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ABSTRACT
Particle filters has become a standard tool for state estimation
in nonlinear systems. However, their performance usually
deteriorates if the dimension of state space is high or the
measurements are highly informative. A major challenge is
to construct a proposal density that is well matched to the
posterior distribution. Particle flow methods are a promising
option for addressing this task. In this paper, we develop
a particle flow particle filter algorithm to address the case
where both the process noise and the measurement noise are
distributed as mixtures of Gaussians. Numerical experiments
are performed to explore when the proposed method offers
advantages compared to existing techniques.

Index Terms— non-linear sequential state estimation,
particle flow, Daum-Huang filter, particle filter, Gaussian
mixture model, high-dimensional filtering.

I. INTRODUCTION

Particle filters [1] perform sequential importance sam-
pling to solve the discrete-time nonlinear filtering task in
a Bayesian framework. However, their performance can be
poor if the measurements are highly informative or the state
dimension is high [2], [3]. Although there have been multiple
proposals to address this issue [2]–[7], the methods rely on
the posterior having a special structure or are computation-
ally expensive.

Particle flow filters [8]–[12] exhibit improved perfor-
mance. Instead of sampling, particles are migrated from the
prior to the posterior by identifying and solving differential
equations that link these two distributions. The approxima-
tions needed to implement these filters can lead to particles
not being a genuine sample from the posterior. To address
this, several recent algorithms combine particle flow and
particle filtering [12]–[16]. In particular, [16] introduces the
particle flow particle filter (PFPF), which uses particle flow
to construct the proposal distribution in a particle filtering
framework. The theoretical guarantees for any particle filter
still apply, while the flow ensures that a good proposal has
been constructed.

The PFPF of [16] relies on a Gaussian approximation to
the prior and posterior for construction of the flow. For many
dynamic and measurement models, this approximation is
poor. Two efforts have been made to expand the applicability
of the particle flow filters to mixture models [17], [18], but

neither of these approaches leads to a particle filter. The
potentially mismatched modelling assumptions and approx-
imations needed to construct and compute the particle flow
can negatively impact performance. In this paper we develop
a particle flow particle filter that addresses settings where the
dynamic and measurement models can be approximated by
a nonlinearity with additive noise distributed according to a
Gaussian mixture.

The paper is organized as follows. Section II states the
filtering task that we address. Section III reviews the exact
particle flow filter [10], [19] and Section IV reviews the
particle flow particle filters of [16] . Section V introduces
the proposed particle flow particle filter for Gaussian mixture
models and Section VI presents and discusses the results
of numerical simulation experiments. The conclusion is
provided in Section VII.

II. PROBLEM STATEMENT

We consider the discrete-time filtering problem where our
goal is to track the marginal posterior distribution p(xk|z1:k)
recursively with time k, starting from a initial probability
density function p(x0). The dynamic and measurement mod-
els are specified as:

xk = gk(xk−1) + vk for k ≥ 1 , (1)
zk = hk(xk) + wk for k ≥ 1 . (2)

Here gk : Rd → Rd is the state-transition function of the un-
observed state xk ∈ Rd, the measurement zk ∈ RS is gener-
ated conditioned on the current state xk through a potentially
nonlinear measurement model hk : Rd → RS . The process
and measurement noises are denoted by vk ∈ Rd and wk ∈
RS respectively. We assume that p(x0) = N (x0|µ̄0, P̄0)
is Gaussian whereas vk ∼ ΣMm=1αk,mN (ψk,m, Qk,m) and
wk ∼ ΣNn=1βk,nN (ζk,n, Rk,n) are distributed according to
Gaussian mixtures.

We observe that this model can be alternatively ex-
pressed as a switching state space model. We introduce
two unobserved scalar valued discrete random variables
dk ∈ {1, 2, ...M} and ck ∈ {1, 2, ...N} such that P (dk =
m) = αk,m and P (ck = n) = βk,n. The dk and ck
variables are independent for different k and independent of
each other. Let p(xk|xk−1, dk = m) = N (xk|gk(xk−1) +
ψk,m, Qk,m),∀1 ≤ m ≤ M and p(zk|xk, ck = n) =



N (zk|hk(xk) + ζk,n, Rk,n),∀1 ≤ n ≤ N . The state tran-
sition density is then:

p(xk|xk−1) =
∑M
m=1αk,mN (xk|gk(xk−1) + ψk,m, Qk,m)

=
∑M
m=1P (dk = m)p(xk|xk−1, dk = m) (3)

Similarly, the likelihood is

p(zk|xk) =
∑N
n=1βk,nN (zk|hk(xk) + ζk,n, Rk,n)

=
∑N
n=1P (ck = n)p(zk|xk, ck = n) (4)

III. EXACT PARTICLE FLOW (SINGLE GAUSSIAN)

Suppose the posterior at time k−1 is approximated by a
set of Np unweighted particles {xik−1}

Np
i=1. Propagating the

particles through the dynamic model yields {x̃ik}
Np
i=1, which

represent the predictive posterior at time k. The objective
of particle flow methods is then to gradually migrate the
particles towards the correct regions of state-space so that
they approximate the posterior at time k, when the flow is
complete. Particle flow can be modelled as a background
stochastic process ηλ in a pseudo time interval λ ∈ [0, 1].
The time index k is temporarily omitted to simplify notation,
because the particle flow only concerns migration of particles
within a single time step. ηiλ denotes the stochastic process’s
i-th realization, and we initialize the flow by setting ηi0 = x̃ik,
for i = 1, 2, . . . , Np.

The zero diffusion particle flow filters [9], [10] involve
deterministic flows of particles. The trajectory of ηiλ for re-
alization i follows the ordinary differential equation (ODE):

dηiλ
dλ

= f(ηiλ, λ) , (5)

where f : Rd → Rd is governed by the Fokker-Planck
equation and additional flow constraints [10].

An analytically tractable solution of equation (5) exists
when the predictive posterior and the likelihood distributions
are both Gaussian and the measurement model is linear, i.e.,
ηi0 ∼ N (η̄0, P̄ ), z = Hηiλ + w ∼ N (Hηiλ, R).

III-A. The localized exact Daum and Huang filter

The localized exact Daum and Huang (LEDH) filter [19]
uses linearized approximation of the measurement model to
compute the drift term for each individual particle. For the
i-th particle, the drift term is

f(ηiλ, λ) = Ai(λ)ηiλ + bi(λ) , (6)

where

Ai(λ) =− 1

2
P̄Hi(λ)T (λHi(λ)P̄Hi(λ)T +R)−1Hi(λ),

bi(λ) =(I + 2λAi(λ))[(I + λAi(λ))P̄Hi(λ)TR−1(z−
ei(λ)) +Ai(λ)η̄0]. (7)

Here Hi(λ) =
∂h(η)

∂η

∣∣∣∣
η=ηiλ

and ei(λ) = h(ηiλ)−Hi(λ)ηiλ.

III-B. Numerical Implementation

The approximate solution of the ODE (5) is obtained
numerically using Euler’s method. We discretize the pseudo-
time λ at Nλ positions [λ1, λ2, . . . , λNλ ], where 0 = λ0 <
λ1 < . . . < λNλ = 1. The step sizes εj = λj − λj−1
for j = 1, . . . , Nλ satisfy

∑Nλ
j=1 εj = λNλ − λ0 = 1. In the

LEDH filter, we need to linearize Hi(λj) to compute Ai(λj)
and this is performed at ηiλj−1

. The Euler update rule is

ηiλj = ηiλj−1
+ εj(A

i(λj)η
i
λj−1

+ bi(λj)) .

IV. PARTICLE FLOW PARTICLE FILTER

Due to approximations in the flow implementation and
mismatched modelling assumptions, the migrated particles
after the particle flow process are not exactly distributed
according to the posterior. A particle filter requires us to
generate samples of the state from an importance distribution
q and then calculate importance weights so that we can
maintain a weighted particle approximation to the posterior
as time evolves. ηi1 can be viewed as being drawn from a
proposal distribution q(ηi1|xik−1, zk), which is possibly well
matched to the posterior, because of the flow procedure. If
the flow parameters, (Ai(λp), b

i(λp)) are computed based on
linearization of the measurement function h at an auxiliary
particle location η̄iλp , starting from η̄i0 = gk(xik−1), then
under a mild smoothness condition on the measurement
function h and with small enough step sizes εj , the dis-
cretized particle flow process introduces an invertible map-
ping ηi1 = T (ηi0; zk, x

i
k−1), as shown in [16]. This property

enables efficient evaluation of the importance density:

q(ηi1|xik−1, zk) =
p(ηi0|xik−1)

|det(Ṫ (ηi0;xik−1, zk))|
, (8)

where Ṫ (·) ∈ Rd×d is the Jacobian function of the mapping
T (·) and its determinant can be computed as

det(Ṫ (ηi0;xik−1, zk)) =

Nλ∏
p=1

det(I + εpA
i(λp)) (9)

V. PARTICLE FLOW PARTICLE FILTER FOR
GAUSSIAN MIXTURE MODELS

In this section we develop the novel particle flow particle
filter. We consider the switching state representation of the
Gaussian mixture model (1)-(2). We augment xk with the
unobserved discrete variables dk and ck and consider the
target joint density to be p(x0:k, d1:k, c1:k|z1:k). We require
that the importance distribution q factorizes:

q(x0:k, d1:k, c1:k|z1:k) = q(x0:k−1, d1:k−1, c1:k−1|z1:k−1)

q(xk, dk, ck|x0:k−1, d1:k−1, c1:k−1, z1:k)
(10)



Samples {xi0:k, di1:k, ci1:k}
Np
i=1 are obtained by augmenting

each existing sample,

(xi0:k−1, d
i
1:k−1, c

i
1:k−1) ∼ q(x0:k−1, d1:k−1, c1:k−1|z1:k−1)

with the new state

(xik, d
i
k, c

i
k) ∼ q(xk, dk, ck|xi0:k−1, di1:k−1, ci1:k−1, z1:k) .

The target joint density can be expressed as follows:

p(x0:k, d1:k, c1:k|z1:k) ∝ p(xk, dk, ck|xk−1, dk−1, ck−1)

p(zk|xk, dk, ck)p(x0:k−1, d1:k−1, c1:k−1|z1:k−1)

We can calculate unnormalized importance weights as:

ωik =
p(xi0:k, d

i
1:k, c

i
1:k|z1:k)

q(xi0:k, d
i
1:k, c

i
1:k|z1:k)

,

∝ ωik−1
p(xik, d

i
k, c

i
k|xik−1, dik−1, cik−1)p(zk|xik, dik, cik)

q(xik, d
i
k, c

i
k|xi0:k−1, di1:k−1, ci1:k−1, z1:k)

,

(11)

We design a proposal such that q(xk, dk, ck|x0:k−1, d1:k−1,
c1:k−1, z1:k) = q(xk, dk, ck|xk−1, dk−1, ck−1, zk) is satis-
fied, so that we only need to store the particles and weights
from the previous time step, instead of the full trajectories.
For the filtering problem, our focus is the marginal posterior,
and we approximate this as

p(xk|z1:k) ≈
∑Np
i=1ω

i
kδ(xk − xik) (12)

where δ is the Dirac delta-function. From the dynamic
model,

p(xik, d
i
k, c

i
k|xik−1, dik−1, cik−1) = P (dik)P (cik)p(xik|xik−1, dik) .

We design q such that

q(xik, d
i
k, c

i
k|xik−1, dik−1, cik−1, zk) = Q(dik)Q(cik)×

q(xik|xik−1, dik, cik, zk) (13)

is satisfied. We choose Q(dk) = P (dk), Q(ck) = P (ck) and
we calculate q(xik|xik−1, dik, cik, zk) based on the invertible
mapping established by the flow [16].

q(xik|xik−1, dik=m, cik=n, zk) =
p(ηi0|xik−1, dik = m)

|
∏Nλ
p=1 det(I + εpAimn(λp))|

.

Then equation (11) can be rewritten as

ωik ∝ ωik−1
p(xik|xik−1, dik)p(zk|xik, cik)

q(xik|xik−1, dik, cik, zk)
. (14)

The algorithm is summarized in Algorithm 1. The most
computationally demanding parts of the algorithm are the
matrix inverse operations needed to calculate Aimn(λp) and
bimn(λp). Since individual flow parameters are calculated for
each of the Np particles at each time step and there are a total
of Nλ discrete pseudo time steps, the total computational
complexity of the matrix inverse operations is O(NpNλS

3),
where S is the measurement dimension.

Algorithm 1 PFPF-GMM

1: Initialization: Draw {xi0}
Np
i=1 from the prior p(x0). Set

x̂0 to be the mean of p(x0). Set {ωi0}
Np
i=1 =

1

Np
and

{P i0}
Np
i=1 = P̄0. Set λ0 = 0.

2: for k = 1 to K do
3: for i = 1, . . . , Np do
4: Sample dik = m ∈ {1, 2, ...M} with probability

{αk,1, αk,2, ...αk,M}
5: Apply EKF/UKF prediction, {xik−1, P ik−1} →

{mi
k|k−1,m, P

i
k,m}, using N (ψk,m, Qk,m)

6: Calculate η̄i0 = gk(xik−1) + ψk,m
7: Propagate particle ηi0 = gk(xik−1) + vk,m, where

vk,m ∼ N (ψk,m, Qk,m)
8: Sample cik = n ∈ {1, 2, ...N} with probability

{βk,1, βk,2, ...βk,N}
9: Set θimn = 1

10: for p = 1, . . . , Nλ do
11: Set λp = λp−1 + εp
12: Calculate Aimn(λp) and bimn(λp) from (7) with

linearization performed at η̄iλp−1
, and with z =

zk − ζk,n, R = Rk,n, η̄0 = η̄i0 and P̄ = P ik,m
13: Migrate auxiliary particle: η̄iλp = η̄iλp−1

+

εp(A
i
mn(λp)η̄

i
λp−1

+ bimn(λp))

14: Migrate particle: ηiλp = ηiλp−1
+

εp(A
i
mn(λp)η

i
λp−1

+ bimn(λp))

15: θimn = θimn|det(I + εpA
i
mn(λp))|

16: end for
17: Set xik = ηi1
18: Calculate importance weights:

ωik ∝ ωik−1
p(xik|xik−1, dik = m)p(zk|xik, cik = n)

p(ηi0|xik−1, dik = m)/θimn

19: end for
20: for i = 1, . . . , Np do
21: Normalize ωik = ωik/

∑Np
s=1 ω

s
k

22: Apply EKF/UKF update, {mi
k|k−1,m, P

i
k,m} →

{mi
k|k, P

i
k} using N (ζk,n, Rk,n)

23: end for
24: Estimate x̂k =

∑Np
i=1 ω

i
kx

i
k

25: (Optional) resample particles : {xik, P ik, ωik}
Np
i=1 to

obtain {xik, P ik,
1

Np
}Npi=1

26: end for

VI. NUMERICAL EXPERIMENTS AND RESULTS

We conduct numerical simulations for two scenarios. The
first is a linear scenario, which allows us to compare the
performance of the proposed filter with an (almost) optimal
solution in the form of the Gaussian mixture model Kalman
filter. The second nonlinear scenario requires a particle filter
for accurate state estimates. We compare with an extended



Table I. Average and 5th and 95th sample percentiles of
MSE and average execution time per step for the linear
scenario of Section VI-A for 200 simulation trials.

Algorithm No. of
Particles

Avg.
MSE

5th and 95th
percentile MSE

Exec.
time (s)

EKF-GMM N/A 0.010 (0.009,0.010) 0.026

PF-GMM 50 per
comp. 0.011 (0.010,0.011) 1.85

PFPF-GMM 200 0.012 (0.011,0.012) 1.77

GSPF 104

per comp. 78.93 (52.86,105.60) 2.02

UKF N/A 1.99 (1.05,3.16) 0.019
LEDH 500 2.00 (1.05,3.20) 3.40
EDH 500 1.99 (1.06,3.16) 0.013

PFPF (LEDH) 500 0.20 (0.02,0.70) 4.53
PFPF (EDH) 105 0.033 (0.012,0.020) 1.97

BPF 106 8.14 (6.08,11.33) 4.21

Kalman filter derived for Gaussian mixture models (EKF-
GMM), the particle flow filter for Gaussian mixtures (PF-
GMM) [18], the Gaussian Sum Particle Filter (GSPF) [20],
an unscented Kalman filter (UKF), the exact Daum Huang
(EDH) filter [10] and its localized version (LEDH) [19], the
Particle Flow Particle Filters (PFPFs) based on EDH and
LEDH [16], and a bootstrap particle filter using 1 million
particles. All numerical simulations are executed using an
Intel i7-4770K, 3.50GHz CPU and 32GB RAM.

VI-A. Linear Model

We first consider a linear dynamic and measurement
model xk = αxk−1 + vk and zk = xk + wk, where
xk ∈ Rd and zk ∈ Rd. We set d = 64 and α =
0.9. The noise terms are drawn from GMMs: vk ∼∑3
m=1

1
3N (µm1d×1, σ

2
vId×d), where µ1 = −1, µ2 = 0,

µ3 = 1 and σv = 1, wk ∼
∑3
n=1

1
3N (δn1d×1, σ

2
wId×d),

where δ1 = −5, δ2 = 0, δ3 = 5 and σw = 0.1. The true
state starts with x0 = 0. The experiment is executed 200
times for 50 time steps.

Table I summarizes the results, reporting the mean-
squared error (MSE) in the state estimation. The proposed
particle flow particle filter for Gaussian mixture models
(PFPF-GMM) performs only slightly worse than the EKF-
GMM algorithm, which is close to optimal for this case.
The PF-GMM also achieves close to the (almost) opti-
mal performance. The PFPF-GMM outperforms the other
particle-based methods significantly because they either use
inaccurate Gaussian approximations or are ill-suited to the
high-dimensional problem (e.g. GSPF, BPF).

VI-B. Nonlinear Model

We now consider a nonlinear dynamical model gk : Rd →
Rd and measurement function hk : Rd → Rd. The c-th
element of the measurement vector is hck(xk) =

(xck)
2

20 . Each

Table II. Average and 5th and 95th sample percentiles of
MSE and average execution time per step for the nonlinear
scenario of Section VI-B for 200 simulation trials.

Algorithm No. of
Particles

Avg.
MSE

5th and 95th
percentile MSE

Exec.
time (s)

EKF-GMM N/A 4.64 (1.45,11.19) 0.031

PF-GMM 50 per
comp. 0.77 (0.10,1.78) 2.75

PFPF-GMM 200 0.11 (0.06,0.32) 2.18

GSPF 104

per comp. 2.81 (1.39,4.67) 2.08

UKF N/A 0.80 (0.51,1.23) 0.023
LEDH 500 1.41 (0.95,1.94) 3.63
EDH 500 4.40 (3.15,6.72) 0.018

PFPF (LEDH) 500 2.88 (1.36,5.61) 4.91
PFPF (EDH) 105 1.20 (0.10,2.36) 2.05

BPF 106 0.95 (0.67,1.42) 4.51

element c of the state vector is defined as follows:

gck(xk−1) = 0.5xck−1 + 8 cos(1.2(k − 1))

+


2.5

xc+1
k−1

1+(xck−1)
2 , if c = 1

2.5
xc+1
k−1

1+(xc−1
k−1)

2 , if 1 < c < d

2.5
xck−1

1+(xc−1
k−1)

2 , if c = d

(15)

We set d = 64. vk ∼
∑3
m=1

1
3N (µm1d×1, σ

2
vId×d), where

µ1 = −1, µ2 = 0, µ3 = 1 and σv = 0.5, wk ∼
∑3
n=1

1
3

N (δn1d×1, σ
2
wId×d), where δ1 = −3, δ2 = 0, δ3 = 3 and

σw = 0.1, are drawn from a GMM . The true state starts at
x0 = 0. The experiment is executed 200 times for 50 time
steps. Table II summarizes the results, reporting the mean-
squared error (MSE) in the state estimation.

For this challenging nonlinear problem, the EKF-GMM
algorithm and the UKF struggle. The BPF and the GSPF
suffer from significant weight degeneracy. The PF-GMM al-
gorithm outperforms the LEDH filter as the latter is based on
the incorrect approximation of a single Gaussian likelihood.
The proposed PFPF-GMM has a considerably smaller MSE
than all other filters.

VII. CONCLUSION

In this paper, we developed a particle flow particle filter
that can address the scenario when both process and mea-
surement noise are mixtures of Gaussians. The proposed
method can be employed in challenging high-dimensional
filtering problems with multi-modal posteriors. Future re-
search will investigate ways to reduce the computational
overhead and assess performance when the Gaussian mixture
models only approximate the true behaviour of the system.
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