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ABSTRACT

Particle filter and Gaussian mixture implementations of random finite set filters have been proposed to tackle
the issue of jointly estimating the number of targets and their states. The Gaussian mixture PHD (GM-PHD)
filter has a closed-form expression for the PHD for linear and Gaussian target models, and extensions using the
extended Kalman filter or unscented Kalman Filter have been developed to allow the GM-PHD to accommodate
mildly nonlinear dynamics. Errors resulting from linearization are unavoidable. A particle filter implementation
of the PHD filter (P-PHD) is more suitable for nonlinear and non-Gaussian target models. The particle filter
implementations are much more computationally expensive and performance can suffer when the proposal dis-
tribution is not a good match to the posterior. In this paper, we propose a novel implementation of the PHD
filter named the Gaussian particle flow PHD filter (GPF-PHD). It employs a bank of particle flow filters to
approximate the PHD; these play the same role as the Gaussian components in the GM-PHD filter but they
are better suited to non-linear dynamics and measurement equations. Using the particle flow filter allows the
GPF-PHD filter to migrate particles to the dense regions of the posterior, which leads to higher efficiency than
the PF-PHD. We explore the performance of the new algorithm through numerical simulations.
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1. INTRODUCTION

The mathematical foundation for multi-target tracking was developed by Mahler as a systematic means of com-
bining evidence in the presence of uncertainty in a unified way using random finite sets (RFS).1 The probability
hypothesis density (PHD) filter,1 using random finite sets to model the collections of targets and measurements,
can jointly estimate the number of targets and their states from a sequence of observations. It propagates the
first-order statistical moment of the joint distribution and is a tractable alternative to the optimal multi-target
Bayesian filter. However, in general, it is difficult to obtain closed-form expressions for the PHD filter due to
the presence of multi-dimensional integrals. Therefore, sequential Monte Carlo (SMC),23 and Gaussian mixture
implementations of the PHD filter,4,56 have been proposed, leading to a number of further developments and
applications,7.8 The Gaussian mixture implementation of the PHD filter (GM-PHD) is a closed-form solution
to the PHD recursion for linear Gaussian multi-target models. Although the GM-PHD filter has been extended
to accommodate mildly nonlinear target dynamical models by replacing the Kalman filter with the Extended
Kalman Filter (EKF) or the Unscented Kalman Filter (UKF),5 the sequential Monte Carlo implementation of
the PHD filter, also called the particle PHD filter (PF-PHD), is still a better-performing solution for nonlinear
and/or non-Gaussian scenarios.

In its basic form, the prior is used as the proposal distribution in the PF-PHD filter. In many cases, the prior
distribution has a much larger variance than the posterior, because the most recent measurements are highly
informative about the state. Particles proposed using the prior frequently have very low likelihoods and their
contributions to the posterior estimation become negligible, which leads to a large Monte Carlo variance. The
inefficient proposal distribution in the basic particle-PHD filter leads to a need for a large number of particles.
The UKF-PHD filter9 and auxiliary particle PHD filter,1011 have been proposed to address these issues. They
both take the most recent observations into consideration in constructing a proposal distribution.
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Particle filters struggle to perform well in relatively high dimensional state spaces unless a very large number
of particles is employed. To avoid the severe degeneracy induced by sampling in a high dimensional space, par-
ticle flow algorithms were recently proposed. These are based on the idea of constructing bridging distributions
and involve identifying a particle flow via a partial differential equation. A series of papers have been proposed
to provide different solutions to the problem based on different assumptions,12,13.14 The particle flow approach
can lead to improved filter performance especially for high-dimensional state spaces or highly informative mea-
surements.

Inspired by these advantages, we propose a novel PHD filter implementation based on the particle flow
filter. We refer to the filter as the Gaussian particle flow PHD filter (GPF-PHD). The algorithm employs a
bank of particle flow filters to update the Gaussian components in a GM-PHD filter. Each particle flow filter
independently migrates its particles according to the latest observations. Then the PHD is approximated by the
weighted particle groups after the flow. The use of the particle flow filter allows the GPF-PHD filter to achieve a
better match to the true posterior by migrating particles continuously from the prior distribution to the posterior
distribution. The evolution of each particle flow filter replaces the evolution of the Gaussian components in the
GM-PHD. The resulting algorithm is much less computationally demanding the PF-PHD but can adapt equally
well to non-linearities.

The rest of paper is organized as follows. Section 2 reviews the particle flow filter formulation and the PHD
filter. Section 3 gives a detailed description on the proposed GPF-PHD, presenting both linear and nonlinear
versions. Simulation results are provided in Section 4. Section 5 concludes the paper.

2. PROBLEM STATEMENT AND BACKGROUND

We address a multi-target PHD filter implementation task with the following models and assumptions. In the
multi-target tracking problem, a time-varying and unknown number of targets evolve in the state space. Since
their number and states vary in time, the states of Tk tracked targets at time k can be naturally represented
as a random finite set Γk = {xk,1, ..., xk,Tk}, where xk,i is the state of the ith individual target, assumed to
follow a Markov process on the state space with transition density fk|k−1(x|xk−1). Each target xk,i can either
be detected with detection probability pD,k(xk,i) or goes undetected with probability 1 − pD,k(xk,i). For the
detected targets, each is observed by a measurement zk,i in the observation space governed by likelihood density
gk(zk|xk). A total of Mk measurements are observed at time k and these can similarly be represented by a
random finite set Zk = {zk,1, ..., zk,Mk

}, noting that zk,i can be an observation from a target or due to clutter.
The goal of multi-target Bayes filtering is to estimate the multi-target marginal posterior density pk(·|Z1:k).

Since the computation of the multi-target posterior density pk(·|Z1:k) is usually intractable, Mahler developed
the PHD filter1 to propagate the first-order statistical moment of the multi-target posterior density pk(Xk|Z1:k).
This is called the probability hypothesis density (PHD), and is denoted by Dk|k. The PHD filter evolves over
time by a prediction step and an update step, and the prediction operator is defined by

Dk|k−1(x|Z1:k) = γk(x) +

∫
ϕk|k−1(x, xk−1)Dk−1|k−1dxk−1 . (1)

Here γk is the intensity function of a newborn targets and ϕk|k−1(x, x(k − 1)) = PS,k(xk−1)fk|k−1(x|xk−1) +
bk|k−1(x|xk−1), with bk|k−1 denoting the PHD of a spawned target, probability of target survival PS,k is state
independent. Dk|k(x|Z1:k) is abbreviated in the remainder of the paper by Dk|k(x) = Dk|k(x|Z1:k) and is updated
by the following equation:

Dk|k(x) = ν(x) +

[∑
z∈Zk

ψk,z(x)

κk(z) + 〈Dk|k−1, ψk,z〉

]
Dk|k−1(x) . (2)

Here ν(x) = 1 − PD,k(x) is the probability of a missed detection, and ψk,z = PD,k(x)hk(z|x). The PHD of the
clutter RFS is denoted by κk(z) and in this model we have κk(z) = λkCk(z), which means that the clutter points
in the surveillance region follow a probability distribution Ck(z) and the average number of clutter per scan is
λk. Finally, 〈Dk|k−1, ψk,z〉 is used to denote

∫
Dk|k(xk|Z(1 : k))φ(xk)d(xk) For the PHD filter, we impose the

three assumptions A.1-A.3, as proposed in the Gaussian-mixture PHD filter paper by Vo et al.5



Our task is to design a new implementation of the PHD filter using the particle flow technique to improve
its filtering performance in some challenging situations such as a high state dimension, highly informative mea-
surements or strongly nonlinear dynamical models.

3. THE GAUSSIAN PATICLE FLOW IMPLEMENTATION

This section describes a particle flow filter implementation of the PHD filter under Gaussian assumption. The
idea is to propagate the intensity function represented by a group of particle sets, where each particle set is
controlled by an individual particle flow filter approximating a Gaussian component in the GM-PHD framework.

In formulating the Gaussian particle flow PHD filter, we impose the additional assumptions: A.4: Each target
follows a Gaussian dynamical model and the measurement model is also Gaussian, i.e.

fk|k−1(x|x(k − 1)) = p(x; fk(xk−1, 0), Qk−1), (3)

gk(z|x) = p(z;hk(x, 0), Rk). (4)

Here p(.;m,P ) denotes a Gaussian density with mean m and covariance P . fk and hk can be linear or nonlinear
functions. To accommodate nonlinear models, we adapt the proposed particle flow PHD filter by local lineariza-
tion of the mapping hk in the particle flow motion. This idea is also inspired by the extension of Gaussian
mixture PHD filter to nonlinear Gaussian models. However, in the particle flow PHD filter, the covariance of the
state vector is approximated by the sample covariance of the particles belonging to each Gaussian component,
so there is no need for linearization of the dynamics.

A.5: The birth and spawn RFSes are formed as Gaussian mixtures:5

γk(x) =

Jγ,k∑
i=1

wiγ,kp(x;mi
γ,k, P

i
γ,k); βk(x|xk−1) =

Jβ,k∑
i=1

wiβ,kp(x;F iβ,k−1xk−1 + diβ,k−1, Q
i
β,k) (5)

The parameters Jγ,k, Jβ,k specify the number of components in each mixture; the Gaussian mixture parameters
(weights, means, covariances) are wiγ,k,m

i
γ,k, P

i
γ,k), wiβ,k, Q

i
β,k, and F iβ,k−1 and diβ,k−1 specify the linear spawning

dynamics. Further detail on these parameters is provided by Vo et al.5 For the Gaussian multiple-target model,
the posterior intensity at time k − 1 is represented by a Gaussian mixture of the form

Dk−1(x) =

Jk−1∑
i=1

wik−1N(x;mi
k−1, P

i
k−1) (6)

We denote each Gaussian component N(x;mi
k−1, P

i
k−1) as Di

k−1(x), which allows us to rewrite Dk−1(x) as

Dk−1(x) =

Jk−1∑
i=1

wik−1D
i
k−1(x) (7)

3.1 The prediction operator

We draw Lk−1 samples {x}i,jk−1 from N(x;mi
k−1, P

i
k−1), that is, the Gaussian mixture component Di

k−1(x) of
Dk−1(x), in order to form a particle approximation:

Di
k−1(x)← 1

Lk−1

Lk−1∑
j=1

δxi,jk−1(xk−1). (8)

The predicted intensity Dk|k−1(x) is also a Gaussian mixture and is given by:

Dk|k−1(x) = DS,k|k−1(x) + γk(x) +Dβ,k|k−1(x) (9)



Its particle approximation can be then derived by handling each of its terms separately. For the predicted
survived PHD term DS,k|k−1(x), we have

DS,k|k−1(x) = PS,k

∫
p(x; fk|k−1(ξ, 0), Qk−1)

Jk−1∑
i=1

wik−1p(ξ;m
i
k−1, P

i
k−1)dξ

= PS,k

Jk−1∑
i=1

wik−1

∫
p(x; fk|k−1(ξ, 0), Qk−1)p(ξ;mi

k−1, P
i
k−1)dξ (10)

3.2 The particle flow operator for each intensity component

To allow for a cleaner description of the filter, we use the common terminology Di
k|k−1(x) for any mixture

component of the predicted intensity, whether it correspond to a surviving component, Di
S,k|k−1(x), a newborn

component, Di
γ,k(x), or a spawned component, Di,j

β,k|k−1(x). We also denote the predicted weight by wik|k−1,

which can correspond to survival, wik|k−1 = PS,kw
i
k−1, birth, wik|k−1 = wiγ,k or spawning, wik|k−1 = w(β, k)iwik−1.

We can then express the predictive posterior hypothesis density as:

Dk|k−1(x) =

Jk|k−1∑
i=1

wik|k−1D
i
k|k−1(x) (11)

Each intensity componentDi
k|k−1(x) is predicted fromDi

k−1|k−1(x) and approximated by 1
Lk−1

∑Lk−1

j=1 δxi,j
k|k−1

(xk|k−1).

Since it is predicted independently from other particle sets and is updated by each observation separately, its
predict and update process can be considered as a single-target single-observation tracking problem. For inten-
sity components representing the survived target cases, the transition density follows xk = fk(xk−1, vS,k) , for
the spawn target cases xk = bk(xk−1, vβ,k) and for the new-born target cases xk = γk(mi

γ,k, vγ,k) . Irrespective
of the origin of a predicted intensity component, it should be updated by each observation based on the same
observation model zk = hk(xk) + wk, according to the PHD filter update equations, thus forming Mk updated
components.

After the samples
{
xi,jk|k−1

}Lk−1

j=1
approximating the intensity component Di

k|k−1(x) have been propagated by a

transition density, they approximate its corresponding prior distribution at time k (we denote these as {ũj}Lk−1

j=1 ).
To migrate particles from the prior to the posterior related to each observation zk,i, i = 1, . . . ,Mk effectively and

efficiently, we apply particle flow equations to obtain a particle set {ũj}Lk−1

j=1 distributed approximately according
to the posterior distribution.

According to the Bayes’ rule, the posterior distribution p(x) = f(x)l(x)
K , where f(x) is the prior distribution

for the M -dimensional state x, l(x) is the likelihood function, and K is a normalizing constant. A homotopy
function ϕ(x, λ) can be defined as

ϕ(x, λ) = log(p̃(x)) = log(f(x)) + λlog(l(x)) (12)

Here the normalizing constant K is ignored. Then a map � : X × [0, 1] → X
′

is built, such that ϕ(x, 0) =
log(f(x)) and ϕ(x, 1) = log(p(x, λ)). Then through this continuous deformation, the log prior distribution and
unnormalized log posterior distribution can be linked now.

Under different assumptions a series of variants of Daum-Huang filters14 are developed, for example, incom-
pressible flow Daum and Huang (DH) filter assumes that particles move with the condition that ϕ(x, λ) stays
constant with respect to λ. With the chain rule, the incompressible flow of particles can be defined by equation
13.

dϕ(x, λ)

dλ
=
∂ϕ(x, λ)

∂x

dx

dλ
+
∂ϕ(x, λ)

∂λ
=
∂ϕ(x, λ)

∂x

dx

dλ
+ log(l(x)) = 0 (13)



There are many methods to solve this partial differential equation (PDE)14 proposes using the generalized inverse
to obtain the unique minimum solution of the induced flow, which shows that the flow is in the direction of the
gradient of the log homotopy, with speed proportional to log(l(x)).

A generalized version of DH filters has been derived by Daum and Huang for the linear Gaussian scenario,
that is so-called exact particle flow DH filter. Since functions f(x, λ) = dx/dλ and Ψ(x, λ) = f(x)l(x)λ, according
to the Fokker-Planck equation and the chain rule, we can get

− Tr(∂f
∂x

) =
∂ϕ(x, λ)

∂x
f + log(l(x)) (14)

Its closed-form solution of Gaussian case is

dx

dλ
= A(λ)x+ b(λ) (15)

where A(λ) = − 1
2PH

T (λHPHT +R)−1H, b(λ) = (I + 2λA)PHTR−1zk +Ax̄

Here x̄ is the mean of the prior distribution. P is the covariance matrix of the prediction error for the prior
distribution, which can be estimated by the sample covariance matrix, or through an extended or unscented
Kalman filter (EKF/UKF). Particularly, for nonlinear models, H can be approximated by the linearization of

the measurement model, i.e. H = ∂hk(µ,0)
∂µ . R is the covariance matrix of the measurement error. Pseudo-codes of

two typical exact flow algorithms under the Gaussian assumption, the EDH15 and the LEDH, are both presented
in.16 Consequently, to obtain the particle approximation for each intensity component ∆Di

k|k(x), we can directly

migrate particles ũj
Lk−1

j=1 to uj
Lk−1

j=1 in small steps using Euler’s method:

µj(λl) = µj(λl−1) + ∆l(A(λl−1)µj(λl−1) + b(λl−1)) (16)

Where the step size at the l-th iteration ∆l = λl − λl−1 , the iteration starts withλ0 = 0(corresponding to

particle set
{
xjk|k−1

}Lk−1

j=1
) and ends when λN = 1, then the particles after migration are just

{
xi,jk|k

}Lk−1

j=1
. Then,

mi
k|k =

∑Lk−1

j=1 xi,jk|k

Lk−1
, P ik|k =

Lk−1∑
j=1

(xi,jk|k −m
i
k|k)(xi,jk|k −m

i
k|k)T (17)

It has been proved that mi
k|k and P ik|k converge to the MMSE of the mean and covariance of the Gaussian

posterior. Then a set of particlesxi,jk|k
Lk−1

j=1
(rewritten as {µj}Lk−1

j=1 will be generated.

3.3 The update operator

The posterior intensity at time k can be given by

Dk(x) = (1− PD,k)Dk|k−1(x) +
∑
z∈Zk

D(D, k)(x|z) (18)

Based on all the resultant updated intensity components ∆Di
k|k(x) = 1

Lk−1

∑Lk−1

j=1 δxi,j
k|k

(xk|k) , the posterior

intensity can be rewritten as

DD,k(x|z) =

Jk|k−1∑
i=1

wik|k(z)∆Di
k|k(x) (19)

where

wik|k(z) =
(PD,kw

i
k|k−1gk(zmi

k|k−1))

(κk(z) + PD,k
∑Jk|k−1

l=1 wlk|k−1gk(zml
k|k−1))

(20)



Daniel Clark and Ba-Ngu Vo showed each step in time of the PHD filter will maintain a suitable approximation
error that converges to zero as the number of Gaussians in the mixture tends to infinity6 , while each approximated
intensity component ∆Di

k|k(x) by particles via flow has been proved to converge to the corresponding Gaussian
distribution, therefore, it can be known the convergence of the proposed Gaussian particle flow PHD filter.

3.4 Implementation issues

Similar to the Gaussian mixture PHD filter, the particle flow PHD filter also suffers from the computational
consumption problems resulted from increasing Jk as time evolves and particle flow computational cost. For the
increasing number of approximated ∆Dk, a similar pruning procedure can be exploited by discarding the ∆Dk|k
with light associated probabilities or merging those close enough to each other into one ∆Dk|k. For the particle
flow computations, we can save some computations by only performing particle flow migrating on those ∆Dk|k
with higher associated weights. Since the influence of a ∆Dk|k with low associated weight on the whole PHD
approximation is negligible, its flow computation is unnecessary as well. The framework of Gaussian particle
flow PHD filter is presented in algorithm 1.

For the particle flow motion step of algorithm 2, localized exact Daum-Huang filter can be also applied to
get more reasonable linearized Hessen matrix for each particle instead of the unique Hessen matrix at the mean.

4. SIMULATION AND RESULTS

4.1 Simulation setup

In order to further verify the performance of the proposed GPF-PHD filter in the nonlinear problems, we
exploit the MTT simulations using the bearing and range tracking model. Consider over the [−1000, 1000] ×
[−1000, 1000]region, targets move according to the linear Gaussian dynamics as equation(14). Where the target
state xk = [x1,k, x2,k, x3,k, x4,k]T consists of the position [x1,k, x3,k]T and the velocity [x2,k, x4,k]T at time step k,
and the sampling period T = 1s.The v1,k and v2,k denote the process noise which are mutually independently
zero-mean Gaussian white noise with the standard deviation σv1 = 1 and σv2 = 0.1 respectively. No spawning
is considered in our simulations. The process of the new targets birth are Poisson point process with intensity
function γk = 0.2p(·; x̄, Q), where x̄ = [0, 3, 0,−3]T , and Q = diag([10, 1, 10, 1]T ). The sensor, located at
[−100,−100]T , measures the targets according to the following measurement equations and

xk+1 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk +


T 2/2 0

1 0
0 T 2/2
0 1

ωk (21)

θk = arctan

(
x3,k + 100

x1,k + 100

)
+ w1,k, rk =

∣∣∣∣[ 1 0 0 0
0 0 1 0

]
xk −

[
−100
−100

]∣∣∣∣+ w2,k (22)

Where θk denotes the bearing measurement and rk denotes the range measurement. The w1,k and w2,k

denote the measurement noise which are mutually independently zero-mean Gaussian white noise with the
standard deviation σw1

= 0.0005 and σw2
= 0.1 respectively. Under the assumption that there is no loss of

detection, we set the probability of detection PD = 1. The sensor also gives some false measurements called
clutters, which are uniformly distributed over the observation space [−π, π]× [−1000, 1000] with average rate of
r points per scan. The number of the particles, sampled from the intensity function γk = 0.2(·; x̄, Q), L0 = 1000
in the initialization. In our simulations, the number of targets is 6.

4.2 Experimental results

To verify the clutter influence on these PHD filters performance, tracking scenarios with average clutter of rate
are tested separately with the GM-PHD, the PF-PHD filter, the auxiliary PF-PHD filter(APF-PHD) and the
GPF-PHD filters. For the GM-PHD and GPF-PHD, pruning and merge algorithm is performed with a same
weight threshold of Wth = 0.0001 and distance threshold Dth = 4m.400 particles are assigned to approximate a
Gaussian term in the GPF-PHD and different number of particles for each target in the PF-PHD. 50 independent



Algorithm 1 Pseudo-code for Gaussian particle flow PHD filter

Given
{
xi,jk−1

}
i=1,...,Jk−1,j=1,...,Lk−1

,
{
wik−1

}
i=1,...,Lk−1

Step1: prediction for survival targets
i = 0
for l = 1 to Lk−1 do

i = i+ 1
for j = 1 to Jk−1 do

xi,jk|k−1 = f(xl,jk−1, 0)

end for

wik|k−1 = wiS,kw
i
k−1,m

i
k|k =

∑Lk−1
j=1 xi,j

k|k
Lk−1

, P ik|k =
∑Lk−1
j=1 (xi,j

k|k−m
i
k|k)(xi,j

k|k−m
i
k|k)T

Lk−1

end for
Step2: prediction for birth targets

for l = 1 to Jγ,k do
i = i+ 1
Randomly draw Lk−1particles xi,jk|k−1from p(x;ml

γ,k, P
l
γ,k)

wik|k−1 = wlγ,k,m
i
k|k−1 = ml

γ,k, P
i
k|k−1 = P lγ,k

end for
Jk|k−1 = i

Step 3: Update for undetected targets
for l = 1 to Jk|k−1 do

wlk = (1− PD,k)wlk|k−1 ,P lk|k = P lk|k−1,m
l
k|k = ml

k|k−1

for j = 1 to Lk−1 do
xl,jk|k = xl,jk|k−1

end for
end for

Step 4:Update for detected targets
i = 0
for each observation z ∈ Zk do

i = i+ 1
for l = 1 to Jk|k−1 do

H l
k = ∂hk(xk,0)

∂xk
|xk=ml

k|k−1

ηlk|k−1 = hk(ml
k|k−1, 0)

Slk = Rk +H l
kP

l
k|k−1H

l
k

T

w
iJk|k−1+l

k = PD,kw
l
k|k−1q(z; η

l
k|k−1, S

l
k)

end for
for l = 1 to Jk|k−1 do

w
iJk|k−1+l

k =
w
iJk|k−1+l

k

κk(z)+
∑Jk|k−1
j=1 w

iJk|k−1+l

k

end for
for l = 1 to Jk|k−1 do

x
iJk|k−1+l

k = particleFlow(
{
xl,jk|k−1

}
, P lk|k−1, H

l
k,m

l
k|k−1, Rk, z)

m
iJk|k−1+l

k|k =
∑Lk−1x

iJk|k−1+l

k|k
j=1

Lk−1

P
iJk|k−1+l

k|k = 1
Lk−1

(x
iJk|k−1+l

k|k −miJk|k−1+l

k|k )(x
iJk|k−1+l

k|k −miJk|k−1+l

k|k )T

end for
end for
Jk = iJk|k−1 + Jk|k−1

Lk = Lk−1

output:
{
xi,jk

}
i=1,...,Jk,j=1,...,Lk

,
{
wik,m

i
kP

i
k

}
i=1,...,Lk



Algorithm 2 Pseudo-code for particle flow motion algorithm

Given {xj}j=1,...,Lk−1
, P,m,Hk, Rk, z

Step1: particle motion
for all particles do

µij = xj , µ̄j = m
end for
for i = 1 to Nλ do

λ = n ·∆λ
Hµ = Hkm
for j = 1 to Lk−1 do

A = − 1
2PH

T
k (λHkPH

T
k +Rk)−1Hk

b = (I + 2λA)[(I + λA)PHT
k R
−1
k z +Am]

Migrate particles:µij = µij +
∆µij
dλ

end for

Re-evaluate µ̄j =
∑Lk−1
j=1 µij
Lk−1

end for
Update P using the sample covariance matrix of sample set µij , EKF, or UKF;
Step2:optional redraw operation
Redraw particles xj ∼ N(µij , P ), ij = (j − 1)ρ+ 1, .., jρ for each estimated target state x̂k,j .
output: {xj}j=1,...,Lk−1

, P,m
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Figure 1. The true trajectory with r = 10

Monte Carlo runs are executed and the average results are shown in Fig. 2 and listed in Table 1. When there is no
clutter in the surveillance region, these kinds of filters show similar estimation performance due to the accurate
target number estimation.As the clutter rate increases, more particles are required for the PF-PHD filter and
the APF-PHD to track all targets while the GPF-PHD filter still maintains steady tracking performance and
exhibits the smaller average tracking error than GM-PHD with different clutter rates as shown in Fig. 2 and
table 1. Compared to the general PF-PHD filter and APF-PHD filter, the GPF-PHD filter provides comparative
or better tracking performance in term of tracking error (OSPA), target number estimation error as well as
significantly less computational cost. In addition, as the clutter rate increases, the degradation in performance
of three filters happen unavoidably in table 1. It should be noted that underestimation happens in the PF-PHD
and APF-PHD filter due to clutter influence if the particles for each target are not enough.

To further confirm the reason why particle flow motion helps PHD filter achieves better tracking performance,
we observe the particle distributions before and after particle flow motion as shown in Fig. 3, where the gray dots
are original particles after prediction, the black dots are the particles after particle flow motion, and the red dots
denote the real targets. It’s observed that through particle flow migration, particles spread more concentrated
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Figure 2. The average results on OSPA and estimated target number with r = 0 and 10

on the high probability region of the posterior. This improvement leads to better approximation of the posterior.

5. CONCLUSTIONS

This paper presents a particle flow filter implementation of the PHD filter, which propagates a bank of particle
flow filters in the Gaussian mixture PHD filter framework. Particle flow motion drives particles moving close to
the real posterior, leading to better tracking performance compared to the general PF-PHD filter as well as better
adaption for nonlinear problems than the GM-PHD. This work will also motivate the further parallelization of
PHD filter, since resampling operation is not necessary in GPF-PHD filter.
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