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ABSTRACT

The ensemble Kalman filter relies on a Gaussian approximation being a reasonably accurate representation of
the filtering distribution. Reich recently introduced a Gaussian mixture ensemble transform filter which can
address scenarios where the prior can be modeled using a Gaussian mixture. Reichs derivation is suitable for a
scalar measurement or a vector of uncorrelated measurements. We extend the derivation to the case of vector
observations with arbitrary correlations. We illustrate through numerical simulation that implementation is
challenging, because the filter is prone to instability.
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1. INTRODUCTION

Monte Carlo methods have been extensively used for solving the problem of state estimation in dynamical
systems with noisy observations. This problem is referred to as the data assimilation or filtering problem. One
of the most commonly studied Monte Carlo methods is the sequential Monte Carlo (SMC) filter, also called the
particle filter [1]. In the SMC filter the system state density is approximated using a weighted particle measure.
The sampling-importance-resampling principle is used to propagate the particles and weights over time as new
observations are made available [1].

Another class of Monte Carlo methods, studied and applied in the geophysical and meteorological literature,
are the ensemble transform methods [2–5] . They differ from the SMC methods in the way state density is
approximated. A collection or ensemble of particles with equal weights is used approximate the density. Propa-
gation of density is achieved by transporting or moving the particles appropriately to reflect the posterior state
density. Many ensemble methods have been proposed in the literature with different underlying approximations
and particle transportation techniques.

The ensemble transform methods have several advantages over SMC methods in certain application areas.
Since the weight update stage in SMC filter is replaced by particle transport in ensemble method, there is no need
for the particle resampling step and weight degeneracy is avoided. In problems with very high state dimensions
such as weather prediction, SMC methods are not efficient because they require very large number of particles.
Ensemble methods can work with fewer particles even if the state dimension is large.

The ensemble Kalman filter (EnKF) proposed by Evensen in [2] propagates the particle ensemble based on
the Kalman filter equations. The empirical mean and covariance matrix computed from the ensemble converges
to the mean and covariance matrix given by Kalman filter in the limit when the number of particles is increased
to infinity. The ensemble represents samples from the true posterior distribution if the system dynamics are
linear and the prior and posterior densities are Gaussian. Formulations of the EnKF which do not use perturbed
observations have also been proposed and are called ensemble square root filters [3]. The continuous time
formulation of the EnKF was introduced by Bergemann et al. in [4, 6] and is called the ensemble Kalman-Bucy
filter. A good survey of the different ensemble filters is provided in the recent paper by Cotter et al. in [5].

Though the EnKF has been successfully used in many applications, its performance degrades when the system
dynamics are highly non-linear or the densities involved are non-Gaussian. To handle problems with non-Gaussian
densities extensions of EnKF have been proposed which propagate the particle ensemble under the assumptions
of Gaussian mixture densities [7–9]. The ensemble Gaussian mixture filter (EGMF) [9] was developed by Reich
based on the continuous time formulation of the analysis step in Bayes filter. This formulation models the



transition from the prior density to the posterior density using a continuity equation in artificial time [10]. The
ensemble update is performed by numerically solving a differential equation over the artificial time parameter.

Reichs derivation of the EGMF is suitable for the case of scalar measurements or uncorrelated vector measure-
ments, i.e., when the measurement noise covariance matrix is diagonal. In this paper we extend the derivation
to include vector measurements with arbitrary correlations. This requires solving a general second order ellipti-
cal partial differential equation (PDE). Using an appropriate transformation of variables, this elliptical PDE is
simplified to a system of second order PDE’s which can be easily solved.

We derive the filter equations under the assumptions of linear system and observation model and Gaussian
noise. Under these assumptions and using Gaussian mixture prior, the posterior density is also a Gaussian
mixture. In this setting, a mixture of Kalman filters could be used for optimal data assimilation by propagating
the mean and covariance matrices of each component and its weight. The ensemble Gaussian filter has some
potential advantages compared to this approach; since it uses particles rather than an explicit mixture of Gaus-
sians, it can more readily approximate non-linear state dynamics. A mixture of Kalman filters can also struggle
when the state dimension is high (> 15); the particle representation has the potential to mitigate this limitation,
although as we discuss later, successful implementation in higher dimensions remains challenging.

Our current work has similarities to the particle flow filters introduced by Daum and Huang [11, 12]. These
filters are also based on the concept of transporting the particles from a prior density to the posterior density
without any associated particle weights. In Daum-Huang filters a log-homotopy function is introduced between
the prior and the posterior densities. This leads to an ordinary differential equation (ODE) defining the flow of
particles. Numerical solution of the ODE migrates the particles from the prior to the posterior. Many different
ODE formulations have been proposed by considering different underlying assumptions. Some of the recent
particle flow algorithms are Coulomb’s law particle flow [13] and small curvature particle flow [14]. In [15],
Duam and Huang have provided a comparison of their particle flow methodology and the optimal transport
approach used in this paper. As they highlight, the particle flow methods are more mature for dynamic state
estimation and can already successfully address high-dimensional systems. Nevertheless, there are differences
between the methods and there is value in trying to extend the applicability of the optimal transport approaches
and to improve their implementation.

The paper is organized as follows. Section 2 provides an introduction to the filtering problem with inter-
mittent observations and its continuous time formulation. The ensemble Gaussian mixture filter is discussed
in Section 3. A brief overview of the derivation by Reich, valid when observations are scalars or uncorrelated
vectors, is presented. Its extension to vector observations with arbitrary correlations is discussed next. Numer-
ical simulations to demonstrate the proposed extension is provided in Section 4. We finally conclude with our
observations and suggest directions for future research in Section 5.

2. PROBLEM FORMULATION

In this section we provide a mathematical background for the filtering problem with discrete time observations.
The approach by Reich [10] is then applied to derive a continuous time formulation of the data assimilation step
in artificial time s ∈ [0, 1].

Consider a dynamical system with the discrete time state evolution given by the equation

Xn+1 = Xn + Vn (1)

where Xn ∈ RN represents the system state at time n, and Vn ∼ N (0,RX), RX ∈ RN×N are i.i.d. Gaussian
random vectors independent of the state Xn. Let the state evolution model be denoted pn+1|n(Xn+1|Xn). The
prior state distribution at time n = 0 is given and is assumed to be an L component Gaussian mixture of the
form

π0(x) =

L∑
l=1

α0
l · πl,0(x) (2)

where πl,0(x) = N (µ0
l ,P

0
l ) with µ0

l ∈ RN and P0
l ∈ RN×N and

∑L
l=1 α

0
l = 1. Hence the state distribution at

any time n is also an L component Gaussian mixture.



Though we know the state evolution model, the true system state is hidden and we have measurements of it
available at each discrete time step n. The measurements are related to the state by

Yn = h(Xn) + Wn = HXn + Wn (3)

where Yn ∈ RM is the observation at time n, Wn ∼ N (0,RY ), RY ∈ RM×M is the observation noise. The obser-
vation map h() is assumed to be linear, i.e., h(Xn) = HXn and H ∈ RM×N . Let the observation vector at time n

be denoted by yn,obs and the collection of observations up to time n be denoted Y
[n]
obs = [y1,obs,y2,obs, . . . ,yn,obs].

The filtering problem at time n is to obtain the posterior state density given all observations up to time n, i.e.,

πn(x|Y[n]
obs). The posterior density at time n− 1 and the system evolution model is used to obtain the predicted

density at time n. This is called the prediction step or the forecast. The posterior density at time n is then
obtained using the predicted density, the observation model and the observation at time n. This is called the
update step or the analysis step. This recursive propagation over time is the Bayes recursive filter. The update
step is implemented using the Bayes rule. Since the prior at time 0 is a Gaussian mixture, and the system and
observation models are linear, the predicted and the posterior distributions at every time step n will also be
Gaussian mixture distributions. Let the predicted density at time n be denoted as πn|n−1(x) and the posterior
density at time n be given as

πn(x) =

L∑
l=1

αnl πl,n(x) (4)

where πl,n(x) = N (µnl ,P
n
l ) and

∑L
l=1 α

n
l = 1. This posterior is approximated using a collection of particles with

equal weights in the ensemble method.

2.1 Continuous time formulation

Bayes’ rule is used to obtain the posterior density from the predicted density and is given by

πn(x) =
f(yn,obs|x) · πn|n−1(x)

f(yn,obs)
(5)

where f(yn,obs|·) is the likelihood function. In traditional discrete-time filters, the transformation of density, from
predicted to posterior, by application of Bayes’ rule happens in a single step. The continuous time formulation
of Bayes’ rule by Reich [10] transforms the predicted density to the posterior density in a continuous fashion.
This is achieved by use of the following result from statistical mechanics. If the system state obeys the time flow
equation

dx

ds
= g(x, s) (6)

in the time interval s ∈ [0, 1], then the evolution of the density π(x, s) of x over time s is given by the continuity
equation or Liouville’s equation:

∂π

∂s
= −∇x· (πg) (7)

where the prior density at time s = 0, π(x, 0) is assumed known. Using the formulation by Reich [10] we can set
π(x, 0) = πn|n−1(x) and obtain π(x, 1) = πn(x) by using the relation,

∂π

∂s
= −π(S − Eπ[S]) (8)

where S is the negative log-likelihood function, S = − log(f(yn,obs|x)). For the case of Gaussian observation
noise we have S = 1

2 (Hx− yn,obs)
TR−1

Y (Hx− yn,obs). From equations (7) and (8)

∇x· (πg) = π(S − Eπ[S]) (9)



Solving for g(x, s) from the partial differential equation in (9) provides a way to numerically solve for x(s)
using the ordinary differential equation in (6). The solution to equation (9) is not unique and we must make
appropriate choices/assumptions to solve for g(). For example, we can impose the additional constraint that g
is also the minimizer of the kinetic energy defined as

T (v) =
1

2

∫
vTM v dπ (10)

where M ∈ RN×N is a positive definite matrix. Under such constraint it can be shown [16] that the flow function
has the form g = M−1∇xψ where the potential ψ(x, s) is the solution of the elliptic PDE,

∇x· (πM−1∇xψ) = π(S − Eπ[S]) (11)

In the simple case of a single component Gaussian mixture (L = 1) where the prior is distributed asN (µ(0),P(0))
and M−1 = P(s) it can be shown [4,6] that

dx

ds
= −1

2
P(s)HTRY (Hx + Hµ(s)− 2yobs) (12)

3. ENSEMBLE GAUSSIAN MIXTURE FILTER

The continuous formulation of Bayes’ rule with an artificial time parameter s allows us to develop the ensemble
filter for the case of Gaussian mixture densities. This filter was derived by Reich in [9] for the case when
observations are either scalars or uncorrelated vectors. We will now briefly discuss the derivation by Reich and
then extend the filter to account for observation vectors with arbitrary correlations.

In case of a general L component Gaussian mixture density, consider the following decomposition of the flow
vector field g:

dx

ds
= g(x, s) = uA(x, s) + uB(x, s) (13)

and define

uA(x) =

L∑
l=1

αlπl(x)

π(x)
Pl∇xψA,l(x) (14)

uB(x) =

L∑
l=1

αlπl(x)

π(x)
Pl∇xψB,l(x) (15)

where we have dropped the artificial time parameter s for brevity. Substituting these expressions into equation (9)
we have:

∇x·
( L∑
l=1

αlπl(x)Pl∇xψA,l(x) +

L∑
l=1

αlπl(x)Pl∇xψB,l(x)

)
=

L∑
l=1

αlπl(x)(S − Eπ[S])

=

L∑
l=1

αlπl(x)(S − Eπl
[S]) +

L∑
l=1

αlπl(x)(Eπl
[S]− Eπ[S]) (16)

Equating the individual components in the equation above we have the following set of equations

∇x· {πl(x)Pl∇xψA,l(x)} = πl(x)(S − Eπl
[S]), l = 1, 2, . . . , L (17)

∇x· {πl(x)Pl∇xψB,l(x)} = πl(x)(Eπl
[S]− Eπ[S]), l = 1, 2, . . . , L (18)

The equations in (17) are similar to the case of a single component Gaussian and hence from (12) and (14) we
have the solution:

uA(x, s) = −1

2

L∑
l=1

αl(s)πl(x, s)

π(x, s)
Pl(s)H

TR−1
Y [Hx + Hµl(s)− 2yn,obs] (19)

The equation (18) needs to be solved to have the complete solution. We first summarize the solution to equa-
tion (18) for the case of scalar observations. It can be easily adapted to uncorrelated vector observations as
well.



3.1 Scalar observations

When the observations are scalars, i.e., yn,obs ∈ R, the PDE (18) can be simplified and explicitly solved [9]. To
derive this we assume the potential ψB,l to be of the following form

ψB,l(x) = ψ̂B,l(Hx−Hµl) = ψ̂B,l(y − yl) (20)

where y = Hx and yl = Hµl. Hence we have ∇xψB,l(x) = HT dψ̂B,l

dy (y − yl). Thus the PDE in equation (18)
simplifies to

−(y − yl)
dψ̂B,l
dy

(y − yl) + HPlH
T d

2ψ̂B,l
dy2

(y − yl) = Eπl
[S]− Eπ[S] (21)

Under the initial condition
dψ̂B,l

dy (y − yl)|y=yl = 0, we can solve the above differential equation to obtain

dψ̂B,l
dy

(y − yl) =
1

2

Eπl
[S]− Eπ[S]

HPlHT

Erf((y − yl)/
√

2σ2
l )

πl(y)
(22)

where the Gaussian PDF πl(y) = N (yl, σ
2
l ) with σ2

l = HPlH
T and Erf(·) is the standard error function. Thus

we have the following expression for uB(x, s):

uB(x, s) =
1

2

L∑
l=1

αl(s)πl(x, s)

π(x, s)
Pl(s)H

T Eπl
[S]− Eπ[S]

HPlHT

Erf((y − yl)/
√

2σ2
l )

πl(y)
(23)

For the scalar observation case with Gaussian noise variance of Ry we have S = 1
2Ry

(Hx − yn,obs)2. Thus the

expectation of S can be shown to be

Eπl
[S] =

1

2Ry
((yn,obs − yl)2 + σ2

l ) (24)

3.2 Extension to vector observations

For the general case of correlated vector observations the above technique cannot be applied to reduce the PDE.
To simplify the problem we perform a transformation of the state x. We can expand equation (18) as

{∇xπl(x)}·Pl∇xψB,l(x) + πl(x)∇x· {Pl∇xψB,l(x)} = πl(x)(Eπl
[S]− Eπ[S]) (25)

−πl(x)(x− µl)
TP−1

l Pl∇xψB,l(x) + πl(x)∇x· {Pl∇xψB,l(x)} = πl(x)(Eπl
[S]− Eπ[S]) (26)

−(x− µl)
T∇xψB,l(x) +∇x· {Pl∇xψB,l(x)} = Eπl

[S]− Eπ[S] (27)

This is a second order PDE with all the cross terms present in general. To simplify the problem we employ
the following transformation of variables. Let x = Qlz where Pl = QlQ

T
l is the Cholesky decomposition. This

always exists since Pl is a positive definite matrix. The matrix Ql is a lower triangular matrix with positive
diagonal entries and is invertible. Hence we also have the inverse relation z = Q−1

l x and we define γl = Q−1
l µl.

Let the transformation induce the function φl(z) = ψB,l(x)|x=Qlz in the variable z and we have the following
relations:

QT
l ∇xψB,l(x) = ∇zφl(z) (28)

∇x· {Pl∇xψB,l(x)} = ∇2
zφl(z) (29)

Thus equation (27) becomes

−(z− γl)
T∇zφl(z) +∇2

zφl(z) = Eπl
[S]− Eπ[S] (30)



If the vector z = (z1, z2, . . . , zN ) and γl = (γl,1, γl,2, . . . , γl,N ), then the above equation can be written as

−
N∑
i=1

(zi − γl,i)
∂φl
∂zi

+

N∑
i=1

∂2φl
∂z2
i

= Eπl
[S]− Eπ[S] (31)

−
N∑
i=1

{(zi − γl,i)
∂φl
∂zi

+
∂2φl
∂z2
i

} = Eπl
[S]− Eπ[S] =

N∑
i=1

Cl,i (32)

−(zi − γl,i)
∂φl
∂zi

+
∂2φl
∂z2
i

= Cl,i i = 1, 2...N (33)

where Cl,i are constants satisfying
∑N
i=1 Cl,i = Eπl

[S]− Eπ[S]. If a solution φl(z) satisfies the system of PDE’s
given in (33), it also satisfies the PDE in equation (32). It can be seen that the individual equations in (33)
are similar to equation (21) obtained in the scalar observation case. If we assume that ∂φl

∂zi
= fi(zi), i.e., the

individual partial derivatives of φ with respect to zi are functions of only the variable zi, then we can solve the
individual equations in the above system independently. With the initial condition set to fi(zi = γl,i) = 0, we
obtain the solution:

fi(zi) =
∂φl
∂zi

=
1

2

Cl,i
πs(zi − γl,i)

(
Erf

[
(zi − γl,i)√

2

])
i = 1, 2...N (34)

where πs is the standard normal density function. To simplify the above expression we define the vectors Cl and
κl as Cl = [Cl,1, Cl,2, . . . , Cl,N ]T and κl = [κl,1, κl,2, . . . , κl,N ]T where

κl,i(zi − γl,i) =
1

πs(zi − γl,i)
Erf

[
(zi − γl,i)√

2

]
i = 1, 2...N (35)

and we have, ∇zφl(z) =
1

2
Cl ∗ κl(z− γl) (36)

where a∗b denotes an element-wise product of vectors a and b. The final solution is completed from equation (15)

by observing that ∇xψB,l(x) = (QT
l )
−1∇zφl(z)|z=Q−1

l x. Hence we can write

dx

ds
= g(x, s) = uA(x, s) + uB(x, s)

where,

uA(x, s) = −1

2

L∑
l=1

αl(s)πl(x, s)

π(x, s)
Pl(s)H

TR−1
Y [Hx + Hµl(s)− 2yn,obs]

uB(x, s) =
1

2

L∑
l=1

αl(s)πl(x, s)

π(x, s)
Ql(s)Cl ∗ κl

(
Ql(s)

−1[x− µl(s)]

)

and

N∑
i=1

Cl,i = Eπl
[S]− Eπ[S]

(37)

(38)

(39)

(40)

For the case of vector observations with Gaussian noise covariance matrix RY we have

S =
1

2
(Hx− yn,obs)

TR−1
Y (Hx− yn,obs), and hence (41)

Eπl
[S] =

1

2

(
tr{HTR−1

Y H(Pl + µlµ
T
l )} − 2yTn,obsR

−1
Y Hµl + yTn,obsR

−1
Y yn,obs

)
(42)

where the trace of a matrix tr{A} is defined as the sum of all the diagonal elements of matrix A. To compute
Eπ[S], we use the relation

Eπ[S] =

L∑
l=1

αl(s)Eπl
[S]. (43)



3.3 Implementation

In this section we present an algorithm implementation of the EGMF for the general case. Algorithm 1 provides
pseudocode for the implementation. The filter is initialized by drawing samples from the known prior density π0

which is an L component Gaussian mixture. The particles are propagated following the state evolution model
pn|n−1(·|·) in the prediction step. In the update step particles are transported from the predicted density to the
posterior density by numerically solving the differential equation (37).

The forward Euler method is used to numerically approximate the differential equation over the artificial
time s ∈ [0, 1]. This time interval is divided into Ns equal intervals each of length ∆s = 1

Ns
. The ensemble

particles are propagated between the artificial time steps s = i∆s, i = 0, 1, . . . , Ns using the approximation

x(j)
n,s = x

(j)
n,s−∆s + ∆s

(
uA(x

(j)
n,s−∆s, s−∆s) + uB(x

(j)
n,s−∆s, s−∆s)

)
, s = i∆s, i = 1, . . . , Ns (44)

The larger the value ofNs, the closer the discrete numerical approximation is to the true solution of the continuous
differential equation. The expectation maximization (EM) algorithm is used to fit a Gaussian mixture model with
L components to the particle set at each artificial time step i∆s. The weights of each of the mixture component
and its mean and covariance matrix parameters are calculated using the EM algorithm. These parameters are
used in the expressions (38) and (39) to calculate the components uA and uB . The constants Cl,i need to be
specified to evaluate uB . In our implementation we have used

Cl,i =
1

N
(Eπl

[S]− Eπ[S]), i = 1, . . . , N (45)

The expectations Eπl
[S] and Eπ[S] are computed using equations (42) and (43).

1: Initialize an ensemble of Np particles {x(j)
0 }

Np

j=1 ∼ π0(x)
2: for n = 1 to T do
3: Prediction
4: for j = 1 to Np do

5: x
(j)
n ∼ pn|n−1(xn|x(j)

n−1)
6: end for
7: Update

8: {αl,µl,Pl} = EM({x(j)
n }, L)

9: {αl,0,µl,0,Pl,0, {x(j)
k,0}} = {αl,µl,Pl, {x(j)

k }}
10: ∆s = 1

Ns

11: for s = ∆s : ∆s : 1 do
12: for j = 1 to Np do

13: x
(j)
n,s = x

(j)
n,s−∆s + ∆s

(
uA(x

(j)
n,s−∆s, s−∆s) + uB(x

(j)
n,s−∆s, s−∆s)

)
14: end for
15: {αl,s,µl,s,Pl,s} = EM({x(j)

n,s}, L)
16: end for
17: {αl,µl,Pl, {x(j)

n }} = {αl,1,µl,1,Pl,1, {x(j)
n,1}}

18: end for
Figure 1: Ensemble Gaussian mixture filter implementation.

4. NUMERICAL SIMULATIONS

In this section we discuss numerical simulations of the the proposed filter equations. The implementations are
performed using MATLAB. We consider the simple problem of state estimation using noisy observations. The
state dimension N is set to 2. The state evolution is modeled by the equation (1) with RX = σ2

xI2×2. In
simulations we set σx = 0.5. The prior distribution of the state at time n = 0 is a 2 component Gaussian



mixture. The parameters of the mixture are µ0
1 = [0, 0], µ0

2 = [5, 5], P0
1 = P0

2 = I2×2 and α0
1 = α0

2 = 0.5. The
observation matrix H is an identity matrix I2×2. Though the filter equations derived above hold for the general
case of correlated vectors, for the purpose of demonstration, we choose the observation noise covariance matrix
to be diagonal, RY = σ2

yI2×2. We use a value of σy = 0.5 in our simulations.

In the filter implementation, we divide the artificial time s ∈ [0, 1] into Ns = 20 intervals with corresponding
∆s = 0.05. It was observed that the components uA and uB can take very high numerical values. Hence to
limit the amount by which particles are transported in a single iteration step we constrain its infinity norm to
a maximum of uA,cut and uB,cut respectively. The EM algorithm is used to fit the Gaussian mixture model
with L = 2 components to the particle ensemble. The EM algorithm is repeated 50 times with different random
initializations and the obtained parameters corresponding to highest likelihood are used. In each repetition a
maximum of 100 iterations are performed. We use an ensemble of Np = 200 particles.

Shown in Figure 2a is a typical particle distribution and its evolution over the artificial time at the instants
s = i∆s, i = 1, 2, 3, 15, 16, 17 with uA,cut = uB,cut = 2

∆s . The (red) arrows indicate diretion of particle motion as
calculated by approximating the ODE. Figure 2b presents a magnified version of the same figure, zoomed in near
the observation (black cross). We observe that though the particles move roughly in the direction of the current
observation, the magnitude of motion is not significantly reduced as s increses. Thus there is an oscillatory
movement of particles in the vicinity of the observations. Many particles which are far from the observation
experience very little change in their location.

In Figure 3 we compare an example true state trajectory with the estimated state trajectories obtained
using the general EGMF filter. The different estimated state trajectories are obtained by varying the cut off
parameters as uA,cut = uB,cut = 2

∆s ,
5

∆sand 10
∆s . The estimated trajectory obtained by using the Kalman filter

with two component Gaussian mixture model is also shown. From the figures we observe that as the cut off
parameter is increased, the estimation error of the EGMF filter is increasing.

The above results indicate that we have stability issues in the implementation of the proposed EGMF filter
and in its current form it has poor performance when compared to the Kalman filter for Gaussian mixture
priors. One approach to address this issue would be employ more sophisticated numerical approximations to
solve the partial differential equation. In our current implementation we have chosen the constants Cl,i in the
equation (32) to be equal. A choice of Cl,i which takes into account the correlation between the components of
the observations yobs and its relation to the transformed variable z is expected to improve the filter performance.

5. CONCLUSION

The ensemble Gaussian mixture filter is a generalization of the EnKF which accounts for non-Gaussian densities
by propagating the Gaussian mixture model over time. The continuous time formulation of Bayes’ rule allows
smooth propagation of ensemble particles from the predicted to the posterior density. In this paper we extended
the EGMF to include vector observations with arbitrary correlations. Transformation of the state variable
simplifies a general second order PDE into a set of scalar PDEs which can be easily solved. We have presented
an example numerical simulation of the extended filter and suggested some methods to address the stability
issues in its implementation.
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