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Abstract—In this paper we derive computationally-tractable
approximations of the Probability Hypothesis Density (PHD) and
Cardinalized Probability Hypothesis Density (CPHD) filters for
superpositional sensors with Gaussian noise. We present imple-
mentations of the filters based on auxiliary particle filter approx-
imations. As an example, we present simulation experiments that
involve tracking multiple targets using acoustic amplitude sensors
and a radio-frequency tomography sensor system. Our simulation
study indicates that the CPHD filter provides promising tracking
accuracy with reasonable computational requirements.

Index Terms—Moment based filters, PHD, CPHD, superposi-
tional sensors, random set theory, multi-target tracking.

I. INTRODUCTION

E address the problem of tracking multiple targets
within a surveillance region based on measurements
obtained from monitoring sensors. The targets can possibly
enter and leave the region over time and we would like to
accurately estimate the location and number of targets present
at any given time. Sensors periodically provide measurements
of the network which are used for the estimation of targets.
Although we focus on the problem of target tracking, some
other filtering problems, for example, wireless channel estima-
tion, can also be formulated in a similar fashion [1] and the
solutions discussed here can be extended to solve them.
Much of the multi-target tracking literature, particularly
that component involving moment-based filters, employs the
following modelling assumptions: (i) each target causes either
one or no measurement; and (ii) each measurement is either
caused by a single target or clutter. We refer to sensors that
satisfy these assumptions to within a reasonable approximation
as standard sensors [2]. These sensors form an important
class of sensors but are not exhaustive. We are interested
in sensors where measurements are functions of all the tar-
gets present rather than one of them. Specifically, in this
environment (i) each target can contribute to any number of
measurements; (ii) each measurement is potentially affected by
multiple targets in an additive fashion; and (iii) measurements
are not independent. We refer to this class of sensors as
superpositional sensors [2]. Examples of systems belonging
to this class are direction-of-arrival sensors for linear antenna
arrays [3], antenna arrays in multi-user detection for wireless
communication networks [1], acoustic amplitude sensors [4],
and radio frequency (RF) tomographic tracking systems [5].
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The recursive Bayes filter provides a systematic approach to
solve the multi-target tracking problem optimally for standard
or superpositional sensors. But the mathematical intractability
and computational complexity of the solutions render them
practically infeasible. To model and analyze the multi-target
tracking problem, Mabhler introduced the random finite set
notation and finite set statistics (FISST) [6]. The system state is
modeled as a random finite set instead of a random vector. The
Bayes recursion is still intractable within this framework, but
approximate solutions can be derived based on the first order
moments of the posterior distribution defined over the random
finite sets. The Probability Hypothesis Density (PHD) filter [7]
and the Cardinalized Probability Hypothesis Density (CPHD)
filter [8] are the first moment based filters derived by Mahler
for the case of standard sensors. Different implementations of
the PHD and CPHD filters have been proposed and applied in
numerous practical applications [9]-[13].

The original PHD and CPHD filter equations are valid
for standard sensors but are not applicable to superpositional
sensors. CPHD filter equations for superpositional sensors
were first derived in [2], but the equations involve multi-
dimensional integrals, which are computationally intractable.
The sensors used by Balakumar et al. in [3] for direction-of-
arrival tracking are superpositional sensors, but the approach
adopted is to approximate the model to obtain separable
observations and then use the PHD filter for standard sensors.

In this paper we summarize our earlier derivations of com-
putationally tractable approximations of the PHD and CPHD
filters for superpositional sensors [18], [20]. In [18], Thouin,
Nannuru and Coates derived a computationally tractable ap-
proximation of the PHD filter for superpositional sensors with
Gaussian noise'. Mahler and El-Fallah derived the CPHD
generalization of the ALM filter in [20]. In addition to the
derivations, we present implementations based on auxiliary
particle filters. Simulation experiments indicate that the ap-
proximate CPHD filter performs promisingly.

The paper is organized as follows. We formulate the prob-
lem of multiple target tracking with superpositional sensors
in Section II. Section III summarizes the derivations of the
approximate PHD and CPHD filters for superpositional sen-
sors. Section IV discusses the auxiliary particle filter based
implementation. Section V describes simulation experiments
of multi-target tracking using acoustic amplitude sensors and
a radio-frequency tomography sensor system. Section VI
summarizes the current work and discusses future research
directions.

'An error in the main update equation of ALM filter in [18] was corrected
in an errata [19]; the correct equations were also presented in [20].



II. PROBLEM FORMULATION

The state of the system is the collection of individual
target states xj; € R™* and is denoted by the random finite
set Xy = {Xg1,...Xkn,} where n; > 0 is number of
targets present at time k. We assume that the individual target
dynamics are specified according to the Markovian model of
the form Xp,1i = fre1k(Xk,i,ux) where uy is the noise.
An example of the Markovian transition kernel f i will
be presented in Section V.

Information about the state of the system is available
from the sensors as an M-dimensional measurement vector
71, = [z} ... zM]. The relationship between the true state of the
system and the sensor observation is given by the likelihood
function h,, (X%). In the case of superpositional sensors it has
the following form,

haw (Xk) = hay (r(X))

hzk( > g(X)) (D
xeXp

where h,, is a real-valued function and g and r are (potentially
non-linear) functions mapping to vectors of reals. The function
r operates on the random finite set whereas the function g
operates on the target states that are members of the set. Below
we present two examples of the functions r and g which are
based on empirical models for acoustic amplitude sensors and
radio-frequency sensors, respectively.

In this paper we focus on the case where the likelihood
function has the following Gaussian form:

hzk( > g(x))=Nzr (Zk— > g(x))- 2)

where the notation N (x) denotes evaluation at x of a zero-
mean Gaussian distribution with covariance matrix . We will
use the notation X, throughout to denote the covariance of the
measurement noise. Although the Gaussian noise assumption
is not essential for deriving update equations, it is an important
contributing factor for computational tractable approximations.

A. Example: acoustic amplitude sensors

The likelihood model of acoustic amplitude sensors is
adapted from [4]. These sensors can be used in an active
tracking system in which each target emits an acoustic signal
of known amplitude A. Every sensor in the surveillance region
receives the signal. Sensor j at location (; receives the acoustic
signal which has a reduced strength of ¢7(x) = A/|[x - ¢
where x denotes the location of target and « is the path
loss exponent. Here ¢/ refers to the j** component of the
vector-valued function g. When multiple targets are present,
the strength of the combined signal received by each of the
sensors is the sum of the strength of the signals due to each of
the individual targets. The observation when multiple targets
are present is given by:

zi:rj(Xk)Jrvi 3)
=y Lw{% (4)
xex, =Gl

where Vi is the measurement noise, assumed to be Gaussian.

B. Example: radio-frequency tomography

Radio-frequency (RF) tomography systems strive to pas-
sively track moving objects within a surveillance region by
iteratively transmitting RF signals from each sensor and mea-
suring the attenuations at all of the other sensors. At every
time instant k, the sensors communicate with each other and
record the Received Signal Strength (RSS) values. The N
sensors form a total of M = N(N - 1)/2 communication
links generating M measurements in every time step. During
a period with an empty surveillance region, the sensor system
learns background RSS values for each link. The objective of
RF tomography is to use the measured deviations from these
background RSS values to track moving targets.

In [22], a single target measurement model was proposed
for RF tomography based on experimental analysis. The mean
RSS attenuation on the link j due to a target at position x is
modelled as:

g’ (x) = pexp (—W) (5)

Ox

where \;(z) is an elliptical distance measure between a target
located at x and link j (see [22] for more details); ¢ and o, are
fixed parameters based on physical properties of the sensors
that have been learned empirically. A target located far from
link j has a large associated \;(x) and hence causes minimal
additional attenuation g7 (x); when the target is close to the
link it has a much greater impact.

Multi-target extensions of this model have been successfully
used for tracking based on measurements collected from real
sensor networks. Tracking of up to four targets was demon-
strated for an outdoor RF sensor network deployment in [23];
and successful tracking was achieved, with a slightly modified
model, for three targets using indoor sensor networks [24]. The
multi-target models for outdoor and indoor environments differ
in the choice of g but have the same superpositional form:

zizrj(Xk)+v,;: Z gj(x)+vi (6)

xeXg

where vfC is the sensor noise for link j, assumed Gaussian.

I1I. PHD AND CPHD FILTERS FOR SUPERPOSITIONAL
SENSORS
At time k, given all the measurements up to time k, the
complete system state is specified by the multi-target posterior
pk|k(Xk|Z[k]) where Z[¥] = [z,,...2;]. The optimal Bayes
filter solves for the posterior distribution in a recursive manner:

Prote(Xpsa | ZH7) = /fk+1\k(Xk|W)pk|k(W|Z[k]) SW

(N
k+1]) _ Ny (Xk+1)pk+1|k(Xk+1|Z[k])
.[hzk+1 (X)pk+1|k(X|Z[k]) 0X
®)
The above equations involve evaluation of set integrals and
cannot be analytically solved except for very few special cases.

To alleviate this problem Mahler suggested propagating the
first-order moment of the multi-target posterior rather than

pk+1|k+1(Xk+1|Z[



the complete posterior. The first-order moment of the multi-
target posterior, also called the Probability Hypothesis Density
(PHD) is defined as the following set integral:

Dk+1|k+1(X|Z[k+1]) = fpk+1\k+1({x} uw |z 5w (9)

The filter equations which recursively solve for the PHD are
known as the PHD filter. When the distribution of the cardi-
nality of system state, i.e., pzlk(|X k| =n), is also propagated
along with the PHD Dy, the resulting filter is known as
the CPHD filter. The PHD [7] and the CPHD [8] filters
were derived for the case of standard sensors by Mabhler. For
the case of superpositional sensors, computationally tractable
approximations of the PHD [19] and CPHD [20] filters have
been recently developed.

For brevity of results, in the following subsections, we
drop the explicit notation of conditional dependence on the
observations. For example, we write:

Dyjpe(x) = Dk\k(x|Z[k])7 (10)
Dyarp(x) = Dy (x| 20 (1)
Pip(n) = pip (nZH7) (12)
P (n) = Phoe (0 20) (13)

We also define the normalized PHD s(x) = D(x)/ [ D(x) dx.
For the predictive PHD, this becomes:

Dy (x)
st () = T (14)
+
Nk+1\k:ka+1\k(x)dx- (15)

The superpositional assumption on the likelihood model
does not affect the time prediction step of the filter. Hence
we can apply Mahler’s general law of motion for PHDs to
compute the predictive PHD [7],

Dk+1\k(x) = Dpy e (X) + fps(W)fk+1|k(X|W)Dk\k(W)dW

where ps(w) is the target survival probability located at w and
b1k (x) is target birth intensity at x. Spawning of targets is
not considered in our analysis.

The cardinality prediction equations for superpositional sen-
sors and standard sensors are also the same since the likelihood
function has no role. From [8]:

Phs(n) = ipb(n -J)

& (1 §ps: Disa)’ (1 = ps, D)™
x Z() it ; 4 Pk (D)
iz \J (1, Dysapne)
where
py(j) = birth probability of j new targets (16)
ps(x) = survival probability of target at x a7
(a,b) = / a(x) x b(x) dx (18)

When the target survival probability is constant, ps(x) = ps,
the above equation reduces to

[}

n
CRNOEDWACE) (Z pre —pwpzk(w)
4=0 1=5 \J
For the derivations provided in this paper, we assume that
there exists some ng > 0 such that for all n > ng, we have
Prjk-1(n) < 1/n. This assumption holds in the common case
when there is a bound on the maximum number of targets.

A. Key ingredients

The primary steps in the derivations of computationally
tractable approximations of the filter update equations are
the application of (i) a change of variables formula; and (ii)
Campbell’s theorem [20], [25]. The PHD and CPHD filter
update equations for superpositional sensors can be expressed
as set integrals, but these are computationally intractable.
Application of suitable change of variables formulae allows
us to transform these set integrals into ordinary integrals.

For a real-valued function 7" and a multi-target distribution
f(X) we can apply the following change of variables for-
mula [26, Prop. 4, p. 180]

[Tee)- 10X = [ 1) Py (19)

where ¢ has the superpositional form r(X) = Y. x g(x) and
P(y) is the distribution induced by the change of variables
y = r(X). Note that the left hand side of (19) is a set integral
whereas the right hand side is an ordinary integral.

Although much simpler, evaluation of the resultant ordinary
integrals remains an unpalatable computational challenge. Ap-
plication of Campbell’s theorem (the linear case for the PHD
and the more general quadratic version for the CPHD) allows
us to evaluate the mean and variance of the distribution P(y).
We can then use a Gaussian distribution as an approximation
of P(y). When combined with Gaussian sensor noise, this
leads to approximate update equations that involve much less
computational overhead.

In deriving update equations for the PHD filter, we apply
the linear version of Campbell’s theorem. Let g and C denote
the mean and variance of the distribution P(yy) above. When
the multi-target distribution f(X) corresponds to a Poisson
point process [25], we have the following relations

n= [ 9(x)D(x)dx
C= [ 9(x)9(x)" D(x) dx

Derivation of the CPHD filter update equations requires the
quadratic version of Campbell’s theorem [20]. As before, let
C denote the variance of the distribution P(y) above. The
general quadratic Campbell’s theorem gives the relation:

(20)

2

C- [ 9(x)9(x)" D(x) dx

v ] 9Gx0)g(oe2)" - D2, x2) = Dlsct) D(x1)] da
(22)



where D(x;) and Ds(x1,x2) are, respectively, the PHD
and the second factorial moment density of the multi-target
distribution f(X). The latter is defined as

Da(x1, %) = /f({xl,XQ}uW)~5W (23)

In the special case when the multi-target distribution f(X) is
Poisson, Do(x1,%2) = D(x1)D(x1), which leads back to the
linear version of Campbell’s theorem.

Building on the generalized form of Campbell’s theorem,
Mabhler and El-Fallah derive expressions for the mean and vari-
ance of P(y) in (19) for three key multi-target distributions
in [20]. The results are summarized in Table I.

The first result is for a general i.i.d.c. multi-target distri-
bution, i.e., one that can be written in the form f(X) =
| X! p(X) - s*. Here s(x) = D(x)/ [ D(x)dx and s*
is the power functional of s, with s¥ =1if X = @ and
5% = Tlyex s(x) otherwise. In Table 1, 7, o2, and G(x)
are the expected value, variance and probability generating
function (p.g.f.) of the cardinality distribution p(n) of f(X).
We define:

ézfg(x)s(x)dx
0= [9(x)g(x)" - s(x) dx

for the measurement function g(x).
The second result is for a multi-target distribution derived
from an ii.d.c. f(X) but with fixed cardinality, f,(X) =

pc%n) -6(|X]| = n) - f(X). The third result is for the multi-

target distribution f,(X) = %, again derived from the
iid.c. f(X), where x is a fixed value.

(24)

(25)

Multi-target Mean Variance
distribution
fF(X) = E-6 fi-O+(0” -1) 66"
IX]-pe(IX]) - s¥
fa(X) = E%Zi n-o6 n-(0-066T)
2(X|=m) - fK) | ]
_ fxjuX) G°(1) .4 G°) . A
fz(X)—W 06 . f;O;—
(Gjl)_gé%L)aaf
& 2
TABLE I

MEAN g1 AND VARIANCE C FOR P(y) IN (19) FOR THREE MULTI-TARGET
DISTRIBUTIONS.

B. Approximate PHD filter update derivation

We now derive the update formulae for PHD filter. By
definition, the PHD at time %k + 1 is given by

Dk+1\k+1(x):fpk+1\k+1(XUW)(5W

Applying Bayes rule we have:

(26)

Prr1(Zear [{x} U W)ppesr ({x} U W)
Dk+1|k+1(x) = f p(Zk+1|Z[k]) ow

=K' /pk+1(zk+1|{x} U W)prean ({x} W W) OW (27)

where the normalization constant K is given by
K = p(zxa| Z0M)
:fpk+1(zk+1|W)pk+1\k(W)5W

If we now assume that the predictive PHD p,.qp({x} u W)
is a Poisson process, we have

Dy (%) = K x Dy (x)
[ Prer@s = 9GP (W)OW  (30)

Thus we have the pseudolikelihood function as
JPre1(Zrs1 = 9GO W)pgsp (W) SW

(28)
(29)

L,,. (x)= (31
s (%) fpk'+1(zk+1|W)pk+1‘k(W) ow
Under the assumption of Gaussian sensor noise,
Pre1(Zr1 = 9(X) W) = Ny, (Zk+1 - g(x) = (W)
and applying the change of variable y = (W) leads to:
1 — -y)P(y)d
Lo (x) = SN, (241 - 9(x) - y) P(y) dy (32)

[Ns, (2141 - y)P(y)dy

If we approximate P(y) using a Gaussian distribution, then
using the linear version of Campbell’s theorem:

P(y) » Ny, e, (F = Njefin)
where
= [ 96900 siiap() (33)
= [ 9(x)- spap(x) (34)

The pseudo-likelihood can then be simplified as:
sz+1 (X)
SN, (2 = 9(x) =y)Ny, s, (F = Nieajefin ) dy
_[ NZ,,,(ZIHI - y)NN}c+1\ki:k (y- Nk+1|kﬂk)dy

(35)
_ N2T+Nk+1‘k2k (Zk+1 = 9(%) = Nisajpfin) G6)
-/\/z,arz\f,ﬁll,ci,c (Z+1 = Nisarhic)
The update equation for the PHD filter is then
Diiafis1 (%) = Ly, (%) - Diyqjie (). (37)

C. Approximate CPHD filter update derivation

The Cardinalized PHD filter propagates a probability dis-
tribution of the cardinality of the random set representing the
state of the system along with the PHD. The derivation of
the approximate CPHD filter update equations proceeds along
similar lines as that of the PHD filter, although a more general
form of Campbell’s theorem must be applied. Here we provide
an outline of the derivation; for more detail, see [20].

The cardinality distribution is defined as:

p2+1\k+1(”) = ./|X\=n Pra1fk+1 (X)X

_ f|X\:n Pk+1 (Zk+1 |X) ’ pk+1|k(X)6X
p(zk+1‘Z[k])

(38)



Define:
Sk = Niope - Sk + (071 = Newi) - iy (39)

Using the expression for the vanance in the first row of Table I,
with @@ = Ny, O=3 02= O'k‘k , and 6 = fiz, we can
perform a change of variables y = (/) to approximate the
denominator of (38):

P(Zk+1|Z[k]) = /Pk+1(Zk+1|W)Pk+1\k(W|Z[k])5W
- /NET(ZIM _T(W))Pmuk(WlZ[k])éW
= f/\/zr(zkn -y)P(y)dy

~ Ny, s, (Zre1 = Nigajefin) (40)
The numerator of (38) can be expressed as
./|-X\=npk+1(zk+1|X) 'pk+1\k(X)5X
o) [ pra(aea-y) Pay)dy @D

The distribution P, (y) is approximated as a Gaussian and
from the results in the second row in Table I it is of the form
Po(y) ~ Nsn(y - nfuy), where

Si=n- (Sk - ki) (42)

Thus the approximate update expression for the cardinality
distribution is

pi+1\k+1 (n)

ff\/zr (Zk+1 - Y) ‘NZ;; (y - nﬂk)dy

o K (1) A
¢ Prijk Ny, 2, (Zks1 = Nigajefer)

_ g (n) Ny, s (21 = i)
P61 (n
RS N, s (Zhat — Nispitr)

(43)
Here K. is a normalizing factor, included to ensure that the
updated cardinality distribution sums to 1. We have:

N5, sy (21 = nfar)
Nz, i5, (Zks1 = Nieafr)

K=Y prag(n) (44)
n>0
The assumption that there is an ng > 0 such that p}, A1) L(n) <
1/n for all n > ng ensures that the sum converges and K, is
finite, as detailed in [20].
From (27) the PHD update is given by the expression:

/ Pt (Zra |[{x} U W)proa ({x} U W)

ow
p(zr+1|Z1F])

(45)

Dk+1|k+1

The approximate denominator was obtained in (40). Applying
the change of variable y = r(W), the numerator can be
expressed as:

[ Pt s = 9GO I (W) 61

- [ NS, (za - g(x) -y)P)dy.  (@6)

Approximating P(y) as a Gaussian, we see from the third row
of Table I that it has the form P(y) ~ Nxo (y - pg), where

(2) (1)
o k+1]k i
i = ]V*k‘ i @7)
+1
(2) (3) (2) 2
k+1\k(1) A + k+1|k(1) Gk+1|k(1) lf’/ llT
Xk s
Nk Nisk N,3+1|k F
(48)

Here 0k+1|k, Gl(j)llk(l) and Gl(jr)uk(l) are the variance, second
factorial moment and third factorial moment of the predicted

cardinality distribution pj . (1), with

Grep(t) = Z Pher(n) " (49)
Gy
G\ (1) = — = 1), (50)

The approximate CPHD update equations for superpositional
sensors are then:

p2+1\k+1(n) =lg+1(n) 'p2+1|k(n) (5D
Disapr1(x) = Ly, (X) - Dy (x) (52)
where the pseudo-likelihood functions are given by
Ny, s (21 = i)
lgs1(n (53)
e () = Nz, vsy (Zrs1 = Ny - o)
N5, is0 (k1 = g(%) = pg) (54)

Z + (X) =
e Nz, 15, (Zks1 = N - r)

and where expressions for ¥, ¥, pu7 and X7 are provided
in (39), (42), (47) and (48), respectively.

IV. PHD AND CPHD IMPLEMENTATIONS

Equations (37), (52), and (51) give approximate expressions
for the time update of the PHD and cardinality when new
observation data become available. Although the equations
specify how the update should be performed, there are in
general no explicit formulae to express the PHD or cardinality
at every time step in known standard forms which enable
easy computational processing. Hence we consider the particle
based implementation of the filters, propagating over time
a weighted particle approximation of the PHD (which can
be seen as a scaled density). The basic bootstrap particle
filter implementation struggles when new targets arrive. We
therefore implement an auxiliary particle filter, which, with
its look-ahead property, is able to address new target arrivals.

A. Particle implementation of PHD filter

At every time step k, the PHD is approximated by a
weighted set of particles,

NP . .
Dy~ > wiP6(x() (55)
i=1
The particle PHD filter algorithm is described in Figure 1.
The algorithm first calculates NNy, j, the number of particles
used to track the targets that were identified at the previous



timestep. This is set to product of the estimated number of
targets from the previous timestep, Nk_l (with NO = 0), and
the number of particles allocated to each target, N, (an
algorithmic parameter).

The auxiliary particle filter applies the approximate PHD
filter update twice at each timestep. In the first execution of the
PHD filter, the existing particles are propagated, with survival
probability p,(x), according to the dynamics. In addition,
Jp new particles are added by drawing from an importance
sampling distribution py(xy) (this distribution could depend
on the measurements zg, but it is in general difficult to
construct a meaningful distribution for superpositional sen-
sors). We assume that we can specify an intensity function
~k(x) for the spontaneous birth process. For the propagated
particles, the predictive weights wy,_; are set to the weights
from the prev1ous timestep multiplied by the survival proba-
bihty,( ])95 (xk l)wk 1. The new particles are assigned weight

e (%)

Tppy(x())
integrals in equations (33) and (34) (lines 13 and 14) and

estimate > and fi;. These estimates are used to perform the
PHD update (lines 17 and 18).

The weighted particle set thus obtained is used in the second
execution of the PHD filter to construct an alternative sampling
distribution g(xy) for the particles associated with potential
new targets. In our experiments, we use a ¢ formed by drawing
particles with probability (1 -p) from a prior proportional to
the birth intensity function v, and with probability p from

E } p.k+Jp

i= N e+l
formed by placing a weighted zero-mean Gauss1an with co-
variance matrix X, at each particle location. The weights in the
mixture are the (normalized) particle weights obtained from
the first PHD filter execution.

Since the PHD has the property that its integral over the
complete observation space is equal to the expected number
of targets, we should have Y% w,i) E(|Xkl). Due to the
approximations made in order to arrive at a computationally
tractable filter, however, the error can be substantial. Hence to
normalize the weights appropriately, we need to estimate the
number of targets from the particles. We use the Silhouette
method [27] to obtain the target number estimate.

Resampling is performed to obtain an unweighted set of
particles. The k-means algorithm is used to cluster the particles
into groups. The number of groups is varied from 2 to Ny.
The partition which has maximum of the silhouette is declared
to be the cardinality estimate Np. The particles are then
resampled to update the number of particles and clustering
is performed to obtain target location estimates.

Using these weighted particles, we approximate the

a Gaussian mixture distribution, GM {w,(:

B. Particle implementation of the CPHD filter

Summarized in Figure 2 is the particle implementation
of the auxiliary CPHD filter. The cardinality distribution is
assumed to have a finite support with p(n) = 0, n > Nj.
The implementation is much the same as the PHD filter, but
we employ the weight update equations for the CPHD filter
and the cardinality distribution is also updated. The maximum
a posteriori estimate of the cardinality is used as the estimate
of the number of targets.

1: Initialize particles {wo , T )}
2 for k=1t T do

3: Npk_Nk IXNppt
4: PHD first run
5: for =1 to pkdO ‘

6: prqposal. x,(C ~ frjk- 1(xk|x,(j_)1)
7 wliil)c 1 ps(xl(:)l)wl(cZ)l
8: end for
9: fori—N k+1to .k +Jp do
10: proposal: Xz(g) ~pb(xk)

_ ) _ )

11: Whlk-1 = 5,y )
12: end for
13 = Z] wil) 1 9(x7)
14: Yk I(le]z 1g(x(j))gT(xff))
15: for i = 1 to NM +J, do
16: weight update

z: +2r(zk Q(I( )) l"'k)
17: sz(x )_ G Ny, g (Zk )
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Fig. 1. Auxiliary particle filter implementation of approximate PHD filter

for superpositional sensors.

C. Computational complexity

We obtain theoretical computational complexities for the
PHD and CPHD algorithms. The major steps in the algorithm
implementation are particle propagation, weight update, car-
dinality prediction and update, resampling and clustering.

For the PHD filter the dominant costs are the weight
update and the identification of the number of targets. The
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Fig. 2. Auxiliary particle filter implementation of the approximate CPHD
filter.

weight update involves estimating an M x M covariance
matrix, which has complexity O(N,M?) (where N, is the
number of propagated particles), and computing its inverse,
which has complexity O(M?). The Silhouette method, used
to estimate the number of targets, performs multiple k-means
clusterings with complexity O(XV,) and calculates silhouettes
with complexity O(N;). If the maximum number of targets
is N, then the combined complexity of these operations is
O(NEN, 2) Thus the overall complexity for one iteration of
PHD filter is O(N,M? + M?® + NfN?).

The CPHD filter additionally propagates the cardinality,
but the computational requirements are minor. The CPHD
weight update equations require computing multiple covari-
ance matrices and their inverse, which is O(N,M?+M?). The
CPHD cardinality update involves multiple matrix inversion
and is O(NyM?). Clustering is performed only once using
the k-means algorithm and has computational complexity
O(NyN,). The overall complexity for one iteration of the
CPHD filter is O(N,M? + NgM? + NoN,). From the ex-
pressions it can be seen that the CPHD filter computation
is dominated by matrix inversions and clustering, whereas
the PHD filter has additional computational requirements for
estimation of the number of targets.

V. APPLICATION TO MULTI-TARGET TRACKING

We compare and demonstrate the PHD and CPHD filters for
the application of multiple target tracking in superpositional
sensor environments. Targets can randomly appear and disap-
pear within the monitored region. We consider the scenarios of
acoustic amplitude sensors and a radio-frequency tomography
sensor system. The measurement models are discussed in
Section II. The targets move within the boundaries of the
monitoring area according to linear Gaussian dynamics [10]:

A

10 5

Xp+1,i = 01 0 %

’ 0 0 T 0

0 0 0o T

where T is the sampling period and u;, u, are zero-mean

Gaussian white noise with respective variance o, and oy, .

In this model, the state of each object 7 at time k, Xy, is

represented by a four-dimensional vector: position on the x-
axis and y-axis, velocity on the x-axis and y-axis.

For simulating the reference target motion, the model pa-
rameters are set to T = 0.25s, 05 = aiy = 0.35. Figure 5(a)
shows the motion of targets in the region monitored by the
sensors and Figure 3 (top panel) shows how the target number
evolves over time. The simulation is run for 35 time steps
covering a total duration of 35 x 0.25 = 8.75s.

We now discuss the algorithm implementation choices.
The probabilities of birth of new targets and survival of
existing targets are assumed to be constant for the purpose
of simulations. We use the values p, = 0.2 and ps = 0.9. The
two velocity components of the new particles are initialized
using a standard normal distribution N (0, 1). In the auxiliary
implementation of filters, probability p = 0.9 and ¥, = 02- T2,
where, o2 = 0.25. For practical purposes we need to assume
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Fig. 3. Variation of number of targets over time. Top panel: the number

of targets for the simulation experiments with separated target trajectories.
Bottom panel: the number of targets for the simulation experiment with
overlapping target trajectories.

a limit on the maximum number of targets that could be
present at any give time. This limit can be chosen much higher
than the true number of targets. We use a maximum of 6
targets for PHD filter and 9 targets for the CPHD filter. A
smaller value is used for PHD filter as it significantly affects
the computational time required for processing. We use the
Silhouette method [27] to estimate the number of clusters for
the PHD filter. The number of clusters is varied from 2 to
6 and the choice which maximizes the silhouette gives the
estimate of the number of targets present. The method cannot
identify when only a single target is present.

Identifying the number of targets in the CPHD filter imple-
mentation is much easier and maximum a posteriori (MAP)
estimation is used. The peak in the cardinality distribution
provides the target number estimate and computational re-
quirements are minimal. The k-means clustering technique
is then applied to group the particles into clusters and the
centroids of the clusters are the target state estimates.

We compare the approximate PHD and CPHD filters with
an MCMC filter that tracks the joint marginal posterior [28].
For a detailed discussion on the implementation of the MCMC
filter, see [28] and [24]. The maximum number of targets is
limited to 6. The burn-in is 1000 and the thinning factor is 3.

In order to compare the performance of different algorithms,
we need an error metric to quantify the difference between the
set of true targets present in the network and estimated target
set. Since sets are involved, a root mean squared type of metric
cannot be applied. We use the optimal subpattern assignment
(OSPA) error metric [29] which is specifically designed for
performance evaluation of multi-object filters. The OSPA
metric penalizes the cardinality error in the estimates using
the cardinality penalty factor c. When there are n targets and
we estimate m targets then for m < n the OSPA metric is
defined as

1/p
1 m
dz(f) (X,Y) = ( min S d(©) (i, Yr(i))! + P (n = m))
n well =
(56)
where II is the set of possible permutations of {1,2,...,n},

d(z,y) is the Euclidean distance between x and y and

d(z,y) = min{d(z,y),¢}. X = {z1,...,2,} and Y =
{y1,...,Yyn} are arbitrary sets and p is a fixed parameter. We
use the value p = 2. When m > n, we calculate d,(f)(Y7 X).
The OSPA metric finds the best permutation of the larger set
which minimizes its distance from the smaller set and assigns
a fixed penalty for each cardinality error.

The simulations are repeated multiple times with different
random initializations and the average error is reported over
all the simulations. The target trajectory is the same for each
random initialization. A set of 20 different measurements
are generated and each is processed with 5 different random
initializations for all the algorithms. Thus the average error is
reported over 20 x 5 = 100 simulations in order to reduce the
variability introduced due to the stochastic nature of process-
ing. The number of particles per target is set to Np,; = 500
and Jp, = Npp.

A. Acoustic amplitude sensors

The acoustic sensor likelihood model is discussed in Sec-
tion II-A. The moving targets are monitored by 25 acoustic
sensors distributed in a uniform grid. The targets emit a signal
which has amplitide A = 10 at unit distance from the target.
The sensors have a path loss exponent of x = 1. When the
targets lie within dy = 0.2m distance of any sensor, the
sensors record the same amplitude of A/dy. This avoids any
singularities in the measurements. The sensors are assumed to
have a Gaussian noise variance of o2 = 0.05.

Table II presents the average error over 100 random initial-
izations for the target tracks as shown above. The methods of
CPHD, PHD and MCMC [28] are used for tracking. The error
values are reported for different values of cardinality penalty
factor (¢ = 1,2.5,5). The CPHD filter has the lowest OSPA
error at all values of c indicating very few cardinality errors
and accurate target location estimates.

Track. 1 OSPA error
Algorithm | ¢=1 | ¢=2.5 | ¢=5
CPHD 0.34 0.44 0.47
PHD 0.71 1.44 2.61
MCMC 0.50 0.80 0.99
TABLE 11

ACOUSTIC AMPLITUDE SENSORS: AVERAGE OSPA ERROR.

Figure 4 shows the box-and-whisker plot of the error over
time for the various methods. The PHD filter has a high
error when the number of targets is one because the Silhoutte
method used to find the number of clusters from the particles
cannot estimate a single cluster. The accurate cardinality pre-
diction using the CPHD filter is able to effectively mitigate this
problem. Figures 5(a) and 5(b) show the true target trajectories
and example estimated target locations as obtained using the
various methods employed.

B. Radio-frequency tomography sensor system

The radio-frequency tomography sensor system is described
in Section II-B. 24 radio frequency sensors are placed on the
periphery of the monitoring region to form a sensor network.
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Fig. 4. Acoustic amplitude sensors: Box-and-whisker plot of the error over
time for the CPHD, PHD and MCMC methods with ¢ = 5. Boxes indicate 25-
75 interquartile range; whiskers extend 1.5 times the range and ‘+’ symbols
indicate outliers lying beyond the whiskers.
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Fig. 6. Plot of Euclidean distance vs. time for target pairs 1,2 and 3,4. When
either target in the pair is absent, the distance is indicated as -1.

The 24 sensors give rise to a total of 276 unique bidirectional
links. The measurement parameters are ¢ = 5 and oy = 0.2.
The Gaussian measurement noise has variance o2 = 0.25.

We use the RF tomography sensor system simulations to
analyse the performance of filters when two or more targets are
close in both space and time. We perform a simulation where
the targets 1 and 2 and the targets 3 and 4 approach each other
and then diverge (Figure 8(a)). The target number variation is
shown in Figure 3 (bottom panel). Figure V-A illustrates the
proximity of the target pairs, showing the Euclidean distance
as a function of time for the target pairs 1, 2 and 3, 4.

The simulated observations are used to track the targets
using the CPHD, PHD and MCMC algorithms. A summary
of the average OSPA error, performed over 100 random simu-
lations, is provided in Table III. The error values are reported
for different values of cardinality error penalty (¢ =1,2.5,5).

Overlapping trajectories and closely-spaced targets lead to
higher average errors for all the algorithms, but the measure-
ment dimension and the signal-to-noise ratio are much higher
for the RF tomography setup, so the average errors are smaller
than in the acoustic sensor case.

Track. 1 OSPA error
Algorithm | ¢=1 | ¢=2.5 | ¢=5
CPHD 0.16 0.20 0.23
PHD 0.57 1.29 2.48
MCMC 0.34 0.43 0.48
TABLE III

RADIO-FREQUENCY SENSORS: AVERAGE OSPA ERROR.

A detailed error behaviour over time can be seen from
the box and whisker plot in the Figure 7. At time = 6 we
observe that the MCMC filter has a much higher error median
indicating difficulty in identifying the appearance of first target
within the network. Also since tracking in the joint target state
domain is difficult the mean error at subsequent times is higher
when compared with the CPHD and PHD filters. Figures 8(a)
and 8(b) plot example trajectory estimates using the different
algorithms for the case of crossing targets.
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C. Computational requirements

Table IV summarises the computational time required” for
each of the algorithms. The CPHD filter is the fastest and also
the most accurate filter. A significant portion of the PHD filter
computational time is spent towards identifying the number
of targets. This could certainly be reduced substantially by
adoption of an alternative technique, but in light of the good
performance of the CPHD filter, we have not been motivated to
conduct further exploration beyond the examination of various
methods that was conducted in [21]. The MCMC filter is the
slowest owing to the sequential nature of the algorithm and
the fact that it operates in multi-target state space.

Algorithm | Acoustic sensors | RF Tomography
CPHD 4.15+0.18 24.66 £ 0.75
PHD 108.79 + 6.77 340.65 £ 16.57
MCMC 350.45 £ 2.52 774.45+£6.31
TABLE IV

CPU TIME REQUIRED IN SECONDS FOR DIFFERENT ALGORITHMS.

VI. CONCLUSION

We summarized the derivations of computationally-tractable
approximations of the PHD and CPHD filters for superposi-
tional sensors. The key steps in the filter derivations are the
application of a change of variables and Campbell’s theorem.
The former allows us to shift our analysis from random
sets to random variables; the latter allows us to express
the first and second moments of the transformed random
variables using the PHD and the second factorial moment of
the multi-target distribution. We proposed auxiliary particle
filter based implementations of the approximate filters and
performed a simulation-based analysis of the filters using
models of acoustic amplitude sensors and radio-frequency

2All the simulations were performed using algorithms implemented in
Matlab on Two Xeon 4-core 2.5GHz, 14GB RAM computers.
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Fig. 8. Radio-frequency sensors: True target tracks and the target location

estimates (circles) obtained from the CPHD, PHD and MCMC methods for
the case of overlapping targets.

tomography sensor systems. The CPHD filter accurately tracks
the target locations and the number of targets, significantly
outperforming the PHD filter which suffers from an unreliable
cardinality estimate. It also outperforms a more computa-
tionally demanding joint-posterior MCMC filter. In common
with most particle-based implementations of (C)PHD filters,
the algorithms presented here rely on a clustering procedure
to form a final estimate of the target states. This limitation
motivates further investigation into more elegant solutions.
Adaptation of the multi-Bernoulli filter, which was proposed
by Mabhler [14] and modified by Vo et al. in [15], is one
promising avenue of research. Steps have been taken in this
direction in [16], [17], where the multi-Bernoulli filer was
applied to image observations, which have a similar likelihood
structure.
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