cases, but still there is a lack of a theory for fast parallel and distributed computations
- How to generalize it for
 - > static optimization?
 - > dynamic optimization?
 - > stochastic optimization?
 - > game theoretical extensions?

- M. Jacobsson, C. Fischione, "A Comparative Analysis of the Fast-Lipschitz Convergence Speed", IEEE CDC 2012
- M. Jacobsson, C. Fischione, "On Some Extensions of Fast-Lipschitz Optimization for Convex and Non-convex Problems", IFAC NecSys 2012
- C. Fischione, "F-Lipschitz Optimization with Wireless Sensor Networks Applications", *IEEE Transactions on Automatic Control*, 2011.
- A. Speranzon, C. Fischione, K. H. Johansson, A. Sangiovanni-Vincentelli, "A Distributed Minimum Variance Estimator for Sensor Networks", *IEEE Journal on Selected Areas in Communications, special issue on Control and Communications*, Vol. 26, N. 4, pp. 609–621, May 2008.

Fast-Lipschitz Optimization for Non-convex and Convex Problems

Bellairs McGill University

February 18-th, 2013

Carlo Fischione

ACCESS Linnaeus Center, Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden web: <u>http://www.ee.kth.se/~carlofi</u> e-mail: <u>carlofi@kth.se</u>