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] Optimization is pervasive over networks
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= Optimization needs fast solver algorithms of low complexity
> Time-varying networks, little time to compute solution

> Distributed computations

> E.g., networks of parallel processors, cross layer networking, distributed
detection, estimation, content distribution, ....

= Parallel and distributed computation
» Fundamental theory for optimization over networks

» Drawback over energy-constrained wireless networks: ™ PARALLELAND
OSTRIBUTED COMPUTATION,

NUMERICAL NETHODS

the cost for communication not considered

= An alternative theory is needed
> In a number of cases, Fast-Lipschitz optimization
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Distributed binary detection

Fi(S) — UH(S) if  Ho |
Ti(s) = E+wi(s) if H; measurements at node i

1S - hypothesis testing with S
Ii= 3 ; Li(s) = xi measurements and threshold x;
P () = Pr[Ty > x;|Ho] probability of false alarm
P (z;) = Pr[T; < | H;] probability of misdetection

» A threshold minimizing the prob. of false alarm maximizes the prob.
of misdetection.

= How to choose optimally the thresholds when nodes exchange
opinions?



Threshold optimization in
distributed detection

n}ni n Z Pf(;) ()

ZbUP(J) y<ci, i=1,...,n,

m d

Oja:jEl.

How to solve the problem by distributed operations among the
nodes?

The problem is convex
> Lagrangian methods (interior point) can be applied

> Drawback: too many message passing (Lagrangian multipliers) among nodes to
compute iteratively the optimal solution

An alternative method: Fast-Lipschitz optimization

C. Fischione, “Fast-Lipschitz Optimization with Wireless Sensor
Networks Applications”, IEEE TAC, 2011
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max  fo(x)

S.t. ngfz(w), 221,,l

T €D,
folz): 72— R,
file) : 2 =R, i=1,...,1
hi(xz): 2 — R, i=1l+1,....n

2 CR"™ nonempty compact set containing the vertexes of the constraints



» Centralized optimization Network of n nodes

> Problem solved by a central processor

= Distributed optimization

> Decision variables and constraints are associated to nodes that
cooperate to compute the solution in parallel



max fo(x)
st. i< filw), i=1,...
Pareto Optimal Solution . ... -

xr e D,

Definition : Consider the following set

o ={xec D :x; < filx),i=1,...,1,
x,i:hq;(:c),z':l—l—l,...,n},

and let 2 € R' be the image set of fo(x), namely fo(x) :
o/ — . Then, we make the natural assumption that the set
% 1s partially ordered in a natural way, namely if ¢,y € &#
then « =y if 2; > y; Vi (e.g., R.. is the ordering cone).

Definition (Pareto Optimal): A vector x* 1s called
a Pareto optimal (or an Edgeworth-Pareto optimal) point if
there 1s no @ € &/ such that fy(x) = fo(x™) (1.e., if fo(x™)
is the maximal element of the set 4 with respect to the
natural partial ordering defined by the cone ]R.{F).



Notation

Fi(x)
F(x) = 2(®) (@)
| Fa(z) |
[ dFi(x) dFs(x)
dxq dxq
dFi(e) dFa(x)
VF(x) = d%Q d:f'Q
Gradient iR (@) dF(@)
N dx,, dz,,

IVF ()|, = max; ) ", ) ey

R" =R W

dF,, (x)
dxq
dF, (x)
dxo

dF,, (x)

dz,,

dF;(x)

n | dF;(x)
IVF(x)|oo = max; ) ., ‘_(>

dfl?j

Norm infinity: sum along a row

Norm 1: sum along a column




Qualifying conditions

Now that we have introduced basic notation and concepts, we give some
conditions for which a problem is Fast-Lipschitz



Qualifying conditions

l.a Vfo(x) =0, ie, fo(x) is strictly increasing, max  fo(x)
3. 1. i < i R 1=1,...,
and either i Ti < Jilw), -
2.a V;Fi(x)>=0 Yij, r,=hi(x), i=1+1,....n
or rec9,

3.a Vifo(xz)=Vjfo(z),
3.b VJFZ(J}) < 0 ‘C’Z.]

3¢ |VF(z) <1, f(z) = [fi(z), fo(2),.... fi(x)]"
or h(z) = (b1 (), higa(), ... by ()]
ta Jolm el F(z) = [Fi(@)] = [f(z)" h(x)"]"
1 |VF@)l: < 5,
d = mm V fo(x), Functions may be non-convex

i,xED

A= max Vifo(x).

i, xED



Outline

- Motivating example: distributed detection
- Definition of Fast-Lipschitz optimization

- Computation of the optimal solution

- Problems in canonical form

- Examples

. Conclusions



Optimal Solution

Theorem: Letan F-Lipschitz optimization problem be
feasible. Then, the problem admits a unique optimum x* € &
given by the solution of the set of equations

v, = fi(x®) i=1,...,1
r; =hi(x*) i=1+1,...,n.

» The Pareto optimal solution is just given by a set of (in general non-
linear) equations.

» Solving a set of equations is much easier than solving an
optimization problem by traditional Lagrangian methods!



Lagrangian methods

= Let’s have a closer look at the Lagrangian methods, which are
normally used to solve optimization problems

» Lagrangian methods are the essential to solve, for example, convex
problems
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%41 Lagrangian methods
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G. L. Lagrange, 1736-1813

"The methods I set forth require neither constructions nor geometric or mechanical
considerations. They require only algebraic operations subject to a systematic and
uniform course”



ri=hi(x), i=1+1,..., n

reD,

Theorem: Consider a feasible F-Lipschitz problem. Then, the
KKT conditions are necessary and sufficient.

> KKT conditions:

vy — hi(x”™) = =1+ 1,..., n
A >0 i=1,..., n
AN file®)=0 i=1...., n
VeLl(x*. \") =0,
l n
L(z, A) =— fo(@) + Y Xi(wi — fi(x) + Y Ai(wi — hi(x)) Lagrangian
i=1 i=1+1
z(k+1) = a(k) - fVal(x(k), A(k)) Lagrangian methods to

A(k+1) = A(k) = BVAL(z(k), A(k)) compute the solution



— hi(x)) Lagrangian

» Lagragian methods need
1. acentral computation of the Lagrangian function

2. an endless collect-and-broadcast iterative message passing of primal and dual
variables

= Fast-Lipschitz methods avoid the central computation and
substantially reduce the collect-and-broadcast procedure
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£931 The Fast-Lipschitz optimization
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Interference Fun .
Geometric
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Optimization

Fast-Lipschitz optimization problems can be convex, geometric, quadratic,
interference-function,...



Fast-Lipschitz methods

Let us see how a Fast-Lipschitz problem is solved without Lagrangian
methods



= The optimal solution is given by iterative methods to solve systems of
non-linear equations (e.g., Newton methods)

x(k+1)=x(k)— [ (x(k)—F(x(k)))

5 is a matrix to ensure and maximize convergence speed

» Many other methods are available, e.g., second-order methods



5 6
[terations

Proposition : Let (0) € be an initial guess of the op-
timal solution to a feasible F-Lipschitz problem. Let z*(k) =
(1 (78(k)), wo(7(k)), ..., xl (T, (k))] the vector of decision
variables available at node ¢ at time & € IN,, where T;f(k)
1s the delay with which the decision variable of node
1s communicated to node :. Then, the following iterative
algorithm converges to the optimal solution:

zi(k+1) = [fi(z"(E)]? i=1,...,1
wi(k+1) = hi(z*(k)) i=1+1,....n

where £ € IN, 1s an integer associated to the iterations.
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Problems in canonical form

Canonical form Fast-Lipschitz form
Bertsekas, Non Linear Programming, 2004

min - go(x)

max  fo(x)

s.t. gl(aj) SO? L= 7""l :> s.t. x; Sfl(w>7 L= 7"'7l7
pi(e)=0, i=1+1,....n ZL‘Z':hZ'(CI}) i=0l+1,...,n,
regD,

T e,
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L g Problems in canonical form
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Theorem : Consider the optimization problem in canonical form. Suppose that V = € 2

la Vgy(z) <0,

1.b V,Gi(z)>0 Vi,

and either

20 V;Gi(x)<0 Vj#i,

2b V,Gi(x) > |ViGi(=)| Vi,
J#i

or

3.a gz)=—-clTz ceR’,

3.b V,;Gi(x) >0 Vj#i,

3.c ViGi(x) > ) |ViGy(x)| Vi,
J#i

or

4a glz) e R,

1h ——ViGi(z) > Y ViGy(@)]

d+ A

J#

Then, the problem is F-Lipschitz.

Vi.



M. Leithe, Introducing a Matlab Toolbox for Fast-Lipschitz optimization, Master Thesis KTH, 2011
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Example 1: from canonical to
Fast-Lipschitz

PO —I —XIo
min ae be "2
T,y T a>0b>0

st. 21— 0529 —1<0
—xl—l—QZEQSO

X1 2 07 £2 2 07
The problem is both convex and Fast-Lipschitz:
Off-diagonal
monotonicity

Vy(—2+2y) =2>[Vao(—x+2y)| =1, Diagonal
dominance

Ve(r—05y—1)=1> |V, (xr—05y—1) =0.5,

The optimal solution is given by the constraints at the equality, trivially
1 — 05280 —1=0 r1 =4/3

—x1 + 219 =10, 5132:2/3
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541 Example 2: hidden Fast-Lipschitz

s

Non Fast-Lipschitz

min ae * +be Y + ce®

2,2
st. 20 —05y+2+3<0
—rx4+2y—214+1<0
—3r—y+2242<0
<z <

Lmin S &£r S Lmax Ymin S Yy S Ymax Zmin > =~ Zmax s

Simple variable transformation, 7 = 21 gives a Fast-Lipschitz form

max —ae F—be ¥ _—cet
x,y,t

st. 20 —05y+t714+3<0
— 05z +2y—t+1<0
—05x—y+t24+2<0

Lmin S &r S Lmax s Ymin S Yy g Ymax l/:max S t S 1/:min



Threshold optimization in
distributed detection

T

min Z Pfg) ()

S.t. Zbg JP(J) S Cq. Z: 17.. .772/7

m d

ijjEl.

How to solve the problem by parallel and distributed operations
among the nodes?

The problem is convex
> Lagrangian methods (interior point methods) could be applied

> Drowback: too many message passing (Lagrangian multipliers) among nodes to
compute iteratively the optimal solution

An alternative method: F-Lipschitz optimization



Distributed detection:
Fast-Lipschitz vs Lagrangian methods

min Y P (a:)

=1

s.t. Zb%ﬂpgd)(xj) <c, 1=1,....n,
j=1
0<x < FE1.

10 nodes network

[ Fast-Lipschitz

[ Lagrangian methods
(interior point)

36

5

Number of iterations Number of function evaluations
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£ Summary

ST

Inequality

yes constraints no
satisfy the
equality at the
optimum?
Compute the
solution by Fast- Compute the
Lipschitz methods solu.t1on by
Lagrangian methods

= Fast-Lipschitz optimization: a class of problems for which all the constraints
are active at the optimum

= Optimum: the solution to the set of equations given by the constraints

= No Lagrangian methods, which are computationally expensive, particularly
on wireless networks



Conclusions

Existing methods for optimization over networks are too expensive

Proposed the Fast-Lipschitz optimization
> Application to distributed detection, many other cases

East—LiIEschitz optimization is a I]loamacea for many cases, but still there
is a lack of a theory for fast parallel and distributed computations

How to generalize it for
> static optimization?
> dynamic optimization?
» stochastic optimization?
> game theoretical extensions?
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