
1

Graph-Based Compression
for Distributed Particle Filters

Jun Ye Yu, Mark J. Coates, and Michael G. Rabbat

Abstract—A key challenge in designing distributed particle
filters is to minimize the communication overhead without
compromising tracking performance. In this paper we present
two distributed particle filters that achieve robust performance
with low communication overhead. The two filters construct a
graph of the particles and exploit the graph Laplacian matrix in
different manners to encode the particle log-likelihoods using a
minimum number of coefficients. We validate their performance
via simulations with very low communication overhead and
provide a theoretical error bound for the presented filters.

I. INTRODUCTION

Particle filters are an effective solution for tracking tar-
gets with non-linear dynamic and/or measurement models.
In a distributed setting, a network of sensors collect data
and collaborate with each other to achieve improved track-
ing performance. Collaboration may involve dissemination
of sensor measurements [1], [2], distributed computation of
joint log-likelihoods [3]–[7], or propagation of posterior target
distribution across sensors [8], and may require considerable
communication overhead (e.g., ensuring the data reaches the
furthest sensor, or reaching consensus on some network-wide
statistics). Since the sensors are often battery-powered, a
key objective in designing a distributed particle filter is to
reduce the communication overhead without incurring major
degradation of the tracking performance.

A. Distributed particle filters

A variety of architectures have been proposed for distributed
particle filters and non-linear tracking over networks; see [9]
for a detailed survey. In this paper, we focus on consensus-
based algorithms. Each sensor maintains a local particle-
representation of the target distribution and exchanges mes-
sages with neighboring sensors in a communication network.
The objective is for all nodes to compute the posterior tar-
get state distribution by incorporating data from all relevant
sensors in the network. A naive and simple approach is to
run one gossiping algorithm per particle to compute their joint
log-likelihoods at the cost of prohibitively high communication
overhead. One way to reduce the overhead is to focus commu-
nication resources on a subset of particles. The set membership
constrained filter [10] uses min-consensus and max-consensus
algorithms to determine a region of the target state space
containing the particles with highest weights. This region is

The authors are with the Department of Electrical and Com-
puter Engineering, McGill University, 3480 University Street, Montréal,
Québec, Canada. Email: jun.y.yu@mail.mcgill.ca, mark.coates@mcgill.ca,
michael.rabbat@mcgill.ca

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada grant DGDND-2017-00007

in turn used to construct an adapted proposal distribution
so that fewer particles are required for actual tracking. A
related approach, described in [11], proposes an auxiliary
particle filter that uses selective gossip so only the particles
with highest weights are communicated between sensors. Both
methods improve over the naive approach, but they may
still incur a high communication overhead if the likelihood
distribution is not peaky and/or the number of particles is high.

A second approach is to approximate the posterior dis-
tribution as either a Gaussian distribution [3], [12] or as a
mixture of Gaussians [13]. Sensors can first compute local
approximations to their particle clouds, after accounting for
their local observations. Then the sensors broadcast or reach
consensus on the Gaussian parameters instead of individual
particle weights. The local distributions can be fused via some
fusion rule and the target state estimate is computed based on
the global Gaussian (mixture) distribution. This approach may
have poor performance if a Gaussian (mixture) is a poor fit
for the true target distribution.

A third approach is the distributed computation of the joint
log-likelihood of all particles. In the likelihood consensus
method [4], the log-likelihood function is expressed through a
linear transformation in terms of a known, pre-specified basis.
The basis functions are assumed to be known to all sensors
and they are sensor-independent. Each sensor computes local
coefficients, encompassing all sensor-dependent data. The joint
log-likelihood function can then be recovered by aggregating
all coefficients across the network via gossiping. A trade-off
between communication overhead and fidelity is controlled by
truncating the basis expansion, with more terms, and hence
coefficients, providing a more accurate approximation at the
cost of higher communication overhead. This approach can
achieve significant reduction in communication overhead when
the approximation only requires a small number of coefficients
(e.g., low-order polynomial functions). This approach has been
further specialized to the particular setting where the sensors
only observe bearings to the target, corrupted with additive
Gaussian noise [7], [14].

B. Contribution

In this paper we present two novel approaches to distributed
particle filtering. In contrast to prior approaches which expand
the log-likelihood using a fixed basis (e.g., polynomial bases),
we propose graph-based methods which adapt the basis func-
tions to the current particle representation of the likelihood.

The first method we propose, called the graph Laplacian
particle filter, fits a graph to the particles based on their
position, and then expands the per-particle likelihoods (which

2

can be viewed as a signal over the graph) in terms of the Lapla-
cian eigenbasis. Since most sensors induce smooth likelihood
models (particles which are nearby in state space typically
have similar likelihood values), truncating the representation
to use just the first few Laplacian eigenvectors is expected to
give a good approximation. After aggregating the coefficients
over the network via gossip, each sensor can compute the joint
log-likelihood by inverting the transformation in terms of the
Laplacian eigenvectors. This approach gives a linear approx-
imation since the expansion, to compute the coefficients, and
the inversion, to recover the approximate joint log-likelihoods,
are all linear operations.

To address the fact that computing an eigendecomposition
may be computationally prohibitive or undesirable for low-
power sensors, we introduce a second method, called the
cluster particle filter. As the name suggests, sensors first
partition the particles using a clustering algorithm, and they
aggregate the log-likelihood of particles in the same cluster.
Then the sensors gossip on these per-cluster coefficients. To
recover per-particle log-likelihoods, each sensor interpolates
by solving a convex optimization problem that takes the
aggregate per-cluster coefficients as inputs. Since the solution
to this interpolation problem is not linear in the inputs, the
resulting scheme gives a non-linear approximation.

Preliminary results for the two proposed filters have been
presented in [6] and [15]. In this paper, we present both filters
in more detail, provide more comprehensive simulation results,
and show that the proposed filters are able to yield robust
tracking performance even with very low communication over-
head. We also study a theoretical error propagation bound for
the proposed filters to provide insights into their robustness. In
addition, we propose a modification to the existing likelihood
consensus method that improves its robustness when using few
gossip iterations for distributed fusion.

C. Paper organization

The rest of the paper is organized as follows. Section II
describes the tracking problem and provides an overview of
distributed particle filtering. Section III reviews the likelihood
consensus approach in more detail. Sections IV and V describe
the proposed distributed particle filters. We derive a theoretical
error bound in Section VI. Simulation results are provided in
Section VIII. Finally, Section IX concludes the paper.

II. PROBLEM FORMULATION

A network of S sensors collaboratively track a single
moving target over time. The target state evolves over time
following a discrete-time Markov model:

X(k+1) = f(X(k), ξ(k)) (1)

where X(k) ∈ X is the target state at time step k, X denotes
the state space (e.g., a Euclidean vector space), f is the
dynamic model and ξ(k) is the process noise inducing the
transition density p(X(k+1)|X(k)).

At every time step k, each sensor s takes a measurement:

zs(k) = hs(X(k), η(k)) (2)

where hs is the sensor-dependent measurement model and
η(k) is the measurement noise which induces the likelihood
function p(zs(k)|X(k)).

Let Z(k) =
(
z1(k), ...zS(k)

)
denote the measurements

from all sensors at time k, and let Z(1:k) =
(
Z(1), ..., Z(k)

)
denote all measurements from the first k time steps. The
objective is to estimate the posterior target distribution
p(X(k)|Z(1:k)) given all measurements up to time step k.

If the distribution p(X(k−1)|Z(1:k−1)) at time k−1 is
available, then p(X(k)|Z(1:k)) can be obtained recursively
in two steps via Bayes’ rule. In the prediction step, we
obtain a predicted density using the Chapman-Kolmogorov
equation [16]:

p(X(k)|Z(1:k−1)) =∫
p(X(k)|X(k−1))p(X(k−1)|Z(1:k−1))dX(k−1). (3)

Then, in the update step when new measurements Z(k)
become available, the predicted density is updated as [16]:

p(X(k)|Z(1:k)) =
p(Z(k)|X(k))p(X(k)|Z(1:k − 1))

p(Z(k)|Z(1:k − 1))
. (4)

A. Centralized particle filter

Equations (3) and (4) form the basis of an optimal Bayesian
solution, but in general they are computationally intractable to
evaluate exactly. The particle filter [17] provides a feasible
approximation by modeling the posterior distribution using
a set of N weighted particles {Xi(k), wi(k)}Ni=1, where
Xi(k) ∈ X are points in the state space, and wi(k) are
non-negative weights satisfying

∑N
i=1 wi(k) = 1. Using the

weighted particles, we approximate the posterior as

p(x|Z(1:k)) ≈
N∑
i=1

wi(k)δXi(k)(x).

where δX(x) is the Dirac delta function (i.e., 1 if x = X , and
0 otherwise).

Let the weighted particles {Xi(k−1), wi(k−1)}Ni=1 repre-
sent the posterior distribution at time k−1. We first prop-
agate the existing particles using a proposal distribution
q(Xi(k)|Xi(k−1), Z(1:k)), and then compute the updated
particle weights given new measurements Z(k):

wi(k) ∝ wi(k−1)
p(Z(k)|Xi(k))p(Xi(k)|Xi(k−1))

q(Xi(k)|Xi(k−1), Z(1:k))
.

If the transition density p(Xi(k)|Xi(k−1)) is used as the
proposal density, then the weight update simplifies to wi(k) ∝
wi(k−1)p(Z(k)|Xi(k)).

Given the updated particle set {Xi(k), wi(k)}Ni=1, the
minimum-mean-squared-error (MMSE) state estimate can be
computed as

X̂(k) =

N∑
i=1

wi(k)Xi(k).

3

B. Distributed particle filters

Consider now a distributed implementation of the particle
filter where each sensor maintains a local copy of weighted
particles. Denote by {Xs

i (k), wsi (k)}Ni=1 the set of weighted
particles at sensor s. Assume that all sensors initialize their
pseudo-random number generators using a common seed.
The sensors are thus synchronized and generate the same
sequence of random numbers at each time step. As a result, the
sensors start with the same initial particles {Xs

i (1), wsi (1)}Ni=1.
Assume that the particles remain synchronized across sensors
at time k−1 (i.e., Xs1

i (k−1) = Xs2
i (k−1), ws1i (k−1) =

ws2i (k−1),∀i, s1 6= s2), each sensor then samples the same
propagated particles from q(Xi(k)|Xi(k−1), Z(1:K)).

To maintain synchronization, all sensors need to agree on
the posterior particle weights wi(k), i = 1, . . . , N . Suppose
that the transition density is used as the proposal density so that
wi(k) ∝ wi(k−1)p(Z(k)|Xi(k)). Since wi(k−1) is identical
at all sensors, computing wi(k) amounts to computing the
joint likelihood p(Z(k)|Xi(k)). Under the standard assump-
tion that measurements at different sensors are conditionally
independent, the joint log-likelihood factorizes:

log(p(Z(k)|Xi(k))) =

S∑
s=1

log(p(zs(k)|Xi(k))). (5)

Therefore, each sensor can compute log(p(zs(k)|Xi(k)) lo-
cally and obtain an approximation to the sum using gossip
algorithms [18]–[20] or other consensus algorithms [21].

Gossip algorithms are distributed message passing algo-
rithms for reaching a consensus on the sum or average of a
collection of numbers, where initially each node in a network
holds one of the numbers. Messages are passed between
neighboring nodes (i.e., sensors) in the communication net-
work, and nodes combine messages received by taking linear
combinations. Under mild assumptions, the estimate at every
node converges asymptotically to the average of the initial
values [18], [20]. The rate of convergence depends on the
weights used when combining messages received at each node,
as well as the graph topology.

In any practical application, the gossip process will be trun-
cated after a finite number of iterations, and hence there will
be some disagreement between the values at different sensors
and the average. In the context of distributed particle filters,
this causes two issues. First, because the values are different
at each sensor, the sensors will no longer be synchronized
unless we perform additional processing. To remedy this, after
running a fixed number of rounds of gossip for distributed
averaging, we can run a max-consensus protocol [22], which
is guaranteed to converge to the same value at all sensors after
a finite number of communication rounds. If, after gossiping,
all sensors have values which are close to the average (i.e.,
the errors are small), then the maximum of these values will
also be close to the average.

The second issue caused by errors due to running gossip for
a finite number of rounds is that the errors in log-likelihood
calculations may accumulate over time, causing an overall
error in the state estimates produced by the distributed particle
filters running at each sensor. We studied this issue in our

previous work [23], in which we proved that the error in
the state estimate remains bounded over time as long as
the relative error in the per-particle log-likelihoods remains
bounded, and we showed how this could be achieved by
controlling the number of gossip rounds as a function of the
network topology in the simple setup where sensors gossip
directly on the per-particle log-likelihoods. We will revisit this
issue in Sec. VI in the context of the proposed distributed
approximation schemes.

III. LIKELIHOOD CONSENSUS

A naive implementation of the distributed particle filter
is to run one gossip algorithm per particle, at the cost of
prohibitively high communication overhead. The likelihood
consensus particle filter (LCpf) [4] seeks to reduce the
communication overhead by approximating the log-likelihood
function as a linear combination of m basis functions. We
review likelihood consensus in more detail in this section.

Since the key step in distributed particle filters is the
computation or approximation of the joint log-likelihood (5),
and this is repeated at each time step, we omit the time step
index k to simplify the notation for the remainder of the paper.
In the experiments reported later in Sec. VIII, it should be
understood that these operations are being performed in every
tracking update step.

The LCpf is based on the approximation

log p(zs|Xi) ≈
m∑
j=1

αsj · βj(Xi). (6)

The basis functions βj(Xi) depend only on the particles
Xi, and they are known to all sensors (i.e., the sensors are
synchronized at the end of each step). The coefficients αsj ,
j = 1, . . . ,m, are computed locally at sensor s and depend
on the local measurement zs available only at sensor s.

Using this basis expansion, the joint log-likelihood (5) can
be approximated as follows:

γ(Xi) = log p(Z|Xi)

≈
S∑
s=1

m∑
j=1

αsj · βj(Xi)

=

m∑
j=1

βj(Xi)

(
S∑
s=1

αsj

)
.

In other words, since the basis functions βj(Xi) are known
to all sensors and can be computed locally, it suffices to
compute the m aggregate coefficients

∑S
s=1 α

s
j , j = 1, . . . ,m,

to recover the joint log-likelihoods. When m � N , the
communication overhead can be reduced significantly.

Let γs(Xi) = log(p(zs|Xi)) denote the log-likelihood of
particle Xi at sensor s and let γsm(Xi) =

∑m
j=1 βj(Xi)α

s
j

denote its approximate value. The local coefficients are cho-
sen such that the sum of squared errors

∑N
i=1 ||γs(Xi) −

γsm(Xi)||2 is minimized. More specifically, define matrix
Ψ ∈ RN×m such that Ψ(i, j) = βj(Xi) and column vector
γs = [γ(X1), ...γ(XN)]

T where superscript T denotes the

4

transpose. Then the coefficients αs = [αs1, ...α
s
m]
T can be

computed as follows:

αs = (ΨTΨ)−1ΨT γs. (7)

The approximate global log-likelihoods can be recovered from
the aggregate coefficients as follows:

γm = Ψ

(
S∑
s=1

αs

)
. (8)

We note that likelihood consensus is a non-adaptive, linear
approximation since the expansion to compute the coefficients
and the inversion to compute global log-likelihoods are all
linear operations, and these coefficients are independent of the
current particle cloud.

The original work on likelihood consensus [4] proposed to
use low-order polynomials as the basis functions. Let Rp ≥ 0
be the max polynomial degree. Without loss of generality, let
X = [x1, ...xd]; i.e., the target state vector is d-dimensional.
Then the approximate log-likelihood is computed as follows:

γs(X) ≈
Rp∑
r1=0

...

Rp∑
rn=0

αsr1,r2,...,rdx
r1
1 x

r2
2 · · ·x

rd
d . (9)

The total number of basis functions is m = (Rp + 1)d and
each basis function has the form

∏d
l=1 x

rl
i,l with associated

coefficient αsr1,...,rd .
The constraint sufficient statistics particle filter (CSSpf) [5],

which we include in the simulation comparison study in
Sec. VIII, is a variant of the likelihood consensus filter and is
specifically tailored for tracking a target in a two-dimensional
state space using only bearing measurements corrupted with
additive white Gaussian noise. This filter also applies a linear
transformation to compress the log-likelihoods using a basis
specifically tailored to this problem setting. Unlike the like-
lihood consensus filter with a polynomial basis, the number
of basis functions is fixed at six regardless of the number of
particles.

IV. THE GRAPH LAPLACIAN PARTICLE FILTER

This section introduces a graph-based compression scheme
which aims to reduce the communication overhead by exploit-
ing similarity of log-likelihood values at nearby particles. The
scheme can be viewed as a form of likelihood consensus [4]
using a basis that adapts over time along with the particle
cloud. In the experiments reported later in the paper, it should
be understood that these operations are being performed in
every tracking update step.

At a high level, the graph Laplacian particle filter (LApf)
follows these steps:

1) Each sensor computes local particle log-likelihoods.
2a) Each sensor constructs a graph over the particles.
2b) Each sensor uses the eigenvectors of the resulting graph

Laplacian to encode the log-likelihoods.
3) Gossip and max-consensus algorithms are used to com-

pute the aggregate coefficients.
4) Each sensor recovers the joint particle log-likelihoods

from the coefficients and the Eigenvectors.

Let us focus first on step 2. We consider each particle
Xi as a vertex in a graph and construct a set of (possibly
weighted) edges to connect these vertices. Let A denote the
N×N weighted adjacency matrix where A(i, j) = A(j, i) > 0
if Xi and Xj are connected and 0 otherwise. Let D denote
the N×N matrix where D(i, i) =

∑N
j=1A(i, j) and D(i, j) =

0 i 6= j. Let L = D−A denote the Laplacian matrix of the
particle graph. Since L is a real symmetric matrix, it has an
eigendecomposition L = ΨΛΨT where Λ is a diagonal matrix
of eigenvalues with corresponding eigenvectors given by the
columns of Ψ. We assume that A is connected, by design;
i.e., for any two particles Xs and Xt, there is a sequence
i0, i1, . . . , il with i0 = s and il = t, such that A(ij−1, ij) > 0
for all j = 1, . . . , l. Consequently, the smallest eigenvalue of
L is λ1 = 0 and all other eigenvalues are strictly positive [24].
We assume that the eigenvalues are sorted in ascending order,
so λ1 = 0 < λ2 ≤ · · · ≤ λN , and the ith column of Ψ is the
eigenvector with corresponding eigenvalue λi.

The Laplacian eigenvectors can be used as a Fourier-like
basis [25] for signals supported on the graph. Using all N
eigenvectors for the Fourier transform would be counter-
productive since we achieve no reduction in communication
overhead. Instead, we achieve compression by projecting onto
only m�N eigenvectors. Since the particle log-likelihoods
can be considered as a smooth signal over the graph (i.e.,
particles close to each other have similar log-likelihoods),
most of their energy should be concentrated in the coefficients
corresponding to “lower frequency” basis vectors. In other
words, we should retain the m eigenvectors corresponding to
the m smallest eigenvalues.

The log-likelihood vector γs = [γs(X1), ..., γs(XN)]
T can

be encoded as follows:

αs = ΨT
mγ

s (10)

where Ψm is a matrix consisting of the m column eigenvectors
corresponding to m smallest eigenvalues.

In the multi-sensor setting, m gossip algorithms are run
in parallel to compute the coefficients αj =

∑
s α

s
j , j =

1, . . . ,m.1 The number of coefficients m thus represents a
trade-off between communication overhead and compression
error (i.e., discrepancy between γs and γsm, the log-likelihoods
reconstructed from m coefficients). In the limit case of m =
N , there is no compression error but no reduction in commu-
nication overhead either. This parameter can be fixed by users
beforehand or set dynamically over time by individual sensors.
In the latter case, each sensor selects a suitable value of m
to ensure that the discrepancy

∑N
i=1 |γs(Xi) − γsm(Xi)| (or

other suitable distance metric) is sufficiently low. Then a max-
consensus algorithm can be run to determine the maximum m
among all sensors.

Finally, let α̂ ≈
∑
s α

s denote the vector of coefficients
obtained after gossiping in Step 3. In Step 4, the vector of
per-particle log-likelihoods can be recovered via the inverse
transform,

γm = Ψmα̂ ≈ ΨmΨT
m

∑
s

γs. (11)

1Alternatively, one can see this as gossiping on a vector of dimension m.

5

We note that the eigenvalue decomposition imposes a heavy
computational burden on the sensors. In general, it has compu-
tational complexity O(N3) [26], although it may be possible to
use methods (such as Lanczos iterations [27] or preconditioned
conjugate gradient [28]) which exploit the sparsity of L to
compute a small number eigenvectors more efficiently.

V. CLUSTER PARTICLE FILTER

A key challenge of the Laplacian particle filter is the high
computational burden of the eigenvalue decomposition. The
cluster particle filter (Clusterpf) described in this section ex-
ploits smoothness via the graph Laplacian without computing
the eigenvalue decomposition of the Laplacian matrix.

At a high level, the Clusterpf follows steps similar to the
graph Laplacian particle filter:

1) Each sensor computes local particle log-likelihoods;
2a) Each sensor groups the particles into K clusters;
2b) Each sensor computes the cluster log-likelihood;

3) Gossip and max-consensus algorithms are used to com-
pute the joint cluster log-likelihoods;

4) Each sensor interpolates the joint particle log-likelihoods
from the joint cluster log-likelihoods.

Consider Step 2. We apply K-means clustering to group
the particles into K clusters based on their proximity to each
other. Other methods such as spectral clustering [29] may also
be considered. Let C denote the K×N cluster assignment
matrix where C(i, j) = 1 if particle j belongs to cluster
i. By assumption, the particle values Xs

i at all sensors are
synchronized at the end of each iteration, and sensors have
synchronized seeds for their random number generators. Hence
the resulting cluster matrix C may be taken to be identical at
all sensors too.

Rather than projecting γ onto Laplacian eigenvectors, for
compression we aggregate the log-likelihood values of all
particles in the same cluster and then gossip on one coefficient
per cluster. The log-likelihood of the ith cluster, γic, is equal
to the sum of the log-likelihoods of its constituent particles.
We can thus relate the cluster log-likelihoods to the particle
log-likelihoods via

γc = Cγ, (12)

where γc ∈ RK is the compressed coefficient vector. Rather
than gossiping on the N×1 vector γs, each sensor only
needs to gossip on the K×1 vector γsc = Cγs. When
K�N , significant reduction in communication overhead can
be achieved. Let γ̂c ≈

∑
s γ

s
c denote the result of running

gossip and max-consensus on the per-sensor coefficient vectors
γsc in Step 3.

In Step 4, given γ̂c, we need to recover the individual
particle joint log-likelihoods. A naive solution is to simply
assign equal weight to all particles in a cluster, but this
leads to poor results since the resulting log-likelihoods exhibit
sharp changes at cluster boundaries. Instead, we exploit the
graph Laplacian to ensure that the log-likelihood values remain
smooth over the state space. We again construct a graph over

the particles, compute the Laplacian matrix L, and then solve
the following convex quadratic programming problem:

minimize
γ

1
2γ

TLγ

subject to Cγ = γ̂c.
(13)

In other words, we find particle log-likelihood values that
are smooth with respect to particle proximity, where we use
the Laplacian quadratic form as our measure of smoothness,
while ensuring that the aggregate values are consistent with the
cluster values computed over the network. Since the matrix L
is positive semi-definite, the problem is convex and can be
solved using well-known methods [30].

A. Solution Uniqueness

Although the quadratic program defined in (13) is convex,
one may still wonder if it has a unique solution since the
graph Laplacian L is positive semi-definite. Next we show
that it indeed has a unique solution.

The Lagrangian function for the constrained problem (13)
is

L(γ, ν) = (1/2)γTLγ + νT (Cγ − γ̂c),

where ν ∈ RK is a vector of Lagrange multipliers. The KKT
conditions for this problem state that if γ? is a solution to (13)
then γ? is feasible, so Cγ? = γ̂c, and there exists a Lagrange
multiplier vector ν? such that [31]

∇γL(γ?, ν?) = Lγ? + CT ν? = 0.

These conditions can be expressed simultaneously as the
system of linear equations[

L CT

C 0

] [
γ?

ν?

]
=

[
0
γ̂c

]
. (14)

To show that (13) has a unique solution, we will show that
the matrix on the left of (14) is non-singular.

First, recall that the constructed graph over the particles
is connected, by design. Let 1N denote an N -dimensional
vector with all entries equal to 1. For a connected graph, it is
well known that the null space of its Laplacian matrix L is
spanned by the constant vector 1N ; i.e., Lγ = 0 if and only
if γ = α1N for some scalar a. Thus, 0 is an eigenvalue of
L with corresponding (normalized) eigenvector (1/

√
N)1N .

Moreover, all other eigenvalues of L are strictly positive.
Recall, also, that each row of C is an indicator vector for

one cluster, and the clusters partition the particles by design.
Hence, the rows of C are linearly independent, and CT1K =
1N . Let Z ∈ RN×(N−K) be a matrix whose columns span the
null space of C; i.e., CZ = 0, and if Cγ = 0 then γ = Zβ
for some vector β ∈ RN−K . Since 1TN = 1TKC, it follows that
1TNZ = 0; i.e., the constant vectors are not in the null space
of C. Therefore ZTLZ is positive definite.

Now, let γ and ν be vectors for which[
L CT

C 0

] [
γ
ν

]
= 0. (15)

Then Cγ = 0. Consequently, from[
γ
ν

]T [
L CT

C 0

] [
γ
ν

]
= 0

6

it follows that γTLγ = 0. Since Cγ = 0, there exists β ∈
RN−K such that γ = Zβ, and therefore βTZTLZβ = 0.
However, since ZTLZ is positive definite, it must be that β =
0, and so γ = 0. From (15), then, it must be that CT ν = 0,
and this can only be true if ν = 0 since C has full row rank.
Therefore, since (15) holds only if γ = 0 and ν = 0, we
have shown that the matrix on the left-hand side of (14) is
non-singular, and hence (13) has a unique solution.

B. Computational considerations

The KKT conditions (14) suggest that one way to find a
solution to (13) is by directly solving this (N+K)-by-(N+K)
linear system. Direct matrix inversion has a computational
complexity of O

(
(N +K)K

)
in general. However, since the

coefficient matrix in this system is very sparse (recall that L
is the Laplacian matrix of a graph, and C has exactly N non-
zeros), the system can be solved (approximately, or exactly)
more efficiently using an iterative indirect method such as
preconditioned conjugate gradient [31].

C. Connection to graph Laplacian compression

We now make a connection to the graph Laplacian particle
filter from Sec. IV to further motivate the use of the Cluster
particle filter method. Recall that in the graph Laplacian
particle filter, we compute coefficients αs = ΨT

mγ
s at each

sensor, where Ψm is the matrix formed from the first m
Laplacian eigenvectors. After summing over sensors, we have
α̂ ≈

∑
s α

s = ΨT
mγ

s.
Now, consider the quadratic program,

minimize 1
2γ

TLγ
subject to ΨT

mγ = α̂.

It is straightforward to show that the minimizer is given by
γ̂ = Ψmα, which is the same linear recovery method used in
graph Laplacian particle filtering. From this perspective, we
can view the cluster particle filter as substituting the clustering
matrix C in place of the first m Laplacian eigenvectors. While
this substitution is motivated from a computational perspec-
tive (clustering the particles can be significantly faster than
computing the Laplacian eigenvectors when N is large), we
may expect the two approaches to provide similar performance
when C and Ψm provide similar information, and indeed
well-known connections between Laplacian eigenvectors and
spectral clustering algorithms [29] suggest that this should be
the case.

VI. ERROR ANALYSIS

Using a weighted particle cloud to approximate the posterior
introduces error in Bayesian filtering relative to the optimal,
but intractable, update equations (3) and (4). Using gossip
algorithms and other approximations, such as projecting onto
the subspace spanned by a few Laplacian eigenvectors, or
cluster-based compression, introduces additional errors. It is
natural to ask whether these errors may accumulate over time.

For gossip-based distributed particle filters, this question is
studied in [23] and a general framework is developed, building

on ideas set forth in [32], under which one can prove that the
error between the (intractable) optimal centralized Bayesian
filter and a gossip-based distributed implementation remains
uniformly bounded over time.

In the theory of [23], the error specifically due to decen-
tralization and gossip can be controlled by ensuring that the
relative error in the log-likelihood of each particle remains
strictly less than 1 at every time step. More specifically, let
γ̂(Xi) denote the approximate joint particle log-likelihood for
particle Xi and let γ(Xi) denote the exact value. Then a key
condition in [23] is to ensure that

||γ̂(Xi)− γ(Xi)||
||γ(Xi)||

< 1

at every time step. The other conditions are:
• The Markov chain associated with target state transition

undergoes sufficient mixing within a finite number of time
steps;

• The state estimate function F (Xi) can be suitably scaled
and bounded such that supXi

|F (Xi)| < 1; and
• The particle likelihood is bounded such that

exp(γ(Xi)) ≤ 1 for all i = 1, . . . , N .
Note that fulfillment of the first two conditions is unrelated
to the choice of the particle filter. The third condition can be
easily satisfied with suitable normalization of log-likelihoods.
Thus our discussion focuses only on bounding the relative
error ||γ̂(Xi)− γ(Xi)||/||γ(Xi)||.

A. General bound for distributed particle filters

We will first derive an error bound for general gossip-based
distributed particle filters. Then we will specialize this bound
to the graph Laplacian particle filter.

Recall that the distributed filters presented in the previous
sections all involve the same general steps:

1) Each sensor computes local particle log-likelihoods;
2) Each sensor encodes the local log-likelihoods into m

coefficients;
3) Gossip and max-consensus algorithms are used to com-

pute the m aggregate coefficients;
4) Approximate joint log-likelihoods are recovered from

the aggregate coefficients.
Therefore, the discrepancy between true log-likelihoods γ(Xi)
and the final approximate value γ̂(Xi) comes from two
sources: the encoding error and the gossiping error. The first
error is the discrepancy between true log-likelihoods and their
reconstructions from m coefficients. The second error occurs
when sensors do not obtain the true aggregate coefficient
values after only a finite number of gossip iterations.

Consider the encoding error. Let γm(Xi) denote the approx-
imate log-likelihood of particle Xi recovered using m coeffi-
cients; i.e., after exactly aggregating the per-sensor coefficients
from Step 2, or equivalently, after running an infinite number
of gossip iterations in Step 3. For a given approximation
scheme (e.g., using Laplacian eigenvectors, clusters, or another
non-adaptive approach), let δm > 0 denote the smallest value
for which

|γm(Xi)− γ(Xi)| ≤ δm|γ(Xi)|. (16)

7

is guaranteed to hold for all i = 1, . . . , N . The value of δm
depends on the specific approximation scheme and the number
of coefficients m used, and we expect δm to decrease as m
increases. Note that Eq. (16) can be rewritten to yield

(1− δm)|γ(Xi)| ≤ |γm(Xi)| ≤ (1 + δm)|γ(Xi)|. (17)

Next, consider the gossiping error. Let α̂ denote the co-
efficients obtained after gossiping and max-consensus it-
erations. This gives us the approximate log-likelihoods γ̂.
Given δgossip>0, we can run a sufficient number of gossip
iterations to ensure that the following bound holds for all
coefficients [23]:

|γm(Xi)− γ̂(Xi)|
|γm(Xi)|

≤ δgossip. (18)

The number of gossip iterations required to ensure that the
relative error is at most δgossip depends on the sensor network
topology and the initial values αs at each sensor [23].

Putting everything together, we obtain

δ =
|γ̂(Xi)− γ(Xi)|
|γ(Xi)|

=
|γ̂(Xi)− γm(Xi) + γm(Xi)− γ(Xi)|

|γ(Xi)|

≤ |γ̂(Xi)− γm(Xi)|
|γ(Xi)|

+
|γm(Xi)− γ(Xi)|

|γ(Xi)|

≤ (1 + δm)
|γ̂(Xi)− γm(Xi)|
|γm(Xi)|

+
|γm(Xi)− γ(Xi)|

|γ(Xi)|
≤ (1 + δm)δgossip + δm (19)

From (19), we see that the upper bound of δ exceeds 1
if either δm ≥ 1 or δgossip ≥ 1. We thus need to choose a
suitable number of coefficients and sufficient gossip iterations
to control both errors. The optimal combination of the pa-
rameters depends on the specific tracking problem set-up. We
explore the tradeoff between these parameters experimentally
in Sec. VIII by varying the number of Laplacian expansion
coefficients or clusters (which affects δm) and the number of
gossip iterations (which affects δgossip).

B. Controlling gossiping error of filters using linear transform
coding

The general bound (19) applies to both the graph Laplacian
particle filter and the cluster particle filter. The precise values
of δm and δgossip may differ for the two filters since they use
different encoding and decoding schemes.

In this section we focus specifically on bounding the gos-
siping error for methods that use linear transform coding; i.e.,
methods where the encoding used in Step 2 is a linear transfor-
mation of the per-particle log-likelihoods at each sensor, and
the reconstruction in Step 4 is a linear transformation of the
aggregate coefficients obtained by gossiping. The graph Lapla-
cian particle filter is one such method; likelihood consensus
with polynomial bases is another example. The bound derived
below does not apply for the cluster particle filter because it
uses a nonlinear recovery scheme.

Let α̂(l) be the coefficients obtained after l gossip iterations
and max-consensus iterations, and let α denote the true coef-
ficient values. We seek to establish the following bound for
all coefficients:

|α̂j(l)− αj |
|αj |

≤ τ, 1 ≤ j ≤ m. (20)

Let W denote the S×S averaging matrix used in the gossiping
algorithm and let ρW denote its second largest eigenvalue in
modulus. The bound in Eq. (20) holds if the minimum number
of gossip iterations satisfies the following condition [33]

l ≥
1.5 log(S) + log(S−1

τ)

log(1/ρW)
. (21)

Thus, depending on the properties of the sensor commu-
nication topology (as captured by ρW), and the required
accuracy τ , we can calculate the worst-case number of gossip
iterations to run. Since this bound ensures that (20) holds
at all agents, and for all coefficients, taking the maximum
over sensors (via max-consensus) to ensure that the sensors
remain synchronized does not make this error any larger. Max
consensus is guaranteed to converge in a finite number of
iterations (typically on the order of the network diameter).

Now, suppose that the encoding step is based on a linear
transformation, so αs = (ΨTΨ)−1ΨT γs, where Ψ is a N×m
matrix, and let α̂ ≈

∑
s α

s denote the result of gossiping. The
linear recovery scheme uses γ̂ = Ψα̂. Similarly, let γm = Ψα,
where α =

∑
s α

s = (ΨTΨ)−1ΨT γ, denote the result of
encoding and decoding the aggregate log-likelihoods directly
(with exact aggregation). Note that, for the graph Laplacian
particle filter, the columns of Ψ are (normalized) eigenvectors,
so ΨTΨ = I . We write the encoding operation in terms of the
pseudo-inverse (ΨTΨ)−1ΨT instead of ΨT directly to also be
consistent with likelihood consensus.

To derive an upper bound for the gossiping error, observe
that

|γ̂(Xi)− γm(Xi)|
|γm(Xi)|

≤ ||γ̂ − γm||∞
|γm(Xi)|

=
||Ψ(α̂− α)||∞
|γm(Xi)|

≤ ||Ψ||∞||α̂− α||∞
(1− δm)|γ(Xi)|

≤ τ ||Ψ||∞||α||∞
(1− δm) minXi

|γ(Xi)|
(22)

where the third line follows from the definition of the matrix
∞-norm and (16), and the last line follows from (20).

C. Likelihood consensus / graph Laplacian comparison

In the ideal case of δm = 0 (i.e., perfect reconstruction
of log-likelihoods from m coefficients), the denominator of
the bound (22) is the same for all algorithms. Consider the
numerator. Higher error τ for aggregate coefficient increases
the upper bound as we would expect. Different filters have
different transformation matrices Ψ and corresponding coef-
ficients α which also impact the error bound. For the graph

8

Laplacian (LA) and likelihood consensus (LC) particle filters
to achieve the same upper bound in Eq. (22), we should have

τLC

τLA
=
||ΨLA||∞||αLA||∞
||ΨLC ||∞||αLC ||∞

. (23)

For the graph Laplacian particle filter, the matrix ΨLA

contains the m orthonormal eigenvectors corresponding to the
m smallest eigenvalues of the graph Laplacian. Therefore, we
have |ΨLA(i, j)| ≤ 1 and ||ΨLA||∞ ≤ m. In contrast, for
likelihood consensus with polynomial basis functions (see (9)),
ΨLC(i, j) = βj(Xi) = xr1i,1x

r2
i,2...x

rd
i,d where xi,l is the lth

component of Xi and the index j is mapped to a vector
{r1, ..., rd} ⊆ {0, ..., Rp}d. Depending on the maximum poly-
nomial degree Rp and the individual particle Xi, we have 1 ≤
ΨLC(i, j) ≤ x

Rp

i,1x
Rp

i,2 ...x
Rp

i,d and consequently ||ΨLC ||∞ �
||ΨLA||∞. Deriving a theoretical bound for ||α||∞ or ‖Ψ‖∞
would require making much strong assumptions about the
system model, and is beyond the scope of this work. We
will compare ||αLC ||∞ and ||αLA||∞ empirically in Sec. VIII
and see that ||ΨLC ||∞||αLC ||∞ � ||ΨLA||∞||αLA||∞. This,
combined with Eq. (23), suggests that likelihood consensus
should require more gossip iterations to reduce τ accordingly
in order to achieve the same gossiping error bound as the graph
Laplacian particle filter.

VII. LIKELIHOOD CONSENSUS WITH GRAM-SCHMIDT

We validate the error bounds derived in the previous section
via experiments reported in Sec. VIII. There we show that
likelihood consenus does indeed require more gossip iterations
to achieve similar tracking performance as the graph Laplacian
particle filter.

In the previous section, we showed that the overall error
of the distributed filter is upper-bounded by the expression
in (19), which involves both the encoding error and the
gossiping error. Furthermore, the upper bound of the gossiping
error depends on ||Ψ||∞||α||∞. In the experiments reported
below, we observed that this quantity can be much larger for
likelihood consensus than for the graph Laplacian approxi-
mation. Subsequent investigation suggested that this may be
related to the matrix Ψ used for polynomial bases in likelihood
consensus. In general, Ψ may have a high norm.

To reduce this error bound, we propose a modification to the
likelihood consensus algorithm whereby each sensor runs the
Gram-Schmidt procedure on Ψ so that the resulting columns
used are all mutually orthogonal, have unit norm, and thus play
a role similar to the Laplacian eigenvectors. Experimentally, in
the next section, we observe that this modification reduces the
gossiping error. Consequently running likelihood consensus
with an orthonormal matrix obtained via Gram-Schmidt is
expected to have better performance than standard likelihood
consensus at low communication overhead, at the cost of
additional computational overhead (to run the Gram-Schmidt
procedure).

VIII. NUMERICAL STUDY

A. Experimental setup
In this section, we evaluate the performance of the graph

Laplacian particle filter (LApf) and the cluster particle filter

(Clusterpf). For comparison, we also evaluate the likelihood
consensus particle filter (LCpf) [4], constraint sufficient statis-
tics particle filter (CSSpf) [5], Gaussian approximation particle
filter (GApf) [3] and include a centralized bootstrap particle
filter (BSpf) as a baseline. We also run the likelihood consen-
sus particle filter with Gram-Schmidt orthogonalization (LCpf-
GS) described in Sec. VII.

We consider two different simulated tracks with different
measurement models (see Fig. 1). In each scenario a network
of sensors collaboratively track a moving target over 50 time
steps.

50 100 150 200

x

-100

-50

0

50

y

True track

Sensor

(a) Track 1

0 50 100

x

50

100

150

y

True track

Sensor

(b) Track 2

Fig. 1. Target tracks (blue curve) and sensor positions (black diamond).
Sensors connected by red dashed lines are within broadcast range of each
other.

The target state at time k is modeled as X(k) =
[x(k), y(k), ẋ(k), ẏ(k)] where x(k), y(k) are the target posi-
tion and ẋ(k), ẏ(k) are coordinate velocities. The state evolves
according to

X(k + 1) = F (X(k)) + ξ(k) (24)

where F (X(k)) is the dynamic model and ξ(k) is zero-
mean Gaussian process noise. The simulated target randomly
switches between two different motion models: constant ve-
locity with probability Pcv = 0.05 and coordinated turn with
probability 1− Pcv = 0.95.

For the constant velocity model, we have

F (X(k)) =

1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 . (25)

For the coordinated turn model, we have

F (X(k)) =

1 0 sin(Ω)

Ω(k) − 1−cos(Ω(k))
Ω(k)

0 1 1−cos(Ω(k))
Ω(k)

sin(Ω(k))
Ω(k)

0 0 cos(Ω(k)) − sin(Ω(k))
0 0 sin(Ω(k)) cos(Ω(k))

 . (26)

where Ω(k) is the turning rate

Ω(k) =
a√

ẋ2(k) + ẏ2(k)
(27)

with a = 0.5 being the maneuver acceleration parameter.
We assume that the sensor positions are fixed, and that

sensor s knows its own position, which is denoted by [xs, ys].

9

In the first simulated track, all sensors receive noisy bearing
measurements (in radians) from the target

Hs(X(k)) = arctan 2

(
xt(k)− xs
yt(k)− ys

)
+ η(k) (28)

where η(k) is the zero-mean Gaussian measurement noise. In
the second track, the sensors receive noisy range measure-
ments (in km)

Hs(X(k)) =
√

(xt(k)− xs)2 + (yt(k)− ys)2 + η(k). (29)

The process noise ξ(k) has covariance matrix Q [34] equal
to:

Q = σ2
a

1
3 0 1

2 0
0 1

3 0 1
2

1
2 0 1 0
0 1

2 0 1

 (30)

where σa = 10−4, and the measurement noise η(k) has
variance R = σ2 where, depending on the scenario, σθ =
0.0873 rad = 5 degree for bearing measurements, and σr =
5 km for range measurements.

All particle filters use the same number, N , of particles,
which we will vary in the simulations. At time step 1, we
generate an initial vector Xinit ∼ N (X(1), Rinitial) with
Rinitial = diag([0.52, 0.52, 0.052, 0.052]). We then generate the
initial particles Xi(1) ∼ N (Xinit, Rparticles) with Rparticles =
diag([52, 52, 0.52, 0.52]). We adopt this two-step approach to
give all filters an inaccurate initial state estimate.

For LCpf, we use the polynomial basis functions [4] with
max polynomial degree Rp, but we only include each particle’s
position in the basis function since the likelihood function
(bearing and range) does not depend on the particles’ velocity.
In other words, we use all permutations of xity

j
t with 0 ≤

i, j ≤ Rp (i.e., For Rp = 2, the basis functions are β1(X) =
x0
ty

0
t = 1, ..., β9(X) = x2

ty
2
t .). For LApf, we retain m ≤

N eigenvectors as the basis of Laplacian transformation. For
Clusterpf, all particles are grouped into K clusters.

The random number generators are synchronized to ensure
that the particles remain the same across sensors. Distributed
summation is performed using the gossip algorithm [18]. At
each time step, we perform NGossip gossip iterations. At
each gossip iteration, each sensor i broadcasts its local values
gi, receives broadcasts from its neighbors, and then updates
its local values as a weighted aggregate:

gi,new = wiigi,old +
∑
j∈Ni

wijgj,old (31)

wij =

1

1+max(|Ni|,|Nj |) j ∈ Ni
1−

∑
j∈Ni

wij i = j

0 j /∈ Ni
(32)

where Ni denotes the set of neighboring sensors of sensor i
and Metropolis weight [21] is used for the update. Since only
a finite number of gossip iterations are executed, it is not guar-
anteed that all sensors will obtain the same values. Therefore,
a max-consensus algorithm is executed to ensure all sensors
obtain the same values. Define an update matrix W where

400 800 1200 1600 200

N

0.8

1

1.2

1.4

R
M

S
E

(a) Track 1

10 20 30 40 50

time

0.3

0.6

0.9

1.2

1.5

R
M

S
E

600

1000

1500

2000

(b) Track 1

400 800 1200 1600 2000

N

1.6

1.8

2

2.2

2.4

R
M

S
E

(c) Track 2

10 20 30 40 50

time

1.4

1.6

1.8

2

2.2

R
M

S
E

600

1000

1500

2000

(d) Track 2

Fig. 2. RMSE of bootstrap particle filter with respect to N . All results are
averaged over 200 random Monte-Carlo trials.

W (i, j) = wij . Given initial values ginitial = [g1, ..., gS]T , the
final value is equivalent to gfinal = max(WNGossipginitial).

In the remainder of the section, we run a number of Monte
Carlo simulations to evaluate the performance of all filters.
The track and the sensor positions remain the same in each
trial; but the measurements differ. We evaluate the algorithms’
performances using the root mean squared error (RMSE) of
position estimate. Note that CSSpf is not run for track 2 since
it is designed for bearings-only tracking.

B. Centralized baseline, varying N

Fig. 2 shows the average RMSE of BSpf with respect to
N to provide a baseline for the optimal tracking performance.
The average RMSE decreases with increasing N as expected.
The RMSE of track 2 is higher than that of track 1. This is to
be expected since, in track 2, there are fewer sensors and the
target is moving further away from the sensors over time. For
track 1, the RMSE fluctuates over the entire duration of the
track. For track 2, the RMSE fluctuates around 1.7 after time
step 10 (when the target goes outside the sensor grid). For
both tracks, we do not see a significant reduction in RMSE
for N ≥ 1000. For the rest of the paper, unless otherwise
stated, we choose N = 1000 for all our simulations.

C. Graph construction

Both LApf and Clusterpf require constructing a graph
over the particles. We compare three different approaches to
constructing the particle similarity graph: K-nearest-neighbor
(KNN) graphs, Delaunay triangulation (DT) graph [35] and
proximity graph. In the first graph, each particle is connected
to its K nearest neighbors. The second graph induces a
triangulation on the particles such that no particle is inside
the circumcircle of any triangle in the graph. In a proximity
graph, each particle is connected to all other particles that are
at most a distance of r away. We run LApf and Clusterpf on
both tracks using all three graph construction methods. For the
proximity graph, we set the connectivity radius as follows. Let
dmax denote the maximum Euclidean distance between any
two particles. The connectivity radius is set to r = εdmax with

10

10 20 30 40 50

m

0

5

10

15
R

M
S

E
Delaunay

KNN-25

KNN-50

KNN-100

Proximity =1/8

Proximity =1/4

Proximity =1/2

(a) LApf, track 1

10 20 30 40 50

m

1.6

1.8

2

2.2

R
M

S
E

Delaunay

KNN-25

KNN-50

KNN-100

(b) LApf, track 2

4 6 8 10 12 14 16

K

1

2

3

4

R
M

S
E

Delaunay

KNN-25

KNN-50

KNN-100

(c) Clusterpf, track 1

4 6 8 10 12 14 16

K

1.6

2

2.4

2.8

R
M

S
E

Delaunay

KNN-25

KNN-50

KNN-100

(d) Clusterpf, track 2

Fig. 3. RMSE of LApf and Clusterpf with respect to m (LApf) and K
(Clusterpf) using different graph construction methods. For DT graph, no
additional parameter is required. For KNN graph, we vary the number of
neighbors each particle is connected to. For the proximity graph, we vary ε
which determines the connectivity radius εdmax where dmax is the maximum
Eucliean distance between any two particles. All results are averaged over 200
random trials.

0 < ε ≤ 1. We note that all three graph algorithms consider
only the particles’ positions since the likelihood functions
(bearing and range) do not depend on the particles’ velocities.

In this set of simulations, the aggregate coefficients are
computed without gossiping so all sensors obtain the true
aggregate coefficients; thus, for a given number of eigenvec-
tors/clusters, any difference in performance is due solely to the
method used to construct the particle graph. To generate the
Laplacian matrix, we define the weighted adjacency matrix
A. If particles Xi and Xj are connected, then A(i, j) =
A(j, i) = 1/

√
(xi − xj)2 + (yi − yj)2. Otherwise, A(i, j) =

A(j, i) = 0. We also experimented with using adjacency
weights equal to the inverse distance squared, A(i, j) =
A(j, i) = 1/

(
(xi − xj)2 + (yi − yj)2

)
, exponential weights

A(i, j) = A(j, i) = exp
(
−((xi − xj)2 + (yi − yj)2)

)
, and

unweighted graphs (i.e., A(i, j) either 0 or 1), but the inverse
distance weights consistently led to the best performance.

For each graph, we compute the 2-norm total graph varia-
tion [25], defined as ||V ||G = (γTLGγ)1/2, where G denotes
the particle graph, LG is the corresponding Laplacian matrix,
and γ is the column vector containing the particle log-
likelihoods. This metric characterizes the smoothness of the
signal defined on the graph with a lower value indicating
a smoother signal (and better compressibility). We find that
the signal is most smooth on the Delaunay triangulation
graph which can translate to lower RMSE when the signal
is compressed using a fixed number of coefficients. We omit
the relevant figure due to space constraint.

We study the average RMSE with respect to m for LApf
and K for clusterpf. Fig. 3 shows the results. For both LApf
and Cluserpf, the proximity graph consistently leads to much
worse performance (see Fig. 3 (a) for example). We omit the
proximity graph curves in the remaining figures (since the
same trends persist) and focus our discussion on Delaunay
triangulation and KNN graphs.

The RMSE decreases with increasing m or K for both graph

methods as expected. The Delaunay graph consistently yields
very competitive RMSE in both tracks at low communication
overhead. Furthermore, the Delaunay triangulation graph does
not require tuning any parameter (i.e., k or ε). We also studied
the normalized particle weights discrepancy ||wtrue−wapprox||2
and observed the same trends as for RMSE, so we omit
the figures. We thus use the Delaunay triangulation graph
with inverse distance weights for LApf and Clusterpf in
the remaining simulations. Note that, although the Delaunay
triangulation is well-defined for particles in any dimension,
it is only efficient to compute in 2-D and 3-D. For higher-
dimensional settings the KNN graph construction may be
preferable.

D. Number of approximation terms

The parameter m of LApf offers a trade-off between
communication overhead and approximation error of log-
likelihoods. We expect that using a larger m should give a
better approximation, but at the cost of higher communication
overhead. The parameter K of Clusterpf plays a similar role.
We run LApf and Clusterpf on both test tracks using various
combinations of m/K and NGossip. For LCpf, the number of
coefficients is (Rp+1)2 where Rp is the maximal polynomial
degree for the basis functions. We thus choose m/k values
so that LApf/Clusterpf have the same coefficients as LCpf at
Rp = 1, 2, ..., 5 (i.e., m/K = 4, 9, 16, 25, 36). Fig. 4 shows
the average RMSE with respect to total number of scalars
transmitted per sensor per time step.

Consider LApf. For both tracks, increasing NGossip im-
proves tracking performance for all values of m. For track
1, setting m = 6 yields low RMSE at low communication
overhead and yields the lowest RMSE at higher overhead by
a significant margin. For track 2, setting m = 9 seems to offer
a good balance between communication overhead and RMSE.

Consider next Clusterpf. We omit the curve for K = 4 since
the performance is considerably worse (RMSE>5) than the
other values. For track 1, the K = 9 curve gives a good trade-
off between communication overhead and RMSE. For track 2,
K = 9 gives low RMSE at low communication overhead and
lowest RMSE at higher overhead.

Finally, consider LCpf. At low communication overhead
(fewer than 50 scalars per sensor per iteration), Rp = 1 consis-
tently yields the best performance by a significant margin for
both tracks. We thus choose Rp = 1 for all LCpf simulations.

E. Comparison to other filters

Next we compare the tracking performance of the different
distributed particle filters. Since the number of coefficients
differs for each algorithm, we consider different values of
NGossip and compare the RMSE in terms of the total number
of scalars transmitted per sensor per time step.

CSSpf uses 6 basis functions by design [14]. For LCpf
and LCpf-GS, the number of basis functions is 4 (given max
polynomial degree Rp=1). As mentioned above, LApf retains
6 eigenvectors for track 1 and 9 eigenvectors for track 2, and
Clusterpf uses 9 clusters. Finally, since the state vector is four-
dimensional, GApf needs to transmit 14 scalars: 4 for the mean

11

100 200 300 400 500 600

Scalars transmitted per sensor

2

4

6

8

R
M

S
E

m = 4

m = 6

m = 9

m = 16

m = 25

m = 36

(a) LApf, track 1

100 200 300 400 500 600

Scalars transmitted per sensor

1

1.5

2

2.5

3

R
M

S
E

K = 6

K = 9

K = 16

K = 25

K = 36

(b) Clusterpf, track 1

100 200 300 400 500 600

Scalars transmitted per sensor

0

50

100

R
M

S
E

R
p
=1, Nb of coefficients: 4

R
p
=2, Nb of coefficients: 9

R
p
=3, Nb of coefficients: 16

R
p
=4, Nb of coefficients: 25

R
p
=5, Nb of coefficients: 36

(c) LCpf, track 1

50 100 150 200

Scalars transmitted per sensor

2

3

4

5

R
M

S
E

m = 4

m = 6

m = 9

m = 16

m = 25

m = 36

(d) LApf, track 2

50 100 150 200

Scalars transmitted per sensor

1.5

2

2.5

3

3.5

R
M

S
E

K = 6

K = 9

K = 16

K = 25

K = 36

(e) Clusterpf, track 2

50 100 150 200

Scalars transmitted per sensor

0

50

100

R
M

S
E

R
p
=1, Nb of coefficients: 4

R
p
=2, Nb of coefficients: 9

R
p
=3, Nb of coefficients: 16

R
p
=4, Nb of coefficients: 25

R
p
=5, Nb of coefficients: 36

(f) LCpf, track 2

Fig. 4. RMSE of LApf, Clusterpf and LCpf with respect to m (LApf), K (Clusterpf), Rp (LCpf) and NGossip. The x-axis represents the total number of
scalars transmitted per sensor per time step. All results are averaged over 200 random trials.

vector and 10 for the upper triangular part of the covariance
matrix.

Fig. 5 shows the simulation results for both tracks. Con-
sider track 1 first. LApf and Clusterpf outperform the other
distributed filters by a significant margin for overhead < 300.
More interestingly, these two filters have adequate tracking
performance even with just 1 gossip iteration per time step. In
contrast, all other filters break down at low overhead and have
very high RMSE (>10). The LCpf and GApf have the worst
performance by far and do not come close to the performance
of BSpf even with overhead exceeding 500. The CSSpf’s
RMSE drops sharply and is on-par with that of BSpf for
overhead exceeding 300. Finally, the LCpf-GS outperforms
LCpf by a large margin for overhead < 200. This confirms our
previous conjecture that reducing the values of ||Ψ||∞||α||∞
can improve the performance of LCpf.

Consider the results for track 2. The LCpf and GApf break
down at low communication overhead. For GApf, the RMSE
drops below 10 after overhead exceeds 200. For LCpf, the
RMSE reaches a plateau after overhead exceeds 100. The
LCpf-GS again consistently outperforms LCpf at low overhead
(< 100). The LApf and Clusterpf consistently outperform
the other fitlers by a large margin. For both proposed filters,
an overhead of 80 scalars per sensor is sufficient to match
the performance of BSpf. Furthermore, even with just one
gossiping iteration, the LApf and Clusterpf are able to yield
fairly robust tracking performance.

F. Error analysis

Section V presented an error bound for the proposed filters
and showed that said bounds depend on the basis functions
used to encode the particle log-likelihoods. To validate the
derived error bounds, we run a centralized bootstrap filter
on both tracks and at each time step re-compute the particle
weights using the distributed filters. We compute and report

50 100 150 200 250 300 350 400 450 500

Scalars transmitted per sensor

10
0

10
1

10
2

R
M

S
E

 CSS[5] (6)

 GApf[3] (14)

 LCpf[4] (4)

 LCpf-GS (4)

 LApf (6)

 Clusterpf (9)

 BSpf

(a) Track 1, RMSE

20 40 60 80 100 120 140 160 180 200

Scalars transmitted per sensor

10
0

10
1

10
2

R
M

S
E

 GApf[3] (14)

 LCpf[4] (4)

 LCpf-GS (4)

 LApf (9)

 Clusterpf (9)

 BSpf

(b) Track 2, RMSE

Fig. 5. RMSE of all filters, averaged over 200 Monte Carlo trials, for test
tracks 1 and 2. The numbers in brackets indicate the number of scalars
transmitted per sensor per gossip iteration. The x-axis represents the total
number of scalars transmitted per sensor per time step.

the following values for CSSpf, LCpf, LCpf-GS, LApf and
Clusterpf:

1) maxXi

|γm(Xi)−γ(Xi)|
|γ(Xi)| : estimate of δm

2) maxXi

|γm(Xi)−γ̂(Xi)|
|γm(Xi)| : estimate of δgossip

12

10 20 30 40 50

Time

0.4

0.6

0.8

1
m

LCpf

LCpf-GS

LApf

Clusterpf

(a) Encoding error δm

1 5 10 25 50 75 100 200

NGossip

10
-20

10
-10

10
0

10
10

g
o

s
s
ip

 LCpf

 LCpf-GS

 LApf

 Clusterpf

(b) Gossiping error δgossip, circles represent true
gossiping errors and solid lines represent the theo-
retical upper bound.

1 5 10 25 50 75 100 200

NGossip

10
-15

10
-10

10
-5

10
0

10
5

LCpf

LCpf-GS

LApf

(c) τ , the error ratio of coefficients α

5 10 15 20 25 30 35 40 45 50

Time

10
0

10
2

10
4

||
||

LCpf

LCpf-GS

LApf

(d) Average ||Ψ||∞ over time

5 10 15 20 25 30 35 40 45 50

Time

10
1

10
2

10
3

10
4

||
||

LCpf

LCpf-GS

LApf

(e) Average ||α||∞ over time

5 10 15 20 25 30 35 40 45 50
Time

10
2

10
4

10
6

10
8

||
||

 |
|

||

LCpf

LCpf-GS

LApf

(f) Average ||Ψ||∞||α||∞ over time

50 100 150 200 250

Scalars transmitted per sensor

10
0

10
1

 LCpf

 LCpf-GS

 LApf

 Clusterpf

(g) Log-likelihood error δ, circles represent true
errors and solid lines represent the theoretical upper
bound (1 + δm)δgossip + δm.

20 40 60 80 100 120 140

Scalars transmitted per sensor

10
-2

10
-1

10
0

W
e
ig

h
t

d
is

c
re

p
a
n
c
y

 LCpf

 LCpf-GS

 LApf

 Clusterpf

(h) Normalized particle weights discrepancy
||wtrue − wapprox||2

Fig. 6. Distributed particle filter error bounds with respect to NGossip and time for track 2. N = 1000, Rp = 1,m = 9,K = 9. The cyan dotted line
denotes the y = 1 threshold value. (Best viewed in color.)

3) maxαj

|α̂j−αj |
|αj | : estimate of τ

4) τ ||Ψ||∞||α||∞
minxj

|γ(xj)(1−δm)| : upper limit of δgossip for LApf,
LCpf, LCpf-GS and CSSpf

5) maxXi

|γ̂(xi)−γ(xi)|
|γ(xi)| : estimate of δ

6) (1 + δm)δgossip + δm: upper limit of δ
7) ||wtrue−wapprox||2: discrepancy of normalized particle

weights

We emphasize that the overall error bound (1+δm)δgossip +
δm applies to Clusterpf. However, since Clusterpf does not use
a linear transformation, the upper bound for δgossip does not
apply to Clusterpf and thus we do not plot the corresponding
curves for Clusterpf. We run the same experiments for both
tracks and observe similar trends and phenomenon in both
cases, so we only show the results for track 2 in Fig. 6.

Consider first the encoding error δm. The LApf has the
lowest encoding error followed by Clusterpf. The LCpf and
LCpf-GS have the highest encoding error. Note that the
encoding error values (and by extension the ranking of the
filters) can be reduced by simply increasing the number of
coefficients. Therefore we are more interested in ensuring that
the error remains bounded, which is indeed the case for all
four filters. Note that, in our set-up, the actual tracking is done

using a centralized BSpf. Therefore, γm(Xi) and by extension
δm remain constant over different values of NGossip.

Consider next the gossiping error. For LApf, Clusterpf and
LCpf-GS, the gossiping error drops below 1 for NGossip≥5;
although the error for all three filters is fairly close to 1 even at
NGossip=1. For LCpf, δgossip falls below 1 only when NGossip
≥ 25. We also plot the derived upper bounds. While these
bounds are quite loose, their overall trends are consistent with
the actual values.

Fig. 6(c) shows the average value of τ = maxj |α̂j −
αj |/|αj |. The τ values decrease with more gossip iterations
as expected. For all filters, the τ values are very close. This
is expected since τ is independent of the choice of the filters.

Figs. 6(d)-(f) show the average values of ||Ψ||∞, ||α||∞
and ||Ψ||∞||α||∞ over time for LCpf, LCpf-GS, and LApf.
Consider ||Ψ||∞ first. The LCpf has the largest curve by
several orders of magnitude. For LApf and LCpf-GS, the value
is very small as expected given the orthonormal transformation
matrix. For ||α||∞, the LCpf has the lowest curve and the
value fluctuates over time. In contrast, the LCpf-GS and LApf
curves have nearly constant values. Finally, when we consider
the product term ||Ψ||∞||α||∞, the LCpf has the highest curve.
Conversely, the LCpf-GS has the lowest curve followed closely

13

by LApf. These results, combined with Eq. (22), suggest that,
for a given NGossip (and by extension τ), LCpf would have
the highest gossiping error bound followed by LCpf-GS and
LApf. While a higher error bound does not necessarily equate
to higher gossiping error (as the bound can be quite loose),
the comparison of these bounds can still provide insights into
the potential performance of the filters. We note that these
analyses do not apply to Clusterpf since it does not have a
linear transformation from coefficients to log-likelihoods, but
empirically the Clusterpf does indeed have low gossiping error
on-par with that of LApf.

Fig. 6(g) shows the overall error δ with respect to scalars
transmitted per sensor per time step. For LApf and Clusterpf,
δ < 1 for all values of overhead. For LCpf-GS, δ drops below
1 for overhead > 20. For LCpf, the error drops below 1 for
overhead exceeding 100. For all filters, the upper bound (1 +
δm)δgossip + δm is fairly close to the true value.

Finally, Fig. 6(h) shows the average discrepancy in normal-
ized particle weights. The LCpf curves is significantly higher
than the other curves until overhead > 100. The Clusterpf
has the lowest weight discrepancy followed by LApf. We
also note that there is a clear correlation between the weight
discrepancy and the error δ (and consequently the overall
tracking performance).

IX. CONCLUSION

In this paper we present two distributed particle filters that
achieve robust tracking performance with low communication
overhead. Both filters construct a graph of the particles and
exploit the graph Laplacian matrix to encode the particle log-
likelihoods using a small number of coefficients. We validate
their performance via simulations and derive a theoretical error
bound that provides key insights into their robust performance.
Based on these insights, we also present a modified likeli-
hood consensus particle filter in which we construct a set of
orthonormal basis functions. The modified filter is shown to
outperform the original likelihood consensus filter by a large
margin. For future work, we may consider filter implemen-
tations in which parameters like m or K are automatically
adapted by the network without any fine-tuning from the users.

REFERENCES

[1] M. Rosencrantz, G. J. Gordon, and S. Thrun, “Decentralized sensor
fusion with distributed particle filters,” in Procs. Uncertainty Artificial
Intell. (UAI), no. 493-500, Acapulco, Mexico, Aug. 2003.

[2] M. Coates, “Distributed particle filters for sensor networks,” in Proc.
IEEE/ACM Info. Processing in Sensor Networks, Berkeley, CA, USA,
Apr. 2004, pp. 99–107.

[3] B. N. Oreshkin and M. Coates, “Asynchronous distributed particle filter
via decentralized evaluation of Gaussian products,” in 13th Conf. Inform.
Fusion, Edinburgh, UK, Jul. 2010, pp. 1–8.

[4] O. Hlinka, O. Sluciak, F. Hlawatsch, P. Djuric, and M. Rupp, “Likelihood
consensus and its application to distributed particle filtering,” IEEE
Trans. Signal Process., vol. 60, no. 8, pp. 4334–4349, 2012.

[5] A. Mohammadi and A. Asif, “Distributed consensus + innovation parti-
cle filtering for bearing/range tracking with communication constraints,”
IEEE Trans. Signal Process., vol. 63, pp. 620–635, Nov. 2014.

[6] M. Rabbat, M. Coates, and S. Blouin, “Graph laplacian distributed parti-
cle filtering,” in Signal Process. Conf. (EUPISCO), Budapest, Hungary,
Aug. 2016, pp. 1493 – 1497.

[7] J. Y. Yu, M. Coates, M. Rabbat, and S. Blouin, “A distributed particle
filter for bearings-only tracking on spherical surfaces,” IEEE Signal
Process. Lett., vol. 23, pp. 326–330, Jan. 2016.

[8] Z. Yan, B. Zheng, and J. Cui, “Distributed particle filter for target
tracking in wireless sensor network,” in Proc. EUSIPCO, Sep. 2006.

[9] O. Hlinka, F. Hlawatsch, P. Djuric, and P. M. Djuric, “Distributed particle
filtering in agent networks: A survey, classification, and comparison,”
IEEE Signal Process. Mag., vol. 30, pp. 61–81, Dec. 2012.

[10] S. Farahmand, S. I. Roumeliotis, and G. B. Giannakis, “Set-membership
constrained particle filter: Distributed adaptation for sensor networks,”
IEEE Trans. Signal Processing, vol. 59, pp. 4122–4138, Jun. 2011.

[11] D. Ustebay, M. Coates, and M. Rabbat, “Distributed auxiliary particle
filters using selective gossip,” in Procs. IEEE Int. Conf. Acoustics,
Speech, Signal Process. (ICASSP), Prague, Czech Republic, May 2011,
pp. 3296–3299.

[12] D. Gu, J. Sun, Z. Hu, and H. Li, “Consensus based distributed particle
filter in sensor networks,” in Int. Conf. Inform. Automation, Changsha,
China, Aug. 2008, pp. 302–307.

[13] X. Sheng, Y. H. Hu, and P. Ramanathan, “Distributed particle filter
with GMM approximation for multiple targets localization and tracking
in wireless sensor network,” in 4th Int. Symp. Inform. Process. Sensor
Networks, Boise, ID, USA, Apr. 2005, pp. 181–188.

[14] A. Mohammadi and A. Asif, “A constraint sufficient statistics based
distributed particle filter for bearing only tracking,” in IEEE Int. Conf.
Communications (ICC), Ottawa, ON, Canada, Jun 2012, pp. 3670–3675.

[15] C. W. Chao, M. Rabbat, and S. Blouin, “Particle weight approximation
with clustering for gossip-based distributed particle filters,” in IEEE
Int. Workshop Comp Comput. Advances Multi-Sensor Adaptive Process.
(CAMSAP), Cancun, Mexico, Dec 2015, pp. 85–88.

[16] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter.
Artech House, 2003.

[17] N. G. M. S. Arulampalam, S. Maskell and T. Clapp, “A tutorial on
particle filters for online nonlinear/non-Gausssian Bayesian tracking,”
IEEE Trans. Signal Process., pp. 174–188, Aug. 2002.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans Inf. Theory, pp. 2508–2530, Jun. 2006.

[19] D. Ustebay, R. Castro, and M. Rabbat, “Efficient decentralized approxi-
mation via selective gossip,” IEEE J. Sel. Topics Signal Process, vol. 5,
pp. 805–816, May 2011.

[20] A. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proceedings of
the IEEE, vol. 98, no. 11, 2010.

[21] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus
with time-varying metropolis weights,” 2005, available online at
http://web.stanford.edu/ boyd/papers/pdf/avg metropolis.pdf.

[22] F. Iutzeler, P. Ciblat, and J. Jakubowicz, “Analysis of max-consensus
algorithms in wireless channels,” IEEE Trans. Signal Processing, vol. 60,
no. 11, 2012.

[23] S. Datta Gupta, M. Coates, and M. Rabbat, “Error propagation in gossip-
based distributed particle filters,” IEEE Trans. Signal Inf. Process. Netw.,
vol. 1, no. 3, pp. 148–163, Aug. 2015.

[24] B. Mohar, “The Laplacian spectrum of graphs,” in Graph Theory, Com-
binatorics, and Applications, Y. Alavi, G. Chartrand, O. R. Oellermann,
and A. J. Schwenk, Eds. Wiley, 1991, vol. 2, pp. 871–898.

[25] X. F. Zhu and M. Rabbat, “Approximating signals supported on graphs,”
in IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Kyoto,
Japan, Mar 2012, pp. 3921–3924.

[26] J. Demmel, I. Dumitriu, and O. Holtz, “Fast linear algebra is stable,”
Numerische Mathematik, vol. 108, no. 1, pp. 59–91, Nov. 2007.

[27] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. Johns
Hopkins University Press, 1996.

[28] A. V. Knyazev, “Toward the optimal preconditioned eigensolver: Locally
optimal block pre-conditioned conjugate gradient method,” SIAM J.
Scientific Computing, no. 2, pp. 517–541.

[29] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, Aug. 2007.

[30] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[31] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer,
2006.

[32] P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting
Particle Systems with Applications. Springer, 2004.

[33] A. Olshevsky and J. Tsitsiklis, “Convergence speed in distributed
vonsensus and averaging,” SIAM J. Control Optimization, vol. 48, pp.
33–55, Feb. 2009.

[34] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Applications to Tracking
and Navigation. Hoboken, NJ, USA: Wiley, 2004.

[35] D. T. Lee and A. K. Lin, “Generalized Delaunay triangulation for planar
graphs,” Discrete & Computational Geometry, vol. 1, pp. 201–217, Sep
1986.

