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Abstract—The superpositional sensor model encompasses an
important class of sensors such as acoustic sensors and radio-
frequency sensors used for multi-target tracking. Recently, ran-
dom finite set based moment filters such as PHD and CPHD filters
have been developed for superpositional sensors. In this paper we
derive multi-Bernoulli filter equations for superpositional sensors.
The multi-Bernoulli update is derived by defining a conditional
PHD for each component of the multi-Bernoulli random finite set
and then following an approach similar to that used in deriving
the CPHD filter update equation for superpositional sensors. The
cardinality distribution is also updated along with the conditional
PHD.
Keywords: multi-Bernoulli filter, random finite set, super-
positional sensors, PHD filter, CPHD filter, multi-target
tracking.

I. INTRODUCTION

Multi-target tracking is the problem of detecting and track-
ing a possibly time varying number of mobile targets. The
random vector based formulation of this problem is inefficient
for implementation because of the time varying number of
targets. To address this issue, Mahler [1], [2] proposed the
random finite set (RFS) based formulation of the multi-target
tracking problem and developed the tools of finite set statistics
(FISST). This framework allows us to efficiently model the
problem of multi-target multi-source target tracking and derive
new tracking algorithms.

The commonly studied sensors in most of the literature
concerning random finite set tracking have the following
modelling assumptions: (i) each target causes either one or no
measurement; and (ii) each measurement is either caused by
a single target or clutter. We are interested in the multi-target
tracking problem when superpositional sensors are used to
make observations. The observations made by superpositional
sensors are functions of all the targets present rather than
just one of them. These sensors have the following modelling
assumptions: (i) each target can contribute to any number of
measurements; (ii) each measurement is potentially affected by
multiple targets in an additive fashion; and (iii) measurements
are not independent. Many sensors belong to the category
of superpositional sensors. Examples include direction-of-
arrival sensors for linear antenna arrays [3], antenna arrays in
multi-user detection for wireless communication networks [4],
acoustic amplitude sensors [5], and radio frequency (RF)
tomographic tracking systems [6].

Probability hypothesis density (PHD) and cardinalized prob-
ability hypothesis density (CPHD) filters are first-moment

based filters developed using the RFS approach and the
tools of FISST. These filters were derived by Mahler in [7]
and [8] for the case of standard sensors. The PHD filter
for superpositional sensors was derived by Thouin, Nannuru
and Coates in [9] where it was called the additive likelihood
moment (ALM) filter1. In [11] Mahler and El-Fallah developed
the CPHD filter for superpositional sensors. Nannuru et al.
provided a summary of the PHD and CPHD filters for su-
perpositional sensors in [12] and presented auxiliary particle
filter algorithms. The paper described numerical simulations
of multi-target tracking in environments of acoustic sensor
network and radio frequency sensor network.

The PHD and CPHD filters assume the underlying distri-
butions to be Poisson and i.i.d. cluster multi-target random
process respectively. The multi-Bernoulli filter is based on a
multi-Bernoulli modelling of the underlying RFS. A multi-
Bernoulli RFS is a union of finitely many Bernoulli random
finite sets, each of which models the probability of existence
and location distribution of a single target. The multi-Bernoulli
filter was proposed by Mahler in [2] and approximately prop-
agates the full multi-target distribution for standard sensors.
Vo et al. in [13] present a modified version of the filter which
corrects for the cardinality bias of the original formulation.

The corresponding Bernoulli filter was used for single
target tracking by authors in [14], [15]. The multi-Bernoulli
filter was adapted for estimation and detection of multiple
objects from image observations in track-before-detect appli-
cations [16] under the assumption that the likelihood has a
separable form. This assumption is valid when the objects
are non-overlapping. Hoseinnezhad et al. [17] used this filter
for tracking multiple targets in background subtracted image
sequences. Williams [18] has proposed a hybrid combina-
tion of the PHD and multi-Bernoulli filter for multi-target
tracking resulting in fast track initiation and fewer Bernoulli
components. The particle based implementations of the multi-
Bernoulli filter have been discussed in [13], [16]. Lian et
al. [19] have performed convergence analysis of the sequential
Monte Carlo (SMC) implementations of the multi-Bernoulli
filters.

In this paper we derive the approximate multi-Bernoulli
filter for superpositional sensors. Our approach is to define a
conditional PHD for each Bernoulli component of the multi-

1An error in the main update equation of ALM filter in [9] was corrected
in an errata [10]; the correct equations were also presented in [11].



Bernoulli RFS. The conditioning is considered with respect
to the event that if the element x is present, it is generated
by the Bernoulli RFS component under consideration. This
allows us to update the PHD for each individual Bernoulli
RFS component and hence propagate the multi-Bernoulli filter
parameters. We also update the cardinality distribution of the
multi-Bernoulli RFS in order to propagate the probabilities
of existence for each component. The techniques applied in
the derivation of PHD and CPHD filters for superpositional
sensors [12] are employed to obtain approximate but compu-
tationally tractable multi-Bernoulli filter update equations.

The paper is organized as follows. In Section II we summa-
rize the problem of multi-target tracking using superpositional
sensors. Section III provides a brief overview of the multi-
Bernoulli RFS and its statistical properties which are later
used for deriving the filter equations. The multi-Bernoulli filter
prediction step is described in Section IV-A. The conditional
PHD update equations for superpositional sensors are derived
in Section IV-B. The cardinality update is derived in Sec-
tion IV-D. We summarize the contribution of the paper and
make concluding remarks in Section V.

II. PROBLEM FORMULATION

In this section we describe the problem of multi-target
tracking when the observations are of superpositional form.
The true system state at time k is a finite set xk which
can be modeled as a realization of a random finite set
Xk = {xk,1, . . .xk,nk

} where nk ≥ 0 is number of targets
present at time k. The single target state dimension is nx,
hence xk,i ∈ Rnx ∀i. We assume that the individual target
dynamics are specified according to a Markovian model of
the form xk+1,i = fk+1|k(xk,i,uk) where uk is the noise.

The true state is hidden but can be inferred from the mea-
surements zk = [z1

k . . . z
nz

k ]. The collection of measurements
up to time k is denoted by Z [k] = {z1, . . . , zk}. In the
superpositional sensor model, the likelihood function relating
the observation zk and true state xk at time k is of the form:

hzk
(xk) = hzk

(r(xk))

= hzk

(∑
x∈xk

g(x)

)
(1)

where hzk
is a real-valued function and g and r are (potentially

non-linear) functions mapping to vectors of reals. The function
r operates on a finite set whereas the function g operates on
the target states that are members of the set. When the sensor
observation noise is Gaussian with zero mean and covariance
matrix Σr, the likelihood takes the form,

hzk
(xk) = NΣr

(zk − r(xk)) (2)

where NΣ(z) denotes the Gaussian density function with zero
mean and covariance matrix Σ evaluated at z.

The multi-target tracking problem is to estimate the number
and location of all the targets present at every time step k.
This is obtained from the posterior distribution of the multi-
target state at each time step k given all the observations up to

time k, i.e., f(Xk|Z [k]). The optimal solution is to propagate
the posterior distribution using the recursive Bayes equations
within the FISST framework. In this paper we solve the Bayes
equations in an approximate manner under the assumption that
the multi-target state is a multi-Bernoulli RFS at each step.

III. MULTI-BERNOULLI RANDOM FINITE SETS

In this section we provide an overview of multi-Bernoulli
random finite sets and some of their statistical properties.
A multi-Bernoulli RFS is union of finitely many Bernoulli
random finite sets. Hence we start with a brief review of
Bernoulli random finite sets.

A Bernoulli random finite set is an empty set with proba-
bility 1− r or is a singleton set with probability r with its el-
ement x distributed according to the probability density p(x).
It is completely described by specifying the parameter set
{r, p(x)}. The multi-target probability density of a Bernoulli
RFS is given by

f(X) =


1− r, if X = φ

r · p(x), if X = {x}
0 if |X| > 1.

(3)

where |X| denotes the cardinality of the RFS X . The cardi-
nality distribution π(n) of the Bernoulli RFS can be easily
seen to be given by

π(n) =

∫
|X|=n

f(X)δX (4)

π(n) =


1− r if n = 0

r if n = 1

0 if n ≥ 2.

(5)

The first-moment or the probability hypothesis density (PHD)
of the Bernoulli RFS is given by

D(x) =

∫
f({x} ∪W )δW (6)

= r · p(x). (7)

Note that the integrals above are set integrals [2] and are
defined as∫
f(X)δX = f(φ) +

∞∑
n=1

1

n!

∫
f({x1, . . . ,xn})dx1 . . . dxn

A multi-Bernoulli RFS χ having M components is a union
of a finite number of Bernoulli random finite sets and can be
written as

χ = χ1 ∪ χ2 ∪ · · · ∪ χM (8)

where each of the χi is a Bernoulli RFS. Let the parameters
of the ith Bernoulli random finite set be given by {ri, pi(x)}.
The parameter set of the corresponding multi-Bernoulli RFS is
denoted by {ri, pi(x)}Mi=1. The multi-target probability density
of a multi-Bernoulli RFS [13] is:

f({x1,x2...xn}) = Q0 ×
∑

1≤i1 6=···6=in≤M

n∏
j=1

rijpij (xj)

1− rij
(9)



where Q0 =
∏M

j=1(1 − rj) and n ≤ M . The cardinality
distribution of the multi-Bernoulli RFS is given by

π(n) =


Q0 if n = 0

Q0

n!
×

∑
1≤i1 6=···6=in≤M

n∏
j=1

rij
1− rij

if n ≤M

0 if n > M.

(10)

The PHD of the multi-Bernoulli RFS (Ex. 91, Chap. 16, [2])
can be shown to be

D(x) =

M∑
i=1

ri · pi(x). (11)

Similarly the second factorial moment density of the multi-
Bernoulli RFS can be computed to be

D({x1,x2}) =

∫
f({x1,x2} ∪W )δW (12)

=

M∑
i=1

M∑
j=1,j 6=i

ri · rj · pi(x1) · pj(x2) (13)

= D(x1)D(x2)−
M∑
i=1

r2
i · pi(x1) · pi(x2). (14)

We now define the conditional PHD, Di(x), corresponding to
the ith component of the multi-Bernoulli RFS. It is obtained
by conditioning on the following event: if x is a member of the
multi-target state, then element x is generated by the Bernoulli
random finite set χi. We denote this event by (x ← i), and
define the conditional PHD as

Di(x) =

∫
f({x} ∪W |x← i)δW (15)

Expanding using the definition of set integral we have

Di(x)

=

∞∑
n=0

1

n!

∫
f({x,y1, · · ·yn}|x← i)dy1 · · · dyn (16)

= ri · pi(x)

×
∞∑

n=0

1

n!

∫
x/∈{y1,···yn}

f ī({y1, · · ·yn})dy1 · · · dyn

= ri · pi(x)×
∫
x/∈W

f ī(W )δW (17)

= ri · pi(x)×
∫
f ī(W )δW (18)

= ri · pi(x) (19)

where f ī(Y ) is the multi-target probability density of the
multi-Bernoulli RFS χ in (8) but excluding the ith Bernoulli
component χi. Equation (18) follows from equation (17)
because the probability of the event x ∈ W is zero. Defining
the conditional PHD Di(x) is a key step in deriving the up-
date equation for the multi-Bernoulli filter for superpositional
sensors.

IV. MULTI-BERNOULLI FILTER FOR SUPERPOSITIONAL
SENSORS

The multi-Bernoulli filter propagates over time the param-
eters of the multi-Bernoulli RFS representing the multi-target
state. The propagation is done in two stages, prediction and
update. The prediction step propagates the components using
the known motion model. The motion model accounts for the
survival of targets from the previous time step and also for the
birth of new targets. Target spawning is not considered in this
paper. The update step re-evaluates the component parameters
using the most recent observation. Developing the update step
for the multi-Bernoulli filter under the superpositional sensor
model assumption is the major contribution of this paper. It
consists of two parts: the conditional PHD update and the
cardinality distribution update.

A. Multi-Bernoulli filter prediction

The superpositional observation model does not change
the multi-Bernoulli prediction equations [2], [16]. Let
{rk,i, pk,i(x)}Mk

i=1 be the parameter set of the posterior multi-
Bernoulli density at time k. Let the predicted multi-Bernoulli
set have Mk+1|k elements. For brevity we use the following
abbreviated notation for predicted multi-Bernoulli parameters:

ri = rk+1|k,i (20)
pi(x) = pk+1|k,i(x) (21)

The predicted multi-Bernoulli RFS parameters are

{ri, pi(x)}Mk+1|k
i=1

= {rP,i, pP,i(x)}Mk
i=1 ∪ {rB,i, pB,i(x)}Mk+1|k

i=Mk+1 (22)

where {rP,i, pP,i(x)}Mk
i=1 are the parameters of targets propa-

gated from the previous time step and {rB,i, pB,i(x)}Mk+1|k
i=Mk+1

are the parameters of newly born targets. The predicted target
parameters at time k+1 are related to the posterior parameters
at time k as

rP,i = rk,i × 〈pk,i, ps〉 (23)

pP,i(x) =
〈fk+1|k(x|·), pk,ips〉

〈pk,i, ps〉
(24)

where the scalar product is defined as 〈a, b〉 =
∫
a(x)b(x)dx

and ps(x) is the survival probability. The parameters of newly
born targets are given by the target birth model.

B. Multi-Bernoulli filter conditional PHD update

We now derive the multi-Bernoulli filter conditional PHD
update equation for superpositional sensors. For the purpose of
presenting a simpler and clearer derivation, we assume that no
new targets are added in the update step and hence Mk+1 =
Mk+1|k. Generalization of the equations is straightforward.
Let the updated multi-Bernoulli parameters be abbreviated as
follows:

r′i = rk+1,i (25)
p′i(x) = pk+1,i(x) (26)



Thus the parameters of the posterior multi-Bernoulli RFS are
{r′i, p′i(x)}Mk+1

i=1 . We now turn our attention to the predicted
and posterior conditional PHD at time k + 1, Di

k+1|k(x) and
Di

k+1(x), conditioned on the following event: if element x
is a member of the multi-target state, then x is generated by
Bernoulli RFS χi. These PHDs are given from equation (19)
as

Di
k+1|k(x) = ri · pi(x) (27)

Di
k+1(x) = r′i · p′i(x) (28)

By definition we also have

Di
k+1(x) =

∫
fk+1|k+1({x} ∪W |x← i) δW (29)

Using equation (28) and applying Bayes’ rule to equation (29)
we get

r′i · p′i(x) =

∫
fk+1|k+1({x} ∪W |x← i) δW (30)

=

∫
fk+1(zk+1|{x} ∪W,x← i)fk+1|k({x} ∪W |x← i) δW

fk+1(zk+1|Z [k],x← i)

= ri · pi(x)

∫
fk+1(zk+1|{x} ∪W )× f īk+1|k(W ) δW

fk+1(zk+1|Z [k],x← i)
(31)

where f īk+1|k(W ) is the multi-target distribution defined as

f īk+1|k(W ) =
fk+1|k({x} ∪W |x← i)

ri · pi(x)
(32)

This is a valid distribution which integrates to 1 using the
results in equations (15)-(19). For any W such that x /∈W it
corresponds to the predicted multi-target distribution excluding
the contribution from the ith Bernoulli component χi. Thus
we have

r′i · p′i(x) = ri · pi(x)

×
∫
fk+1(zk+1|{x} ∪W )× f īk+1|k(W ) δW∫

fk+1(zk+1|W )× fk+1|k(W |Z [k],x← i) δW

To simplify the denominator, we note that∫
fk+1(zk+1|W )× fk+1|k(W |Z [k],x← i) δW

=

∫
fk+1(zk+1|W )× fk+1|k(W ) δW (33)

This is because the conditional event (x← i) has no effect on
the integral. To see this consider the following decomposition
of the integral on the left:∫

fk+1(zk+1|W )× fk+1|k(W |Z [k],x← i) δW

=

∫
x∈W

fk+1(zk+1|W )× fk+1|k(W |Z [k],x← i) δW

+

∫
x/∈W

fk+1(zk+1|W )× fk+1|k(W |Z [k]) δW (34)

But the first integral is zero since x ∈W is a zero probability
event. To the second integral we can add the following term,

which has zero probability and thus does not affect the
evaluation of the integral:∫

x∈W
fk+1(zk+1|W )× fk+1|k(W |Z [k]) δW (35)

This leads to the expression on the right hand side of equation
(33). Hence we have

r′i · p′i(x) = ri · pi(x)

×
∫
fk+1(zk+1|{x} ∪W ī)× f īk+1|k(W ī) δW ī∫

fk+1(zk+1|W )× fk+1|k(W ) δW

In above notation W and W ī correspond to the random finite
sets with distributions fk+1|k(W ) and f īk+1|k(W ī), respec-
tively.

C. Computationally tractable approximations for the case of
Gaussian noise

Using the Gaussian sensor noise assumption and the super-
positional likelihood model, we have:

r′i · p′i(x) = ri · pi(x)

×
∫
NΣr

(zk+1 − g(x)− r(W ī))× f īk+1|k(W ī) δW ī∫
NΣr

(zk+1 − r(W ))× fk+1|k(W ) δW

Applying the transformation yī = r(W ī) in the numerator
and y = r(W ) in the denominator and using the formula for
transformation of variables we have,

r′i · p′i(x) = ri · pi(x)

×
∫
NΣr

(zk+1 − g(x)− yī)×Qī
k+1|k(yī) dyī∫

NΣr (zk+1 − y)×Qk+1|k(y) dy
(36)

where Qk+1|k(y) and Qī
k+1|k(yī) are the probability distri-

butions of the random vectors y and yī respectively. Using
the approximations Qk+1|k(y) ≈ NCk+1

(y − µk+1) and
Qī

k+1|k(yī) ≈ NC ī
k+1

(yī − µī
k+1),

r′i · p′i(x) ≈ ri · pi(x)

×

∫
NΣr

(zk+1 − g(x)− yī)×NC ī
k+1

(yī − µī
k+1) dyī∫

NΣr
(zk+1 − y)×NCk+1

(y − µk+1) dy

r′i · p′i(x) ≈ ri · pi(x) ·
NΣr+C ī

k+1
(zk+1 − g(x)− µī

k+1)

NΣr+Ck+1
(zk+1 − µk+1)

(37)

where µk+1 and Ck+1 are the mean and covariance matrix of
the distribution Qk+1|k(y) and µī

k+1 and C ī
k+1 are the mean

and covariance matrix of the distribution Qī
k+1|k(yī). These

mean and covariance matrix parameters can be found using
the quadratic version of Campbell’s theorem [11], [12] and
are given by

µk+1 =

Mk+1|k∑
i=1

ri · si (38)

Ck+1 =

Mk+1|k∑
i=1

(ri · vi − r2
i · sisTi ) (39)



where si = 〈pi, g〉, vi = 〈pi, ggT 〉 and

µī
k+1 = µk+1 − ri · si (40)

C ī
k+1 = Ck+1 − (ri · vi − r2

i · sisTi ) (41)

The derivation of these parameters is provided in Appendix A.

D. Multi-Bernoulli filter cardinality update

The conditional PHD update equation propagates the prod-
uct of the form ri ·pi(x) for each Bernoulli component. Since
the joint product is propagated, it is not possible to infer
the update equation for the probability of existence. Hence
we additionally propagate the cardinality distribution of the
multi-Bernoulli RFS to capture the information in existence
probabilities. The cardinality distribution at time k+1 is given
by

πk+1(n) =

∫
|W |=n

fk+1|k+1(W )δW (42)

=

∫
|W |=n

fk+1(zk+1|W )fk+1|k(W )δW

fk+1(zk+1|Z [k])
(43)

=

∫
|W |=n

fk+1(zk+1|W )fk+1|k(W )δW∫
fk+1(zk+1|W )fk+1|k(W )δW

(44)

= πk+1|k(n)

∫
fk+1(zk+1|W )fnk+1|k(W )δW∫
fk+1(zk+1|W )fk+1|k(W )δW

(45)

where,

fnk+1|k(W ) =
1

πk+1|k(n)
· δ|W |(n) · fk+1|k(W ) (46)

Using the Gaussian sensor noise assumption and transforma-
tion of variables as before, we have the expression

πk+1(n) ≈ πk+1|k(n)

×
∫
NΣr (zk+1 − yn)×NCn

k+1
(yn − µn

k+1)dyn∫
NΣr

(zk+1 − y)×NCk+1
(y − µk+1)dy

πk+1(n) ≈ πk+1|k(n) ·
NΣr+Cn

k+1
(zk+1 − µn

k+1)

NΣr+Ck+1
(zk+1 − µk+1)

(47)

where µk+1 and Ck+1 are given from equations (38) and (39).
The quantities µn

k+1 and Cn
k+1 are obtained using the quadratic

form of Campbell’s theorem and the PHD of the multi-target
distribution fnk+1|k(W ) and are given by

µn
k+1 =

1

πk+1|k(n)

Mk+1|k∑
i=1

ri · πī
k+1|k(n− 1) · si (48)

Cn
k+1 =

1

πk+1|k(n)

(Mk+1|k∑
i=1

ri · πī
k+1|k(n− 1) · vi

+
∑
i6=j

ri · rj · πī,j̄
k+1|k(n− 2) · sisTj

)
− µn

k+1(µn
k+1)T

(49)

The above parameters are derived in Appendix B.

V. CONCLUSIONS

In this paper we developed a computationally tractable
approximate multi-Bernoulli filter for superpositional sensors.
The key step in deriving the filter update equation is defining
a conditional PHD. Updating this conditional PHD for each
component of the multi-Bernoulli RFS allows us to propagate
the multi-target posterior distribution. The probabilities of
existence of individual components are indirectly propagated
by approximately updating the cardinality distribution. The
proposed filter equations can be implemented using SMC
methods, with the conditional PHD being propagated by using
one particle filter per Bernoulli component. In future work, we
will describe particle filter based implementations of the multi-
Bernoulli filter and assess performance in comparison to the
PHD and CPHD filters developed previously.

APPENDIX A

Using the quadratic version of Campbell’s theorem we have

µk+1 =

∫
g(x) ·Dk+1|k(x)dx

Ck+1 =

∫
g(x) · g(x)T ·Dk+1|k(x)dx

+

∫ ∫
g(x1) · g(x2)T

(
Dk+1|k({x1,x2})

−Dk+1|k(x1) ·Dk+1|k(x2)

)
dx1dx2

For the multi-Bernoulli distribution, using the expression for
the PHD and the second-moment density from equations (11)
and (14) we have

µk+1 =

∫
g(x) ·

Mk+1|k∑
i=1

ri · pi(x)

 dx (50)

=

Mk+1|k∑
i=1

ri ×
∫
g(x) · pi(x)dx (51)

=

Mk+1|k∑
i=1

ri · si, where si = 〈pi, g〉 (52)

Ck+1 =

∫
g(x)g(x)T

Mk+1|k∑
i=1

ri · pi(x)

 dx

−
∫ ∫

g(x1)g(x2)T

Mk+1|k∑
i=1

r2
i · pi(x1) · pi(x2)

 dx1dx2

=

Mk+1|k∑
i=1

(ri · vi − r2
i · sisTi ), where vi = 〈pi, ggT 〉 (53)

The parameters µī
k+1 and C ī

k+1 can be obtained in a similar
manner by considering the predicted multi-Bernoulli distribu-
tion but excluding the ith Bernoulli component. Hence we



have

µī
k+1 =

Mk+1|k∑
j=1,j 6=i

rj · sj = µk+1 − ri · si (54)

C ī
k+1 =

Mk+1|k∑
j=1,j 6=i

(rj · vj − r2
j · sjsTj )

= Ck+1 − (ri · vi − r2
i · sisTi ) (55)

APPENDIX B

The PHD of the multi-target distribution fnk+1|k(W ) is by
definition

Dn
k+1|k(x)

=

∫
fnk+1|k({x} ∪W )δW (56)

=
1

πk+1|k(n)

∫
|W |=n−1

fk+1|k({x} ∪W )δW (57)

=
1

πk+1|k(n)
· 1

(n− 1)!

×
∫
fk+1|k({x,y1, . . . ,yn−1})dy1 . . . dyn−1 (58)

=
1

πk+1|k(n)
· 1

(n− 1)!

×
Mk+1|k∑
i=1

ri · pi(x) · (n− 1)! · πī
k+1|k(n− 1) (59)

=
1

πk+1|k(n)

Mk+1|k∑
i=1

ri · pi(x) · πī
k+1|k(n− 1) (60)

where πī
k+1|k(n) is the cardinality distribution excluding the

ith component of the multi-Bernoulli RFS. Similarly we can
find the second factorial density as

Dn
k+1|k({x1,x2}) =

1

πk+1|k(n)

×
Mk+1|k∑
i=1

Mk+1|k∑
j=1,i6=j

ri · pi(x1) · rj · pj(x2) · πī,j̄
k+1|k(n− 2)

where πī,j̄
k+1|k(n) is the cardinality distribution excluding the

ith and jth component of the multi-Bernoulli RFS. Applying
Campbell’s theorem we get

µn
k+1 =

∫
g(x) ·Dn

k+1|k(x)dx

=

∫
g(x)

πk+1|k(n)

Mk+1|k∑
i=1

ri · pi(x) · πī
k+1|k(n− 1)

 dx

=
1

πk+1|k(n)

Mk+1|k∑
i=1

ri · πī
k+1|k(n− 1) · si

Cn
k+1 =

1

πk+1|k(n)

(Mk+1|k∑
i=1

ri · πī
k+1|k(n− 1) · vi

+
∑
i 6=j

ri · rj · πī,j̄
k+1|k(n− 2) · sisTj

)
− µn

k+1(µn
k+1)T

REFERENCES

[1] R. Mahler, ““Statistics 101” for multisensor, multitarget data fusion,”
IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 1, pp.
53–64, Jan. 2004.

[2] ——, Statistical multisource-multitarget information fusion. Artech
House, Boston, 2007.

[3] B. Balakumar, A. Sinha, T. Kirubarajan, and J. Reilly, “PHD filtering
for tracking an unknown number of sources using an array of sensors,”
in Proc. Workshop Stat. Sig. Proc., Bordeaux, France, Jul. 2005.

[4] D. Angelosante, E. Biglieri, and M. Lops, “Multiuser detection in a dy-
namic environment: Joint user identification and parameter estimation,”
in Proc. IEEE Int. Symp. Inf. Theory, Nice, France, Jun. 2007.

[5] O. Hlinka, O. Sluciak, F. Hlawatsch, P. M. Djuric, and M. Rupp, “Likeli-
hood consensus and its application to distributed particle filtering,” IEEE
Trans. Sig. Proc., vol. 60, no. 8, pp. 4334–4349, Aug. 2012.

[6] J. Wilson and N. Patwari, “Radio tomographic imaging with wireless
networks,” IEEE Trans. Mobile Computing, vol. 9, no. 5, pp. 621–632,
Jan. 2010.

[7] R. Mahler, “Multitarget Bayes filtering via first-order multitarget mo-
ments,” IEEE Trans. Aerospace and Electronic Systems, vol. 39, no. 4,
pp. 1152–1178, Oct. 2003.

[8] ——, “PHD filters of higher order in target number,” IEEE Trans.
Aerospace and Electronic Systems, vol. 43, pp. 1523–1543, Oct. 2007.

[9] F. Thouin, S. Nannuru, and M. Coates, “Multi-target tracking for
measurement models with additive contributions,” in Proc. Int. Conf.
Information Fusion, Chicago, IL, U.S.A., Jul. 2011.

[10] ——. Multi-target tracking for measurement models with additive
contributions. [Online]. Available: http://networks.ece.mcgill.ca/node/
189

[11] R. Mahler and A. El-Fallah, “An approximate CPHD filter for super-
positional sensors,” in Proc. SPIE Int. Conf. Sig. Proc., Sensor Fusion,
Target Recog., Baltimore, MD, U.S.A., Apr. 2012.

[12] S. Nannuru, M. Coates, and R. Mahler. (2013) Computationally-
tractable approximate PHD and CPHD filters for superpositional
sensors. To appear, IEEE J. Sel. Topics in Sig. Proc. [Online].
Available: http://networks.ece.mcgill.ca/node/205

[13] B. Vo, B. Vo, and A. Cantoni, “The cardinality balanced multi-target
multi-Bernoulli filter and its implementations,” IEEE Trans. Signal
Proc., vol. 57, no. 2, pp. 409–423, 2009.

[14] B. Vo, C. See, N. Ma, and W. Ng, “Multi-sensor joint detection and
tracking with the Bernoulli filter,” IEEE Trans. Aerospace and Electronic
Systems, vol. 48, no. 2, pp. 1385–1402, 2012.

[15] B. Ristic and S. Arulampalam, “Bernoulli particle filter with observer
control for bearings-only tracking in clutter,” IEEE Trans. Aerospace
and Electronic Systems, vol. 48, no. 3, pp. 2405–2415, 2012.

[16] B. Vo, B. Vo, N. Pham, and D. Suter, “Joint detection and estimation of
multiple objects from image observations,” IEEE Trans. Signal Proc.,
vol. 58, no. 10, pp. 5129–5141, 2010.

[17] R. Hoseinnezhad, B. Vo, and B. Vo, “Visual tracking in background
subtracted image sequences via multi-Bernoulli filtering,” IEEE Trans.
Signal Proc., vol. 61, no. 2, pp. 392–397, 2013.

[18] J. Williams, “Hybrid Poisson and multi-Bernoulli filters,” in Proc. Int.
Conf. Information Fusion, Singapore, Jul. 2012.

[19] F. Lian, C. Li, C. Han, and H. Chen, “Convergence analysis for the
SMC-MeMBer and SMC-CBMeMBer filters,” J. of App. Mathematics,
vol. 2012, 2012.


