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ABSTRACT

Microwave breast cancer detection involves analysing the
scattered waveforms of microwave signals that are propa-
gated into the breast. We have developed a microwave-radar
time-domain system and performed clinical trials using a
prototype. This paper presents a classification architecture
based on cost-sensitive support vector machines that is de-
signed to process the signals measured by the 16-element
multi-static antenna array. We examine the performance of
the classifier by applying it to measurements performed on
tissue-mimicking breast phantoms.

Index Terms— Microwave breast cancer detection, en-
semble classifier, support vector machine, Neyman-Pearson
classification

1. INTRODUCTION

Early detection of breast cancer significantly improves the
chance of successful treatment of the disease. Currently, the
most prevalent and effective breast cancer screening method
is x-ray mammography [1]. It has several drawbacks, includ-
ing the use of ionizing radiation, uncomfortable breast com-
pression, and high miss probability. Ultrasound and magnetic
resonance imaging can provide complementary information
but also have disadvantages [2]. Microwave breast cancer
detection has the potential to act as a valuable complemen-
tary modality; it is based on the reported inherent contrast be-
tween the dielectric properties of malignant and healthy breast
tissues [3]. Scattering arises at regions of significant con-
trast in dielectric properties. Tomographic imaging methods
aim to reconstruct a dielectric profile of the breast tissue [4];
radar methods try to map regions of dielectric scattering, from
which tissue types can be inferred.

Numerous signal processing approaches have been pro-
posed for analysing the signals obtained by microwave sys-
tems [2], but most have not been assessed experimentally,
so many ignore critical practical challenges. Imaging tech-
niques are the most common; these focus on creating an im-
age that can be later assessed by a clinical expert. Imaging has
been performed using delay-and-sum and beamforming meth-
ods [5–10] and hypothesis test-based methods [11]. Most of

these techniques require accurate models of the wave propa-
gation delays (and in some cases even the scattered signals),
implying knowledge of tissue characteristics and skin thick-
ness, which is unavailable in practice.

Recently, some research has explored the application of
supervised learning algorithms to signals recorded by mi-
crowave breast cancer systems. In [12], Byrne et al. applied
a support vector machine (SVM), using features extracted by
principal component analysis (PCA). Santorelli et al. extend
this idea in [13] by utilizing a data fusion strategy to boost the
classifier performance. In both cases, classifiers are applied
to individual signals and there is no attempt to merge the
decisions to provide a detection output for the entire breast.
There is no systematic procedure for appropriately choosing
thresholds to control the false alarm or false discovery rate.

The main aim in microwave breast cancer detection is to
provide an easy-to-use, inexpensive, and safe early warning
system. A positive response from the system indicates that
the patient should undergo more comprehensive conventional
tests using other modalities. It is important to achieve the
best detection performance while controlling the rate at which
tumour-free breasts are mistakenly classified as requiring fur-
ther tests. In this paper, we develop classification architec-
tures that jointly process all of the signals measured in a breast
scan and provide a single decision as to whether further tests
are necessary. We use a cost sensitive SVM technique, the
2ν-SVM [14], to conduct microwave breast cancer detection
in the Neyman-Pearson (NP) context.

The paper is organized as follows. Section 2 formalizes
the problem and Section 3 presents novel cost-sensitive en-
semble classifiers. Their performance is evaluated in Sec-
tion 4. Section 5 provides a summary of the paper.

2. PROBLEM STATEMENT

Microwave breast cancer detection relies on the pulse re-
sponse between R antennas in a multi-static radar system.
There are M = R(R − 1) directed antenna pairs. At one time
instant, one antenna transmits an ultra-short pulse into the
breast, and another antenna records the backscattered signal.
The received signal contains the possible backscatter from the
tumour, as well as the unwanted incident pulse and reflections



from the skin. A scan is complete when signals have been
recorded for all antenna pairs.

Assume that we have access to a set of K labelled train-
ing scans Z1∶K from different breasts, as well as a set of T
test scans ZK+1∶K+T . A scan Zk = [z1k, z2k, . . . , zMk ]T con-
tains the received pulses from all antenna pairs, where zmk de-
notes the pulse from antenna pair m in the k-th scan. A label
y(Zk) = −1 indicates that there is no tumour in scan k, and
y(Zk) = +1 indicates the existence of the tumour. The prob-
lem is then to classify the test data based on the information
obtained from the training data. Our goal is to minimize the
miss probability PM of the system, subject to the constraint
that the false positive rate PF is less than a specified value α.

In our application, we denote the classification results to
the test data set ZK+1∶K+T by ŷ(ZK+1∶K+T ), and the classi-
fier is trained on the training data set Z1∶K . We define t+ =
{t ∶ y(ZK+t) = +1} and t− = {t ∶ y(ZK+t) = −1}, and denote
the cardinality of each set by T+ and T−, respectively. The
empirical false positive rate P̂F is then defined as

P̂F = ∑t∈t−
(ŷ(Zt) = +1)
T−

. (1)

Similarly, the empirical miss probability P̂M is

P̂M = ∑t∈t+
(ŷ(Zt) = −1)
T+

. (2)

Due to the high variation inherent in the empirical false
positive rate P̂F , we can accept P̂F to be larger than α in
practice. A scalar performance measure ê is proposed in [15],

ê = 1

α
max{P̂F − α,0} + P̂M , (3)

which serves as the parameter selection criterion in the train-
ing stage and the evaluation measure for different classifiers.

3. COST-SENSITIVE ENSEMBLE CLASSIFIER

Our cost-sensitive ensemble classifier consists of three main
components: feature extraction, classification, and fusion.

3.1. Feature extraction

The breast scan data Z1∶K lie on a space with dimension
RN×M (N = 2048 and M = 240 in our system). Classifica-
tion performed directly in such a high dimensional space will
be difficult. We can reduce the dimension by first extract-
ing pertinent features from the received signals. A natural
approach is to apply dimension reduction to the individual
signals recorded by each antenna pair. During training, PCA
is performed on zm1∶K to obtain the principal component co-
efficients and scores for antenna pair m. We keep the first d
scores xm1∶K , and use the obtained coefficients to compute the
scores for the test data, xmK+1∶K+T . These feature vectors are
then used as the input to the classifier.

3.2. 2ν-SVM classifier

Support vector machines [16] are among the most effective
methods for binary classification. Given a set of K labeled
training samples (xk, yk)Kk=1, where xk is a feature vector of
dimension d, and the label yk indicates the class of xk, an
SVM first transforms the d-dimensional input vector xk into
a higher dimensional space through a mapping function h(x),
in the hope that the transformed data will be easier to classify.
The kernel function computes the similarity of the data in the
higher dimensional space without computing the coordinates
of the data in that space. One popular choice is the radial basis
function kernel, parameterized by γ:

K(x,x′) = ⟨h(x), h(x′)⟩ = exp(−γ∥x − x′∥2) (4)

The SVM then identifies a hyperplane that has the largest
distance to the nearest training data points of any class in
the higher dimensional space. These nearest data points are
called support vectors. The distance between the decision
boundary and the support vectors is called the margin. The
score function of the SVM is defined as

f(x) = wTh(x) + b (5)

where w is the normal vector to the max-margin hyperplane,
and the bias term b defines the decision boundary.

In the ν-SVM [17], the maximum margin solution can
be translated into a quadratic programming problem, which
penalizes the margin errors by introducing slack variables εk:

min
w,b,ε,ρ

1

2
∣∣w∣∣2 − νρ + 1

K

K

∑
k=1

εk (6)

subject to εk ≥ 0, ρ ≥ 0, ykf(xk) ≥ ρ − εk,∀k

ν ∈ [0,1] serves as an upper bound on the fraction of margin
errors and a lower bound on the fraction of support vectors;
and ρ influences the width of the margin.

To allow the assignment of the different costs to different
types of errors, the 2ν-SVM [14] was proposed as an exten-
sion. The 2ν-SVM takes the form [18]:

min
w,b,ε,ρ

1

2
∣∣w∣∣2 − νρ + w+

K
∑
k∈k+

εk +
1 −w+
K

∑
k∈k−

εk (7)

subject to εk ≥ 0, ρ ≥ 0, ykf(xk) ≥ ρ − εk,∀k.

ν and w+ can be formulated using ν+ and ν−:

ν = 2ν+ν−K+K−

(ν+K+ + ν−K−)K
(8)

w+ =
ν−K−

ν+K+ + ν−K−

= νK

2ν+K+

(9)

where ν+ ∈ [0,1] and ν− ∈ [0,1] bound the fractions of mar-
gin errors and support vectors from each class. We can as-
sign different costs to different types of errors by adjusting
(ν+, ν−).



We apply a cross-validation procedure to choose ν+ and
ν− so that ê for a given α is minimized. K̄-fold cross vali-
dation partitions the training set into K̄ folds. The model is
trained on all but the k̄-th fold, and is tested on the k̄-th fold.
We iterate through the process until all folds are used as the
testing data just once. The empirical NP measures obtained
from each fold are then averaged to generate ê.

3.3. Classification architecture

3.3.1. Feature fusion classification approaches

We can concatenate the scores xm1∶K and xmK+1∶K+T from dif-
ferent antenna pairs together to obtain feature vectors X1∶K

and XK+1∶K+T . The feature vector Xk is of length Md,
which are used by 2ν-SVM classifiers to perform tumour
detection. This approach is shown in Figure 1.
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Fig. 1. The feature fusion classifier approach.

3.3.2. Classifier fusion approach

The concatenated feature vector in the feature fusion ap-
proach lies on a high dimensional space RMd. This may
lead to poor classification results when there are only limited
training data. To address this, we can use the feature vectors
from each antenna pair to directly train 2ν-SVM classifiers.
The dimension of the feature space is then only d. We av-
erage the classifier outputs and apply a threshold to obtain a
final decision. The architecture is shown in Figure 2. The
threshold η also provides us with a straightforward control
over the false positive rate and the miss probability of the
ensemble classifier. The value is selected during the cross
validation process described in Section 3.2.
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Fig. 2. The classifier fusion approach.

4. EXPERIMENT RESULTS

4.1. System overview and data collection

We built a 16-element antenna array time-domain system
(Figure 3(a)) and used it to collect data from breast phantoms
that are fabricated to mimic the dielectric properties of breast
tissues [19]. A short-duration pulse, with spectral content
in the 2-4 GHz range, is fed into a 16 × 2 switching matrix
which chooses the specific antenna pairs for transmitting and
receiving the signal. This process is repeated for each antenna
pair, which results in 240 pulses recorded by an oscilloscope
with an equivalent-time sampling rate of 200 GSa/s.

(a) Experiment system (b) Phantoms and plugs

Fig. 3. The 9 constructed phantoms and the plugs used to
create phantoms with or without tumours.

We constructed 9 breast phantoms with varying dielectric
properties. Three are heterogeneous and contain glandular
structures that make up approximately 25%, 35%, and 50%
of the total volume (Figure 3(b)). We rotate these three phan-



toms by 120○ to mimic 6 new phantoms; we thus have 15
phantoms in total. We can insert a fat plug or a tumour plug
to mimic the tumour-free and tumour cases for all phantoms
expect Phantom 1, which does not have a plug position so we
only have baseline (tumour-free) recordings. We collected 10
sets of baseline scans for each of the 15 phantoms, and 10 sets
of tumour scans for each phantom except Phantom 1. Differ-
ent scans were performed on different days, to mimic the real
clinical trial scenario. In all, we have 150 sets of baseline
scans and 140 sets of tumour scans. A bandpass filter is ap-
plied to eliminate low- and high-frequency noise.

4.2. Performance evaluation

We use 13 breast phantoms to construct the training data,
and use the remaining 2 for the test data set. Thus there
are (15

13
) = 105 training and testing data combinations. We

use 13-fold cross validation to identify parameters for each
training-testing data combination. We set the number of prin-
cipal components retained d = 30, which gives relatively low
NP measures during cross-validation. α is set to 0.05 as the
desired upper bound of the false positive rate. We perform pa-
rameter selection in two stages: in the first stage, a coarse grid
is used; after a “good” region where parameter values lead to
relatively low generalization errors is identified, we conduct
cross validation on a finer grid (Table 1).

coarse grid finer grid for α = 0.05
γ 2−15,2−11, . . . ,25 2−5,2−4, . . . ,25

ν+ 0.001,0.01,0.1,0.3,0.6,1 0.001,0.003,0.01,0.03,0.1
ν− 0.001,0.01,0.1,0.3,0.6,1 0.001,0.003,0.01,0.03,0.1
r −0.4,−0.2, . . . ,0.4 −0.3,−0.2, , . . . ,0.3

Table 1. Candidate parameter values.

P̂F P̂M average error ê
Feature
fusion

0.019
[0,0.05]

0.017
[0,0.1]

0.019
[0,0.05]

0.093
[0,0.1]

Classifier
fusion

0.033
[0,0.1]

0.005
[0,0]

0.021
[0,0.05]

0.233
[0,1]

DMAS 0.053
[0,0.13]

0.946
[0.85,1]

0.546
[0.53,0.56]

1.52
[1,2.4]

Table 2. Average generalization errors and their 10% and
90% quantiles (shown in the square brackets).

Table 2 reports the mean and the 10% and 90% quantiles
of the different types of errors across different train-test pairs.
We compare performance with two other algorithms. The first
is the SVM classifier in [12], which essentially reports the
intermediate classifier outputs of Figure 2 as the final result.
The average generalization error is 0.129. We also compare
to classification based on the maximum voxel intensity of the
delay-multiply-and-sum (DMAS) imaging algorithm [6]. We

create differential images using the first baseline scan of each
phantom as a calibration scan. Figure 4 shows a histogram of
the maximum voxel intensities of the generated images.
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Fig. 4. Maximum image intensity from each scan.

Figure 5 shows the receiving operating characteristic
(ROC) curves for the two architectures we have proposed
and the DMAS thresholding approach. We observe from
this figure and Table 2 that both fusion approaches greatly
improve the classification performance. They also control the
false positive rate to be less than the desired level α = 0.05
for most of the time, leading to a much smaller empirical
generalization NP performance measure ê compared to the
DMAS-based detection algorithm. By varying α, we can
control the trade-off between the false positive rate and miss
probability. On the basis of these results, we cannot conclude
that feature fusion or classifier fusion is preferable, and more
extensive testing is required.

5. CONCLUSIONS

This paper introduces two different classification architec-
tures for microwave breast cancer detection. The architec-
tures fuse information from all signals recorded by a multi-
static antenna array and employ 2ν-SVM classifiers to control
the trade-off between the false positive rate and the detection
power. Experimental results with measurements collected
using a 16-element antenna array prototype applied to tissue-
mimicking breast phantoms demonstrate the effectiveness of
the proposed architectures.
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