
PARTICLE FLOW FOR PARTICLE FILTERING

Yunpeng Li?, Lingling Zhao† and Mark Coates?

? Dept. of Electrical and Computer Engineering, McGill University, Montréal, Québec, Canada
† School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China

E-mail: yunpeng.li@mail.mcgill.ca; zhaoll@hit.edu.cn; mark.coates@mcgill.ca

ABSTRACT

Particle flow algorithms have been developed as an alterna-
tive to particle filtering. In these algorithms, there is no im-
portance sampling, and particles are migrated from the prior
to the posterior via a “flow”, described by differential equa-
tions. Aside from a few special cases, implementations in-
volve multiple approximations, and their impact on the accu-
racy of the estimates is not clearly understood. In this paper,
we propose algorithms that use particle flow procedures to
construct an importance sampling distribution within a stan-
dard particle filter. The resultant algorithms retain the sta-
tistical consistency of sequential Monte Carlo methods, but
acquires the desirable properties of particle flow techniques.
We report the results of a multiple target tracking simulation
study that combines highly informative measurements with a
reasonably high-dimensional state space, leading to a chal-
lenging scenario for particle filters. Of the filters we test, the
particle flow particle filter provides the smallest tracking error
and achieves the largest average effective sample size.

Index Terms— Sequential Monte Carlo, Particle Flow,
High Dimensional Filtering, Optimal Proposal Distribution

1. INTRODUCTION

Sequential Monte Carlo methods track the posterior distribu-
tion in time by updating a set of weighted particles when new
data become available. When the state dimension is high or
observations are highly informative, it is often the case that
almost all particles have extremely small weights after a few
timesteps. This particle degeneracy phenomenon, associated
with the curse of dimensionality [1], leads to poor representa-
tion of the posterior and inaccurate state estimates.

Particle flow algorithms [2, 3] migrate particles from the
prior distribution to the posterior distribution, via a “flow”
that is specified through a partial differential equation. There
is no sampling (or resampling); there is some evidence that
the approach of migrating particles can lead to improved filter
performance for high-dimensional state spaces, avoiding the
severe particle degeneracy.

Daum et al. have derived numerous particle flow al-
gorithms, with differences arising through the assumptions

about the dynamic model and the method employed to solve
the differential equations [3–5]. An “exact” particle flow
solution exists for the case when the prior and posterior dis-
tributions are both Gaussian [6] and the observation model
is linear. We refer to this algorithm as the exact Daum and
Huang filter (EDH), and a detailed description of its imple-
mentation is provided in [7]. A computationally intensive
variation of EDH that computes the flow for each particle is
proposed in [8] and is referred to as the localized exact DH
filter (LEDH). In practice, we would like to apply the EDH
to non-Gaussian settings with non-linear observation models.
This necessitates the introduction of local linearizations and
approximations of covariance matrices.

For more general non-Gaussian problems, the non-zero
diffusion particle flow filter (NZDDH) models the particle
flow with a stochastic differential equation and uses the dif-
fusion term to simplify the Fokker-Planck equation that de-
scribes the density evolution [3]. Implementation of this filter
also requires approximations to calculate the flow. For all
particle flow filters, although the particle flow is expressed
as a continuous partial differential equation, implementation
requires that we compute it using discrete steps, and this in-
troduces further approximation error.

An alternative method is to use particle flow ideas to gen-
erate a proposal distribution within a particle filter. We then
retain desirable statistical consistency properties of the par-
ticle filter, but can exploit the ability of particle flow proce-
dures to find regions where the posterior is dense. In [9],
Bunch and Godsill develop an approximate Gaussian parti-
cle flow importance sampling procedure which we refer to
as GPFIS. The algorithm performs impressively, but it per-
forms numerous importance weight updates every time step,
and each of these involves a computationally expensive solu-
tion to a Sylvester equation. The optimal transport methods
described in [10] also involve particle migration to derive a
proposal distribution, but they involve the design of a com-
plex transport map and this can be challenging for many fil-
tering scenarios. In [11], we proposed the use of particle flow
in an auxiliary particle filter framework (PF-APF) to sample
auxiliary variables and construct an importance sampling dis-
tribution. However, the design of an appropriate proposal dis-
tribution can be difficult in high dimensions.



In this paper, we propose a simple way to incorporate
particle flow techniques within the standard particle filtering
framework. We demonstrate with an example simulation that
the approach can improve accuracy and increase the effective
sample size. The paper is organized as follows: Section 2 pro-
vides the problem statement; section 3 describes the particle
flow particle filter; section 4 describes the simulation setup
and presents results; and section 5 provides a summary.

2. PROBLEM STATEMENT

Consider the task of nonlinear filtering with the following
models:

xk = g(xk−1, vk) (1)
zk = h(xk, wk) . (2)

Here the unobserved state xk evolves according to the dy-
namic model described by g(), zk is the observation which is
linked to xk through a nonlinear measurement model h(). vk
is the process noise and wk is the measurement noise term.
The nonlinear filtering task is to track the marginal posterior
distribution p(xk|z1:k), where z1:k = {z1, . . . , zk} is a se-
quence of observations collected up to time step k.

3. PARTICLE FLOW IMPORTANCE SAMPLING

Suppose that at the (k − 1)-th time step, we have a set of Np
particles {xik−1}

Np

i=1 and weights {wik−1}
Np

i=1 representing the
posterior distribution at time k − 1. After propagating parti-
cles using the dynamic model, we obtain weighted samples
{µ̃i, wik−1}

Np

i=1 that represent the prior distribution at time k.
The proposed particle flow particle filter consists of two

steps. First, the particle flow equations are employed to mi-
grate particles from the prior to the posterior. After applying
the mapping, we have generated a set of weighted particles
{µi, wik−1}

Np

i=1. The proposed particle flow particle filter al-
gorithm considers the generated particles as being drawn from
a proposal distribution. Due to the nature of the particle flow
procedure, we anticipate that the proposal distribution is rea-
sonably well matched to the posterior. Our key challenge is
evaluating the proposal density q(xk|xk−1, zk) at µi. We ad-
dress this by designing particle flow procedures which pos-
sess the one-to-one mapping property.

3.1. Exact Particle Flow

We model the particle flow process as a background stochas-
tic process µ(λ) for λ ∈ [0, 1], such that the distribution
of µ(0) is the prior distribution of xk and the distribution
of µ(1) is the posterior distribution of xk. For simplicity
we drop the parameter λ for µ when the pseudo-time step
λ is clearly defined in the context. Discretized pseudo-time

integration is needed in the implementation. We set a se-
quence of discrete steps with possibly varying step sizes
[∆λ(1),∆λ(2), . . . ,∆λ(Nλ)].

When both the prior and posterior distribution are Gaus-
sian and the observation model is linear, an exact expression
for the particle flow can be derived for EDH [6]. The flow is
described by the equation:

dµ

dλ
= ζ(µ, λ) = A(λ)µ+ b(λ) (3)

where

A(λ) = −1

2
PHT (λHPHT +R)−1H, (4)

b(λ) = (I + 2λA)[(I + λA)PHTR−1zk +Aµ̄0]. (5)

Here µ̄0 is the mean of the prior distribution. P is the covari-
ance matrix of the prediction error for the prior distribution,
which can be estimated by the sample covariance matrix, or
through an extended or unscented Kalman filter (EKF/UKF).
For nonlinear models, H is the linearization of the measure-

ment model , i.e. H =
∂h(µ, 0)

∂µ
. R is the covariance matrix

of the measurement error. Pseudocodes of two typical algo-
rithms in this class, the EDH [7] and the LEDH, are both pre-
sented in [8]. In LEDH, the slope Ai(λ) and the offset bi(λ)
of the drift term ζ(µi, λ) = Ai(λ)µi + bi(λ) are calculated
for each particle µi.

3.2. Proposal Density Evaluation

As discussed above, the critical step is the evaluation of the
proposal density for a given particle. After the discretized
particle flow process, we can view the migrated particle µi

as being drawn from a proposal distribution q(µi|xik−1, zk).
If the function constructed by the discretized particle flow,
µi = T (µ̃i) is one-to-one (injective), then we can evaluate
the proposal density as follows:

q(µi|xik−1, zk) = p(µ̃i|xik−1, zk)

= p(µ̃i|xik−1) (6)

The first equation holds because of the one-to-one mapping
between µ̃i and µi. The second equation holds because µ̃i is
generated solely from the dynamic model.

The proposal density evaluation is a one-step calculation
of the probability density based on the dynamic model, which
adds negligible computational cost to the particle flow algo-
rithm. We can then evaluate the importance weights of each
particle as

wik =
p(µi|xik−1)p(zk|µi)

p(µ̃i|xik−1)
wik−1 (7)

The pseudocode of the particle flow particle filter algorithm
(PF-PF) based on EDH is presented in Algorithm 1. And the
algorithm based on LEDH is shown in Algorithm 2.



Algorithm 1: Particle flow particle filtering (EDH).

1: Initialization: Draw {xi0}
Np

i=1 from the prior p0(x);
2: Set {wi0}

Np

i=1 = 1
Np

;
3: for k = 1 to T do
4: Estimate µ̄ and P using the sample mean and the

sample covariance matrix, EKF, or UKF;
5: for i = 1, . . . , Np do
6: Propagate particles µ̃i = g(xik−1, vk);
7: Set µi = µ̃i;
8: end for
9: Set λ = 0;

10: for j = 1, . . . , Nλ do
11: Set λ = λ+ ∆λ(j);
12: Calculate A(λ) and b(λ) using µ̄;
13: Migrate µ̄: µ̄ = µ̄+ ∆λ(j)(A(λ)µ̄+ b(λ));
14: for i = 1, . . . , Np do
15: Migrate particles:

µi = µi + ∆λ(j)(A(λ)µi + b(λ));
16: end for
17: end for
18: for i = 1, . . . , Np do
19: Set xik = µi;

20: wik =
p(xik|xik−1)p(zk|xik)

p(µ̃i|xik−1)
wik−1;

21: end for
22: for i = 1, . . . , Np do
23: Normalize wik = wik/

∑Np

s=1 w
s
k;

24: end for
25: Estimate x̂k from {xik, wik};
26: (Optional) Resample {xik, wik}

Np

i=1 and regularize to
obtain {xik, 1

N }
Np

i=1;
27: end for

Here we discuss the conditions the function T (·) is one-
to-one for the PFPF based on EDH; PFPF based on LEDH can
be addressed similarly. Consider two values µ1 6= µ2, and the
action of one update with step size ∆λ in the discretized ex-
act Gaussian particle flow (line 15 in Algorithm 1). We have
µ′1 = µ1+∆λ(A(λ)µ1+b(λ)) and µ′2 = µ2+∆λ(A(λ)µ2+
b(λ)). For the EDH, A(λ) and b(λ) are the same for all µi,
since linearization is performed at µ̄. If µ′1 6= µ′2 for all λ,
then T (·) must be one-to-one. If µ′1 = µ′2, then (µ2 − µ1) =
−∆λA(λ)(µ2−µ1). This equality holds only if (µ2−µ1) is
an eigenvector of A(λ) and its corresponding eigenvalue ρA
satisfies ∆λ = −1

ρA
. We can ensure that this is not the case

in several ways. |A(λ)| can be proved to be bounded thus
|ρA| is bounded. If we choose ∆λ sufficiently small, then
∆λ < 1/max |ρA(λ)| for any λ, and µ′1 6= µ′2. Alterna-
tively, at the cost of increased computational expense, we can
explicitly evaluate eigenvalues of A(λ) at each pseudo-time
step and choose the value of ∆λ accordingly.

Algorithm 2: Particle flow particle filtering (LEDH).
(Replaces line 5–17 of Algorithm 1).

6: for i = 1, . . . , Np do
7: Calculate µ̄i = g(xik−1, 0);
8: Propagate particles µ̃i = g(xik−1, vk);
9: Set µi = µ̃i;

10: end for
11: Set λ = 0;
12: for j = 1, . . . , Nλ do
13: Set λ = λ+ ∆λ(j);
14: for i = 1, . . . , Np do
15: Calculate Ai(λ) and bi(λ) using µ̄i;
16: Migrate µ̄i: µ̄i = µ̄i + ∆λ(j)(Ai(λ)µ̄+ bi(λ));
17: Migrate particles:

µi = µi + ∆λ(j)(Ai(λ)µi + bi(λ));
18: end for
19: end for

4. SIMULATION AND RESULTS

4.1. Simulation setup

We adapt the multi-target simulation setup proposed in [12].
M targets move according to the dynamic model x(m)

k =

Fx
(m)
k−1+v

(m)
k , where x(m)

k = (x
(m)
k , y

(m)
k , ẋ

(m)
k , ẏ

(m)
k )T con-

tains the position and velocity of target m. F ∈ R4×4 is the
transition matrix and v(m)

k ∼ N(0, σ2
vV ) is the noise vector.

25 acoustic amplitude sensors are deployed in a region of size
40 m×40 m. Each target emits a sound of amplitudeA, which
is received by sensor s at position ζs with an amplitude

z̄s(xk) =

M∑
m=1

A

||(x(m)
k , y

(m)
k )T − ζs||κ + d0

.

The noisy measurement zsk of sensor s is modeled as

zsk = z̄s(xk) + wsk

where xk = (x
(1)
k ;x

(2)
k ;x

(3)
k ;x

(4)
k ) is the overall state vector

of dimension 16, wsk ∼ N(0, σ2
w).

In the simulation, M = 4, A = 10, σ2
v = 0.05, κ = 1,

d0 = 0.1, F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

, V =


1/3 0 0.5 0
0 1/3 0 0.5

0.5 0 1 0
0 0.5 0 1

.

We set σ2
w = 0.01, indicating that measurements are highly

informative. The initial states of targets are [12, 6, 0.001, 0.001]T ,
[32, 32,−0.001,−0.005]T , [20, 13,−0.1, 0.01]T and
[15, 35, 0.002, 0.002]T . The simulation is implemented in
Matlab and is conducted for 100 trials.



4.2. Parameter values for the filtering algorithms

We adopt the exponentially spaced step sizes recommended
in [3]. 29 λ values are chosen with the constant ratio of
step sizes being 1.2 and the initial step size is approximately
0.001. The exact value is chosen to guarantee that the sum of
step sizes is equal to 1. The covariance matrix of the prior dis-
tribution is estimated with an EKF running in parallel. The re-
draw strategy in [8] is used for the EDH, LEDH, and NZDDH
filters at the beginning of each time step. The diffusion term
for the GPFIS algorithm is set to 0 as suggested in [9].

For all algorithms, we sample the initial mean from a
Gaussian centered at the true initial states with variance 10
for positions and 1 for velocities. The covariance of the dy-

namic noise is modeled as


3 0 0.1 0
0 3 0 0.1

0.1 0 0.03 0
0 0.1 0 0.03

, larger

than that used to generate tracks. Resampling is performed
when the effective sample size (ESS) is less than Np

2 . A small
regularization noise is added after resampling. Np = 500
particles are used in all tested algorithms except the bootstrap
particle filter (BPF),

4.3. Experimental results

Figure 1 shows the average position errors at each time step
for the various tracking algorithms we compare. PF-PF
(LEDH) exhibits the smallest average tracking error. BPF
with 1 million particles has slightly larger average error.
However, the computational cost of BPF with 1 million parti-
cles is twice the cost of PF-PF (LEDH) (Table 1). LEDH has
the third best performance but EDH has relatively large aver-
age error, indicating that the proposal distribution constructed
from EDH may not be close to the posterior distribution, thus
PFPF (EDH) performs poorly. NZDDH results in constantly
lost tracks due to large movements of individual particles. So
average errors are not shown here. GPFIS has similar tracking
error with BPF with 100000 particles and is the most com-
putationally expensive algorithm. EKF has the worst average
tracking performance among those displayed in Figure 1.

Table 1. Average error and execution time per step. Results
are produced with an Intel Xeon E5-4650 2.70GHz CPU.

Algorithm PF-PF
(LEDH)

PF-PF
(EDH)

LEDH EDH GPFIS EKF BPF
(105)

BPF
(106)

Avg. error (m) 6.54 10.2 7.03 10.8 8.86 15.7 8.83 7.43

Avg. exec. time (s) 3.48 0.03 3.44 0.02 239 0.003 0.73 7.20

Figure 2 compares the average ESS among all tested algo-
rithms with importance sampling. BPF with 100000 particles
has an average ESS around 2, showing a strong discrepancy

0 10 20 30 40
5

10

15

20

time step

a
v
e
ra

g
e
 p

o
s
it
io

n
 e

rr
o
r(

m
)

 

 PF−PF (LEDH)
PF−PF (EDH)
LEDH

EDH
GPFIS
EKF

BPF (100K)
BPF (1M)

35 40

9

10

11

 

 

Fig. 1. Average errors at each time step.

0 10 20 30 40
0

5

10

15

20

25

time step

a
v
e

ra
g

e
 E

S
S

 

 

PF−PF (LEDH)
PF−PF (EDH)
GPFIS

BPF (100K)
BPF (1M)

Fig. 2. Average ESS at each time step.

between the prior and the posterior, which requires an even
greater amount of particles for BPF. GPFIS exhibits a high
variation in ESS. PF-PF (LEDH) with 500 particles maintains
a particle cloud with the highest effective sample size for most
of time. And it is very efficient compared with GPFIS.

5. CONCLUSIONS

In this paper, we have proposed particle filtering algorithms
that uses particle flow methods to construct the proposal dis-
tribution. By designing particle flow approaches with the
property of one-to-one mapping, we can evaluate the impor-
tant weights in an efficient manner. In contrast to a previous
similar approach [9], the computational overhead is modest,
and the accuracy is similar or superior. In a simulation setup
where the average effective sample size of BPF with one mil-
lion particles is less than 10, PF-PF (LEDH) with 500 parti-
cles has the smallest tracking error and maintains a particle
cloud with a higher effective sample size. This demonstrates
that PF-PF based on LEDH is capable of producing better
particle presentations of posterior distributions than other fil-
tering algorithms with much higher computational cost.
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