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ABSTRACT

We propose, for the superpositional sensor scenario, a hybrid between the multi-Bernoulli filter and the cardinal-
ized probability hypothesis density (CPHD) filter. We use a multi-Bernoulli random finite set (RFS) to model
existing targets and we use an independent and identically distributed cluster (IIDC) RFS to model newborn
targets and targets with low probability of existence. Our main contributions are providing the update equa-
tions of the hybrid filter and identifying computationally tractable approximations. We achieve this by defining
conditional probability hypothesis densities (PHDs), where the conditioning is on one of the targets having a
specified state. The filter performs an approximate Bayes update of the conditional PHDs. In parallel, we
perform a cardinality update of the IIDC RFS component in order to estimate the number of newborn targets.
We provide an auxiliary particle filter based implementation of the proposed filter and compare it with CPHD
and multi-Bernoulli filters in a simulated multitarget tracking application.
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1. INTRODUCTION

The random finite set approach has been successfully used to perform multitarget tracking and estimation in
recent years. The idea was first developed by Mahler1,2 and subsequently many different filters have been derived
using this framework, including the probability hypothesis density (PHD) filter, the CPHD (Cardinalized PHD)
filter and the multi-Bernoulli filter. Traditionally the filters have been developed under somewhat restrictive
assumptions about the measurement devices; Mahler has called these “standard sensors”.3 The observation
model we consider deviates from this sensor class, and the associated sensors have been called superpositional
sensors.3 In contrast to the standard sensor assumption, in which each target is associated with at most one
measurement, in the superpositional sensor model, each target can contribute to any number of measurements,
but the contributions must be additive (or superpositional). This model is suited to a number of different sensors
including direction-of-arrival sensors for linear antenna arrays,4 multipath channels in MIMO-OFDM channels,5

acoustic amplitude sensors6 and radio frequency tomographic tracking sensor systems.7

In past work addressing the development of moment-based filters for the superpositional sensor model, Thouin
et al. derived the PHD filter equations8 ∗ and Mahler and El-Fallah extended the derivation to the CPHD filter.10

Nannuru et al. presented implementations of the PHD and CPHD filters for superpositional sensors based on
the auxiliary particle filter approach.11 Hauschildt et al. derived a closed form Gaussian mixture implementation
of the CPHD filter for superpositional sensors.12 Nannuru and Coates proposed a multi-Bernoulli filter for
superpositional sensors13 and presented a particle filter implementation.14

The multi-Bernoulli filter is able to provide more accurate target location estimates than the CPHD filter, but
its cardinality estimates are less robust to the arrival of new targets and the disappearance of existing targets.
To address this issue, we propose in this paper a hybrid between the multi-Bernoulli filter and the CPHD filter.
In this hybrid approach the new targets are modeled using the independent and identically distributed cluster
(IIDC) RFS while the existing targets are modeled using the multi-Bernoulli RFS. To the best of our knowledge,
combination of the multi-Bernoulli filter with the CPHD filter has not been proposed in the literature (neither for
the standard sensor model nor the superpositional sensor model). Williams15,16 proposed a hybrid between the
multi-Bernoulli filter and the PHD filter for multitarget tracking applications. Williams uses a Poisson RFS to

∗An error in the main update equation of this filter was corrected in an errata;9 the correct equations were also
presented later.10,11



model new targets and targets with low probability of existence. Pollard et al. developed a hybrid combination of
the multiple hypothesis tracking (MHT) filter and the Gaussian mixture CPHD (GM-CPHD) filter.17 The GM-
CPHD filter provides a robust cardinality estimate of the multitarget state which is complemented by accurate
state estimates from the MHT filter. Panta et al. proposed a similar hybrid approach combining the MHT and
PHD filters;18 in their work the PHD filter is used as a clutter filter to gate the input for the MHT filter.

The paper is organized as follows: Section 1.1 formulates the multitarget tracking problem, and Section 1.2
explains the superpositional sensor model. Section 2 provides a brief background on random finite set theory
and presents the concept of the conditional PHD. Section 3 presents the prediction and update steps of the
proposed hybrid multi-Bernoulli CPHD filter, and Section 4 outlines a particle filter based implementation of the
proposed filter. Section 5 describes a numerical analysis of the filter implementation and conclusions are drawn
in Section 6.

1.1 Problem formulation

The superpositional sensor model is relevant for many different state estimation problems.4–7 The proposed
hybrid multi-Bernoulli filter can be used for state tracking and estimation in all these applications. For this paper
we develop the filter equations for a multitarget tracking problem and use the same framework to demonstrate
the filter performance in simulations. If we have nk ≥ 0 targets present at time step k then the multitarget state
to be tracked is represented by the set Xk = {xk,1,xk,2, . . . ,xk,nk

} with xk,i ∈ Rnx ∀i. The evolution of the
target state over time is given by the transition kernel t(xk,i|xk−1,i,uk) where uk is a Gaussian noise vector.
The motion of each target is assumed to be independent of the other targets. The multitarget state Xk is related
to the observation zk ∈ Rnz by the likelihood function hzk

(Xk). If we define Z [k] = [z1, z2, . . . , zk], the tracking
problem requires estimation of the posterior multitarget distribution p(Xk|Z [k]) for each time step k.

1.2 Superpositional sensor model

We now briefly discuss the superpositional sensor model. The likelihood function is said to have a superpositional
form if it can be written as follows

hzk
(Xk) = hzk

(r(Xk))

= hzk

(∑
x∈Xk

g(x)

)
(1)

where the function r is defined over sets and the function g is defined over the single target state space. Both
the functions r and g map to vectors with real elements and can be non-linear. If we model the sensor noise as
Gaussian with zero mean and covariance matrix Σr, the above likelihood can be simplified and written as

hzk
(Xk) = NΣr

(zk − r(Xk)). (2)

where NΣ(z) denotes the Gaussian density function with zero mean and covariance matrix Σ evaluated at z.

2. RANDOM FINITE SETS

In the random finite set framework we can model the multitarget state and the observations as realizations
of random sets. This allows us to capture the randomness in both the dimension and elements of the set. A
RFS is completely specified by its multitarget density function f(W ) which integrates to one. The cardinality
distribution function of the random set is given by π(n) = Prob(|W | = n), where |W | denotes the cardinality of
the set W. An important and useful quantity, analogous to the expectation of a random vector, is the probability
hypothesis density (PHD) function associated with the random finite set. The PHD function D(x) is defined as

D(x) =

∫
f({x} ∪W )δW (3)

Examples of some random finite sets are the Poisson RFS, the independent and identically distributed cluster
(IIDC) RFS, the Bernoulli RFS and the multi-Bernoulli RFS. An independent and identically distributed cluster



RFS can be realized by sampling the number of elements from the discrete cardinality distribution πc(n) and
then independently sampling all the elements from the density function qc(x). Let µc denote the mean of the
cardinality distribution πc(n). The PHD function of the IIDC RFS can be calculated to be

Dc(x) =

∫
f({x} ∪W )δW = µc · qc(x). (4)

A multi-Bernoulli RFS is the union of independent Bernoulli random finite sets. Each of the Bernoulli random
finites sets is specified by its existence probability ri and the state density function qi(x). The PHD function of
the multi-Bernoulli RFS is given by (Ex. 91, Chap. 16,2),

Dmb(x) =

N∑
i=1

ri · qi(x). (5)

2.1 Conditional PHD

A conditional PHD can be defined when a random finite set is a union of multiple random finite sets. For
example, let the RFS χ be the union of the random finites sets χA and χB . Let f(W ) be the multitarget density
of the RFS χ. Then the conditional PHDs corresponding to the components χA and χB of χ are defined as

DA(x) =

∫
f({x} ∪W |x← A)δW (6)

DB(x) =

∫
f({x} ∪W |x← B)δW (7)

The conditioning event (x ← A) implies that if x is a member of the multitarget state, then element x is
generated by the random finite set χA. Similarly we can define the conditioning event (x← B).

If DA(x) and DB(x) are the PHD functions of RFSs χA and χB respectively then we can show that

DA(x) = DA(x) and DB(x) = DB(x) (8)

The above result is proved in the technical report.19

2.2 Conditional PHD update

Let DAk+1|k(x) and DAk+1(x) denote the predicted and posterior conditional PHD corresponding to the RFS
component χA of χ at time k+1. The conditional PHD update equation relates these two quantities by applying
Bayes’ rule. It can be shown that

DAk+1(x) = DAk+1|k(x)

∫
hzk+1

({x} ∪W )× f Āk+1|k(W ) δW∫
hzk+1

(W )× fk+1|k(W ) δW
(9)

where fk+1|k(W ) is the predicted multitarget distribution. The multitarget distribution f Āk+1|k(W ) is defined as

f Āk+1|k(W ) =
fk+1|k({x} ∪W |x← A)

DAk+1|k(x)
· (10)

The derivation of the above update equation is provided in the technical report.19 We will use the above result
for the special case of union of independent IIDC RFS and multi-Bernoulli RFS to derive the update equations
for the hybrid multi-Bernoulli CPHD filter.

3. HYBRID MULTI-BERNOULLI CPHD FILTER

The multi-Bernoulli filter has one density function for each target allowing accurate state estimation and easy
track management but does not have a robust cardinality estimator. The CPHD filter can provide robust
cardinality estimates but uses only a single density function to model all the target states. In the hybrid
approach we combine these filters so that existing targets are represented by Bernoulli components while the
new targets are modeled using an IIDC RFS component.



3.1 Prediction step

The prediction step propagates the Bernoulli components from the previous time step using the motion model for
surviving targets and initializes the IIDC component using the target birth model. Let the posterior Bernoulli
components at time k be parametrized by {rk,i, qk,i(x)}Nk

i=1. Denote the predicted Bernoulli components at time

k + 1 as {ri, qi(x)}Nk
i=1. Then we have the relations2,20

ri = rk,i × 〈qk,i, ps〉, (11)

qi(x) =
〈tk+1|k(x|·), qk,ips〉

〈qk,i, ps〉
; ∀i = 1 . . . Nk (12)

where ps(x) is the target survival probability, tk+1|k(x|·) is the Markov transition kernel and 〈a, b〉 is the scalar
product defined as 〈a, b〉 =

∫
a(x)b(x)dx. Note that the number of Bernoulli components does not change in

the prediction step. To account for the new born targets an independent IIDC component is initialized. Let its
cardinality distribution function be πck+1|k(n) and its state density function be qc(x) = qc,k+1|k(x). Thus the
predicted multitarget state is union of an independent IIDC component and a multi-Bernoulli component.

3.2 Update step

The conditional PHD update equation in (9) is not analytically implementable because of the set integrals
involved. It has been shown that19 for the case of superpositional sensor model as given in equations (1) and
(2), under the Gaussian sensor noise assumption, the update equation can be approximated as

DAk+1(x) ≈ DAk+1|k(x)
NΣr+ΣĀ

k+1
(zk+1 − g(x)− µĀk+1)

NΣr+Σk+1
(zk+1 − µk+1)

(13)

where the parameters µk+1, µĀk+1, Σk+1 and ΣĀk+1 can be found using the quadratic version of Campbell’s
theorem.10,11 The update stage of the hybrid multi-Bernoulli CPHD filter propagates the conditional PHD for
each of the Bernoulli components, conditional PHD of the IIDC component and the cardinality distribution of
the IIDC component. Thus the posterior state is also modeled as the union of an independent IIDC component
and a multi-Bernoulli component. The IIDC component is later approximated by a multi-Bernoulli component.
Applying the result in equation (13) to update the conditional PHD of the Bernoulli component we get

r′i · q′i(x) ≈ ri · qi(x)
NΣr+Σī

k+1
(zk+1 − g(x)− µīk+1)

NΣr+Σk+1
(zk+1 − µk+1)

(14)

where,

µk+1 =

Nk∑
i=1

ri · si + µc · sc (15)

Σk+1 =

Nk∑
i=1

(ri · vi − r2
i · sisTi ) + µc · vc −

(
µ2
c − a

)
· scsTc (16)

µīk+1 = µk+1 − ri · si, Σīk+1 = Σk+1 − (ri · vi − r2
i · sisTi ) (17)

si = 〈qi, g〉, vi = 〈qi, ggT 〉, sc = 〈qc, g〉, vc = 〈qc, ggT 〉 (18)

a =
∑
n

n(n− 1)πck+1|k(n) (19)

The derivation of the above result and the expressions for the various parameters involved are provided in the
technical report.19 Similarly, applying the result of equation (13) to the conditional PHD of IIDC RFS component



leads to the following approximate update:

µ′c · q′c(x) ≈ µc · qc(x)
NΣr+Σc̄

k+1
(zk+1 − g(x)− µc̄k+1)

NΣr+Σk+1
(zk+1 − µk+1)

(20)

where

µc̄k+1 =

Nk∑
j=1

rj · sj +
a

µc
· sc (21)

Σc̄k+1 =

Nk∑
j=1

(rj · vj − r2
j · sjsTj ) +

a

µc
vc −

(
a2

µ2
c

− b

µc

)
scs

T
c (22)

b =
∑
n

n(n− 1)(n− 2)πck+1|k(n) (23)

where µk+1 and Σk+1 are as given in equations (15) and (16) respectively. The derivation of the above result is
provided in the technical report.19

To complete the update step we also need to propagate the cardinality distribution of the IIDC component.
The cardinality update equation is given as

πck+1(n) ≈ πck+1|k(n)
NΣr+Σc,n

k+1
(zk+1 − µc,nk+1)

NΣr+Σk+1
(zk+1 − µk+1)

(24)

where

µc,nk+1 =

Nk+1|k∑
i=1

ri · si + n · sc

Σc,nk+1 =

Nk+1|k∑
i=1

(ri · vi − r2
i · sisTi ) + n(vc − scsTc )

where µk+1 and Σk+1 are as given in equations (15) and (16) respectively. The derivation of the above result is
provided in the technical report.19

4. PARTICLE FILTER IMPLEMENTATION

We now present an auxiliary particle filter based implementation of the hybrid multi-Bernoulli CPHD filter.
The pseudocode for the filter implementation is provided in Figure 1. Each of the conditional PHD terms to
be propagated is represented using a set of weighted particles. Thus we have one particle filter for each of the
Bernoulli components and one particle filter for the IIDC component. In the prediction step the conditional PHD
of the Bernoulli components is propagated using the motion model of surviving targets whereas the conditional
PHD of the IIDC component is initialized using the target birth model. For the update step the particle weights
are updated using equations (20) and (14). We perform the update in two stages so that the new born targets
are accurately identified. After the update stage, the IIDC conditional PHD is approximated using multiple
Bernoulli conditional PHDs. The number of Bernoulli components added depends on the maximum a posteriori
(MAP) estimate obtained from the updated posterior IIDC cardinality distribution. Bernoulli tracks with low
existence probability are pruned. Gating is performed to avoid multiple Bernoulli components representing a
single target and is achieved by terminating new tracks appearing within close vicinity of existing Bernoulli
components.



1: for k = 1 to T do

2: Prediction

3: Propagate existing components {ri, qi(x)}Nk−1

i=1 using equations (11) and (12)

4: Initialize IIDC component using qc(x) and πck|k−1(n)

5: First Run

6: Calculate statistics - µk,Σk

7: Update IIDC conditional PHD using equation (20)

8: Auxiliary filtering step for IIDC conditional PHD

9: Update cardinality distribution using equation (24)

10: Update statistics - µk,Σk

11: Update Bernoulli conditional PHD for i = 1 . . . Nk−1 using equation (14)

12: Auxiliary filtering step for i = 1 . . . Nk−1

13: Second Run

14: Update statistics - µk,Σk

15: Update Bernoulli conditional PHD for i = 1 . . . Nk−1 using equation (14)

16: Update IIDC conditional PHD using equation (20)

17: Update cardinality distribution using equation (24)

18: Resample conditional PHD for Bernoulli and IIDC components

19: Approximation and track management

20: Prune Bernoulli tracks with ri < r0

21: Estimate IIDC cardinality N c
k|k = MAP {πck(n)}

22: Cluster IIDC conditional PHD into N c
k|k components

23: Initialize new Bernoulli components using clusters

24: Gate new components to check for duplicity

25: end for

Figure 1: Pseudo-code for auxiliary particle filter implementation of hybrid multi-
Bernoulli CPHD filter.

5. NUMERICAL SIMULATIONS

In this section we compare the auxiliary particle filter implementations of the CPHD filter, multi-Bernoulli
filter (MBR) and hybrid multi-Bernoulli CPHD filter (MBR-CPHD). The implementations are used to perform
tracking of multiple targets moving in a region monitored by radio frequency sensors. The motion of individual
targets is assumed to be independent of one another and follows a linear Gaussian model.21 A single target state
consists of its two position coordinates and two velocity coordinates in the plane of motion of targets.

The targets are moving within a region monitored by radio frequency (RF) sensors. The RF sensor multitarget
measurement model used has been proposed and empirically verified.22,23 In our experiments we simulate an
RF sensor network of 20 sensor nodes which are uniformly distributed around a square region 20m × 20m in
dimension as shown in Figure 2a. There are 190 unique bidirectional links among the sensors giving rise to the
measurement dimension of nz = 190. The observation model parameters are φ = 5, σλ = 0.4 and σ2

r = 0.25.
Target births are assumed to be uniform within the monitoring region. Bernoulli tracks with existence probability
less than r0 = 0.2 are pruned and gating is performed with a 1m gating radius. To account for target births
4 new Bernoulli components are added at each time step in implementation of the MBR filter. We use 1000
particles for each of the particle filter in our implementation.

We simulate two types of target track variations: (i) a fixed number of targets (6) are present in the monitoring
region (Exp. 1); and (ii) the targets can appear and disappear over time with a maximum of 6 targets (Exp. 2).



Figure 2a and Figure 2b show the target tracks we use for Exp. 1 and Exp. 2 respectively. The blue cross (x)
indicates the starting location of the target. The variation of number of targets over time for Exp. 2 is shown in
Figure 3a. Each simulation lasts for 35 time steps. Targets labeled number 5 and 6 in Figure 2b appear within
the monitoring region at time steps 9 and 17 respectively. Target 6 disappears from the monitoring region at
time step 24.
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Figure 2: Tracks of targets for the two experiments

To compare the performance of different filters we need an objective error metric. We use the optimal
subpattern assignment (OSPA) metric24 to compare the true and estimated multitarget states. The OSPA metric
can compare sets of varying dimensionality and penalize errors in cardinality estimation using the cardinality
penalty factor c. The multitarget state is estimated by calculating, for each Bernoulli component, the average
of all the particles associated with that component after the resampling step.

For each of the above two experiments, 20 different measurement sequences are generated by changing the
realisation of the noise and for each realisation the tracking algorithms are applied 5 times with different initial-
ization each time. Thus the target tracks are processed for a total of 20 × 5 = 100 times and the average error
is calculated over all the 100 runs. The average OSPA error calculations for Exp. 1 data are shown in Table 1
for three different values of cardinality penalty factor c. A higher value of c implies a higher error penalty for
each cardinality mistake made by the filter. The CPHD filter and the MBR-CPHD filter both perform better
than the plain MBR filter for all values of c. For low values of c the MBR-CPHD filter performs slightly better
than the CPHD filter. This analysis implies that the cardinality estimate of the CPHD filter is very robust
whereas the hybrid MBR-CPHD filter can provide better state estimates. The average processing times of the
different algorithms per time step, when using a desktop computer, have been reported in Table 1. The hybrid
approach is the fastest; it does not have to do the computationally demanding clustering at each time step like
the CPHD filter, nor must it process multiple redundant Bernoulli components to account for target births like
the multi-Bernoulli filter.

Table 1: Mean and standard deviation of the OSPA error and average processing times for Exp. 1.
Algorithm OSPA error (Mean ± SD) Processing time (s)

c = 0.5 c = 1 c = 1.5
CPHD 0.12± 0.01 0.12± 0.01 0.12± 0.01 1.00
MBR 0.12± 0.02 0.15± 0.05 0.17± 0.07 0.94

MBR-CPHD 0.11± 0.01 0.11± 0.02 0.12± 0.03 0.66



An average OSPA error analysis for the Exp. 2 data is shown in Table 2. The MBR filter has relatively higher
error compared to the previous experiment and the error increases significantly with the increase in value of c
indicating that there are frequent cardinality errors. The MBR-CPHD filter performs better than the CPHD
filter at all values of c. Thus the hybrid MBR-CPHD filter is able to inherit the robust cardinality estimate
from the CPHD filter and accurate state estimates from the MBR filter. The average processing time of the
algorithms are provided in Table 2.

Table 2: Mean and standard deviation of the OSPA error and average processing times for Exp. 2.
Algorithm OSPA error (Mean ± SD) Processing time (s)

c = 0.5 c = 1 c = 1.5
CPHD 0.13± 0.01 0.13± 0.01 0.13± 0.01 0.82
MBR 0.14± 0.03 0.19± 0.07 0.23± 0.12 0.87

MBR-CPHD 0.11± 0.01 0.12± 0.02 0.12± 0.02 0.59

To further analyse the simulation results for Exp. 2 a box-and-whisker plot of the OSPA error as the simulation
progresses is shown in Figure 3b for the cardinality penalty factor c = 0.5. The cardinality variation in Exp.2 is
shown in Figure 3a. At time steps 9 and 17 new targets appear in the monitoring region and we note that the
MBR filter shows a large variation in its OSPA error at and after those time steps due to cardinality estimation
errors. The hybrid MBR-CPHD filter has lower median error when compared to the CPHD filter at most time
steps. A larger number of outliers can be seen in the plot for the MBR and MBR-CPHD filters when compared
to the CPHD filter which is also reflected as increased standard deviation in Table 2.
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Figure 3: (a) True cardinality and (b) box-and-whisker plot for Exp. 2. Boxes indicate the 25-75 interquartile
range; whiskers extend 1.5 times the range and ‘+’ symbols indicate outliers lying beyond the whiskers.

6. CONCLUSIONS

We developed the hybrid multi-Bernoulli CPHD filter for superpositional sensors. An IIDC RFS is introduced
in the prediction step to account for newborn targets. The update step propagates the conditional PHD for
each component of the RFS. Update equation for the cardinality distribution of the IIDC RFS is also given.
Finally the new targets identified by the IIDC RFS component are approximated by Bernoulli components so
that each target has its own density function which in turn leads to better state estimation. The hybrid filter
has been compared with the multi-Bernoulli and CPHD filter in a simulated multitarget tracking application
using the radio frequency measurement modality. From simulations it can be seen that the hybrid filter is more
accurate than the multi-Bernoulli filter; while the cardinality estimate is not as robust as that of the CPHD
filter, the discrepancy is not substantial, and the state estimates of individual targets are more accurate. The
hybrid multi-Bernoulli CPHD filter is also computationally faster than the multi-Bernoulli or CPHD filter.
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