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Abstract—Radio Frequency (RF) tomography is the method of tracking targets using received signal-strength (RSS) measure-
ments for RF transmissions between multiple sensor nodes. When the targets are near the line-of-sight path between two nodes,
they are more likely to cause substantial attenuation or amplification of the RF signal. In this paper, we develop a measurement
model for multi-target tracking using (RF) tomography in indoor environments and apply it successfully for tracking up to three
targets. We compare several multi-target tracking algorithms and examine performance in the two scenarios when the number
of targets is (i) known and constant; and (ii) unknown and time-varying. We demonstrate successful tracking for experimental
data collected from sensor networks deployed in three different indoor environments posing different tracking challenges. For
the case of a fixed number of targets, the best algorithm achieves a root mean squared error tracking accuracy of approximately
0.3m for a single target, 0.7m for two targets and 0.8m for three targets. Tracking using our proposed model is more accurate
than tracking using previously proposed observation models; more importantly the model does not require the same degree of

training.

Index Terms—Radio frequency tomography, multi-target tracking, indoor setup, device-free passive localization, particle filters.

1 INTRODUCTION

E address the task of tracking multiple mobile
W targets in an indoor environment. We are inter-
ested in a “device-free” setting where the targets have
no direct communication with the tracking system.
Applications of such a tracking system can be found
in military surveillance, search-and-rescue operations,
through the wall imaging, and healthcare environ-
ments [1], [2].

Radio-frequency (RF) tomography is the process of
monitoring an area to detect mobile targets based on
the additional attenuation and fluctuations they cause
in wireless transmissions [3]. Wireless networks of
radio-frequency (RF) sensors can be easily deployed
and are relatively inexpensive. Compared to the other
available alternatives such as infrared and video, RF
measurements have the advantage that they can pen-
etrate walls and other non-metallic obstacles.

In this paper we propose a multi-target measure-
ment model for the RF tomography problem in an in-
door setting. The indoor environment is significantly
more challenging than the outdoor environment be-
cause of the multiple obstructions and the multi-
path effects caused by reflections from walls, ceilings,
furniture, etc. These differences cause the outdoor
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multi-target measurement model developed in [4] to
perform poorly when used in an indoor setting.

We first demonstrate that single-target tracking us-
ing the proposed model outperforms tracking using
the skew-Laplace model developed in [5]. The per-
formance difference is more considerable for multiple
targets; the skew Laplace model is much more sensi-
tive to parameter choices.

For the proposed model, we successfully demon-
strate tracking of up to three targets when the number
of targets present in the network is known. In many
practical scenarios we expect the targets to be con-
tinuously entering and leaving the scene of interest,
thus tracking a time varying number of targets is
of practical importance. We demonstrate successful
tracking of up to two targets when their number
is unknown and varies over time. We compare the
performance of four candidate multi-target tracking
algorithms: the bootstrap particle filter [6], the multi-
ple particle filter [7], the Markov Chain Monte Carlo
(MCMQ) filter [8], [9], and the Additive Likelihood
Moment (ALM) filter [9]'. When the target number
is known we compare all the above algorithms and
when the target number varies with time we compare
the bootstrap filter and the MCMC filter.

The remainder of the paper is organized as fol-
lows. In Section 2 we briefly review related work.
We formalize the indoor multi-target tracking prob-
lem in Section 3. Section 4 describes and discusses
the proposed indoor multi-target measurement model
and reviews previously-developed models. Section 5

1. An error in the original publication [9] has been corrected and
is available in the errata [10]; the correction was also provided
in [11].



provides a brief overview of the tracking algorithms
we compare. Section 6 describes the experiments we
conducted and examines the tracking performance. In
Section 7 we conclude and identify future research
directions.

2 LITERATURE REVIEW

Device-free Passive (DfP) localization of targets using
wireless sensor networks has recently received signif-
icant attention. A good overview of the challenges
faced in realizing a DfP system and the different
techniques for target localization can be found in
the review paper [2]. RF tomography systems have
several desirable aspects. They are relatively cheap
and simple to deploy. The measurements do not have
the same privacy concerns as video, and they can
penetrate walls and non-metallic objects.

Most previous RF tomography tracking techniques
have focused on single target tracking. In [3], [12]
Wilson and Patwari proposed an inverse imaging
algorithm which first obtains an attenuation map and
then applies a Kalman filter to track the peak in the
map. Li et al. introduced a new measurement model
based on experimental data and use it in a sequential
Monte Carlo algorithm for tracking [13]. This method
incorporated online Expectation-Maximization so that
model parameters could be learned during the track-
ing task. This approach was extended in [14] to simul-
taneously estimate the locations of the sensor nodes.

Thouin et al. address the multi-target tracking prob-
lem for super-positional sensors in [9]. They propose a
measurement model for RF sensors that assumes that
targets cause additive attenuation effects. The model
was experimentally validated in [4] for multiple tar-
gets using data collected from outdoor sensor network
deployments. Accurate tracking of up to four targets
in a relatively uncluttered outdoor environment is also
demonstrated using the additive model.

Zhang et al. developed an indoor multi-target track-
ing system for ceiling-mounted RF sensor nodes based
on the interference caused by moving objects [15],
[16], [17]. These systems achieve good tracking per-
formance but require calibration and are restricted
to the ceiling deployment of sensors. This is not
practical in several important scenarios (search-and-
rescue, military surveillance).

More recently in [5], Wilson and Patwari devel-
oped a skew-Laplace signal strength model for in-
door target tracking. Received signal-strength (RSS)
measurements are modeled using skew-Laplace dis-
tributions whose parameters are experimentally ob-
tained through training measurements. The parame-
ters change depending on whether the target is close
to the line-of-sight between the sensors. Successful
tracking of two targets (fixed and known number) was
reported in [5], but the case of an unknown and time-
varying number of targets was not addressed. The

model parameters need to be trained using a target
with known position; Wilson and Patwari suggest
that parameters learned in one environment can be
applied successfully in another. Our experiments in-
dicated that this strategy led to numerous lost tracks,
particularly in the multi-target setting.

3 PROBLEM STATEMENT

RF Tomography relies on the RSS measurements of
wireless packets exchanged between the sensors in
the network. These measurements are affected by
the distance between the sensors and the disturbance
caused by static and moving objects. When multiple
links monitor a region, the relative RSS measurements
among the different links can be used to localize
moving objects.

We consider a network of R nodes with M =
@ bidirectional links. Each bidirectional link
records an RSS measurement. At time step k, the RSS
measurement on link ¢ is denoted by v;(k) and it is
the average of the RSS values recorded on the forward
and reverse links. The individual link measurements
are stacked into a vector ;. We subtract from -~
a vector 7, where #¥; is the average RSS on link ¢
when no target is present. In order to estimate the
average RSS #%;, we assume there is a time period
when RSS measurements can be captured from the
empty network when no targets are present. If such
a period does not exist, these values can also be
estimated using techniques based on background sub-
traction [18]. The change in RSS z;, = 7 — ~; is the
measurement available to the tracker at time step k.

We now state the RF tomography tracking prob-
lem. Let there be Nj, targets present in the sensed
region with the state of the n'* target given by
Zk,n. The combined state is given by the set X, =
{zk1,Tk2, ..., Tk N, }. We assume that the state of
each target evolves independently and is specified by
a Markovian dynamic model fy;—1(Zkn|Zr—1,n). The
goal of RF Tomography is to estimate the posterior
distribution at every time step k of all the targets
present in the network given the measurements up
to time k, p(Xy|2(1'®), where 2(1**) represents all the
observations up to time k, i.e., 2% = {21, 25 -+, 2.}
We can derive point estimates of the state from the
estimates of the posterior.

4 MEASUREMENT MODELS

We now discuss different measurement models that
can be used in an indoor setting. We first review the
exponential model that has been used successfully to
track targets [4] outdoors but fails in an indoor envi-
ronment. We propose a modification to suit indoor
settings and describe its extension to the multiple
target case. We also review the skew-Laplacian model
from [5] and suggest a minor modification which
leads to better tracking results in our experiments.
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Li et al. proposed a single target measurement model
for RF tomography based on experimental data from
relatively uncluttered outdoor regions [13]. The mean
of the attenuation on link j caused by a target at
position z;, is modeled as

gj(xr) = pexp ()\](xk)> @

OX

Exponential model

where ¢ and o) are attenuation parameters based on
physical properties of the targets and sensors. The
value \;(zy) is defined as

/\j(l‘k) = dl(mk) + dQ(Ik) —dqs 2)

where di(z) and da(zy) are the distances between
the target and the two sensors and d;2 is the distance
between the sensors. \;(xy) captures a notion of the
distance between the target and the line-of-sight link
between transmitter and receiver. The observed noisy
attenuation values are modeled as z, = g(xy) + wy,
where g = [¢1, 92, - , gu], and wy, is noise, distributed
according to N'(0,% = 02 Insx ), where Iy is the
identity matrix and o2 is the noise variance.

Thouin et al. proposed a multi-target extension of
this model in [9]; the model was validated using ex-
perimental data for outdoor environments in [4]. The
mean attenuation caused by the presence of multiple
targets is modeled as equal to the sum of the mean
attenuations due to each of the targets. Denote by
g;(z ) the attenuation on link j due to the n'" target
located at z, ,,. Then the mean of the total attenuation
on link j due to all of the targets combined is modeled
as:

N
9;(Xi) = > g5 (@x.n) ©)
n=1
where N, is the total number of targets within the
field of observation at time k. The observed noisy
attenuation values are given by

ze = 9(Xg) + wy 4)

4.2 Magnitude model

In an outdoor environment, a link usually experiences
attenuation when a target is nearby. However, due to
the multi-path effects in the indoor environment, a
link can experience either attenuation or amplification
when people move nearby. The model outlined above
does not capture amplification. To address this, we
choose to model the attenuation amplitude y;, = |z
using the model:

Pr(yp|ar) oc N(g(zg), 0% Tnixr) for yr >0 (5)

Here g(zj) has the same form as in (1), but the
parameter values are generally significantly different
for indoor and outdoor environments.

Figures 1(a) & 1(b) display box-and-whisker plots
of the attenuation and its magnitude, for single target
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Figure 1. Box plots of the attenuation (top) and its
magnitude (bottom) from Experiment 1 (see Section 6).
Overlaid are the exponential and magnitude models.

data recorded in Experiment 1 (see Section 6). The
data are binned according to the A values; for each
bin, the box ranges from the 25th to 75th percentile,
the circle within the box indicates the median value,
and the circles beyond the whiskers indicate outliers.
Overlaid are the exponential and magnitude models,
with parameters fitted using linear regression.

Both models achieve a relatively good fit to the
means when A is small, which is the important region.
However, the magnitude model has a higher slope
(see inset figures) and can thus more easily discern
when the target is close to a link. For human targets,
we have observed that the best-fit model parameters
are similar for multiple indoor environments (with ¢
ranging from 3 — 7, and o) ranging from 0.2 — 0.4).
Tracking performance is relatively robust to the pa-
rameter choice.

Figure 1(b) illustrates that the attenuation mea-
surements are very noisy, with numerous outliers
and heavy tails. The Gaussian noise model does not
capture the tails particularly accurately (the skew-
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Figure 2. Magnitude of RSS attenuation when one
or two targets are present along the line-of-sight of
a single link; experiments were conducted for a link
in Setup 2 (see Section 6). Scattered points depict
attenuation values averaged over short intervals and
the markers indicate the mean values.

Laplacian is a more accurate model in this regard),
but it is sufficient for tracking purposes and is more
computationally tractable.

Similar to (3), we propose a multi-target extension
to the magnitude model. The magnitude of the atten-
uation ¥, is modeled as:

Pr(yklzr) o N(9(Xy), 00 Inxar)  for

where g(X}) and wy are the same as above. We thus
model the observed attenuation magnitude as sum
of predicted attenuations caused by the individual
targets and corrupted by Gaussian noise.

Experimental support for this additive model is
provided in Figure 2. Data was collected from a single
indoor link of 7 meters (a representative link from
Setup 2 in Section 6), comparing the cases where
one target or two targets obstruct the link along
its line-of-sight. Target A stood at different locations
along the link and we recorded approximately 15,000
measurements of the resultant RSS attenuation. The
procedure was repeated for target B at slightly dif-
ferent locations. We then made measurements with
both A and B present at different combinations of
the locations. The mean attenuation values are 2.78
and 2.74 for the individual targets, and 4.62 for the
two targets. The distribution of attenuations for a
combination of targets has a significantly heavier tail;
a more sophisticated model could strive to capture
this effect in addition to the increased mean.

ye >0 (6)

4.3 Skew Laplacian model

In [5], Wilson et al. proposed the use of the skew-
Laplace distribution to model RSS attenuation. The

Parameter
A a b P
0<A<02 | 0.78X+041 | 1.40A+0.24 | -1.47X+0.35
A>02 1.29 1.08 -0.01
Table 1

Parameter values for fitted skew-Laplace distributions.

skew-Laplace likelihood is defined as:

p(zelze) = pzklar;a,b,9)

_ aab e~ W=2k) i f 2 < b
aaf&e*b(%*lﬁ), otherwise

@)

Here ¢ and b represent the one-sided decay rates
of the distribution for values less than or greater
than the mode . The parameters a, b and ¢ are
modeled as linearly dependent on the “fade level” [5]
for each link. The fade level quantifies the amount of
fading when no targets are present and is estimated
using measurements performed during a training pe-
riod. Different linear fits are obtained depending on
whether or not the target is on the line-of-sight path;
this classification depends on a distance threshold.

We conducted experiments in three different indoor
locations (see Section 6) and collected more than three
million data points. We observed that the RSS atten-
uation distributions vary as the value of A changes.
Modifying the model proposed in [5], we model the
parameters a, b, and ¢ as linear functions of A. For
A < 0.2, we divide the attenuation measurements into
bins of width 0.01 in terms of A; conduct a grid-search
to identify the best-fit skew-Laplace parameters for
each bin; and perform linear regression on these best-
fit parameters to obtain linear models. Figure 3 and
Table 1 show the fits we obtain. For A > 0.2, the target
location has little impact on the RSS measurement and
we model the parameters as constant.

The upward trends of parameters a and b indicate
that the distribution tends to become more peaky
as A increases (there are fewer large-magnitude at-
tenuations/amplifications). For the parameter ¢ (not
shown), the trend is less noticeable, but exhibits
a downward trend, reflecting our observation that
amplifications become rarer as A increases. In later
measurement based simulations we will compare the
original skew-Laplace model [5] and the modified
model proposed in this section.

5 TARGET TRACKING ALGORITHMS

We now discuss several particle-based multi-target
tracking algorithms. Algorithms such as the extended
or unscented Kalman filter do not perform well be-
cause the likelihood function is highly non-linear.

5.1

Knowing the number of targets allows for a simplified
implementation of the tracking algorithms. We com-

Tracking with target number (N;;) known
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Figure 3. Linear fits to the skew-Laplace parameters a
and b obtained using training data from all three single-
target experiments described in Section 6. The x and -
markers show the best fit values for each \ bin.

pare four different filters. The first is based on the
principle of sequential importance resampling (SIR)
and is commonly known as the bootstrap filter [6].
Since many practitioners are familiar with it we do
not discuss it in detail. In brief, at every time step,
the SIR filter maintains a weighted set of particles to
approximate the marginal posterior distribution. Re-
sampling (drawing a new set of unweighted particles
from the weighted set) is performed periodically to
maintain diversity of the particle set.

The particle filter can perform poorly when the
state has high dimension, which occurs with multiple
targets. To address this, Bugallo et al. proposed the
multiple particle filter (MPF) [7], which uses one
low-dimensional particle filter for each target (see
Figure 4). The filter runs for 71" steps, processing one
measurement vector at each time step. For each of the
N targets the MPF maintains a separate particle filter
using N, particles. We implement each of these as an
SIR filter. The weight update step for the individual
filters cannot be performed independently of the other
target states because computing the measurement
likelihood requires the combined state information.
The MPF uses an estimate for the other target states,
Xk@ = {fik,l . i‘k’nfl, ﬁk,nqtl .. nfk,N}/ where i’kyj isa
weighted average of the current particles {x,(j)} using

the weights from the previous time step {w,(j’_l it

The third algorithm we assess is the Markov Chain
Monte Carlo (MCMC) filter of [8] (see Figure 5).
Samples (particles) are drawn at each time step by
sequentially traversing a Markov chain which has
the desired marginal posterior as its stationary dis-
tribution. The Joint Draw step is implemented using
the Metropolis-Hastings algorithm. The Refinement
step uses Gibbs sampling to sequentially update each

1: Initialize N particle filters {w(()zzl,w[(le}f:v”
2: fork=1to T do
3: forn=1to N do

4 fori=1to N, do
5 proposal step:
6: xl(cl)n ~ p(xk,nlxl(;an)
7 estimation step:
N =N, (i i
8 Thn ~ D" wl(clll,n xl(:)n
9: end for
10: end for
11: forn=1to N do
12 fori=1to N, do
13: weight update:
14 wiip, o0y Pl Xin)
15: resample step:
T =N ) i=N,
16: (w20 o = {5 e ol
17: end for
18: end for
19: end for

Figure 4. Multiple Particle Filter (MPF) [7].

target state. The proposal densities ¢; and g, are:

1 (X X | X1 X701 o
NxNp ) )
> faka (X250 ®)

=1
Xl??gvxlgn—l) = fk\kfl(xk,n x?—l,n) )

where Xk}ﬂ = {x;m oo Thn—1,Tkn+1 - - - xk7N}. To
sample from ¢; we uniformly randomly choose a par-
ticle at time k& — 1 from the set {X ,521} and propagate
it following the target Markovian dynamics fyx—1-
At every time step, the MCMC chain is initialized
with a particle from the previous time step that has
the highest likelihood for the current observation. p;
and p, are the acceptance probabilities for joint draw
and refinement steps of the algorithm. A burn-in of
Nyurn samples and a thinning factor of Vi, reduce
the correlation between the consecutive samples.
The final filter we assess is the Additive Likelihood
Moment (ALM) filter [9] (see Figure 6). The algorithms
discussed earlier either try to sample from the joint
target posterior density (SIR and MCMC) or from the
individual target marginal posterior densities (MPF),
but the ALM filter samples from the first moment
of the joint target posterior density, also called the
Probability Hypothesis Density (PHD) [19]. This is a
function over the single target state space. It is high in
regions where targets are present and its integral over
the target state space is equal to the expected number
of targets. Thus sampling from the PHD populates
particles in region where there is high probability
of targets being present. The advantage of the ALM
filter is that we do not have to sample from the high

q2(£k‘,n



1: Initialize particles { X" }/=1 ">

2: fork=1to T do
3: Initialize MCMC chain (X{”, x{”.)

4: for m =1 to (Nyyrn + Np X N X Nypip) do
5: Joint Draw

6 (X7, X5 ) ~ an (X, X | X071 X005
7: (X7, X)) = (X5, Xi_,) with prob. p;
5 else (X[, Xp,) = (X7, X"7))

9: Refinement

10: forn=1to N do

11: draw zj ,, ~ ga(@k,n| X" X3 1)
12: refine 7", = x ,, with prob. ps

13: end for

14: Selection

15: fori=1to N, x N do

16: X}gl) — X}i\fburnJriXNthin

17: end for

18: end for

19: end for

Figure 5. MCMC Filter [8]

dimensional space of multiple targets. The ALM filter
provides a particle representation of the PHD at each
time step; to form estimates of target states we use k-
means clustering to group the particles into clusters,
each of which corresponds to a target.

1: Initialize particles {wo , T )}l NNy
2. for k=1to T do
3: fori:ltoNprdo

. proposal: o’ ~ i (wia},)
(2) (4)

> wkz\k 1= kz—l

6: end for . "

7: Z wkj\k 1g(xkj)

8: =2 wk‘k gl (J)) (g ](C))

9: forzfltoNxN do
10: weight update:

: Dy Ny (e St S)
11: Fy(z”) N, (gu;))ﬂbk’zﬁz)
= w,(;) N Fk(lg]:(f)l)
13: end for
14: resample step:

Tw®, gD y=NxNy NN,

15: {w }z ) x _>{N><N 7 ()} X
o w
7 Akl = duster({af}25, )
18: end for

Figure 6. ALM Filter [9]

5.2 Tracking with target number (V) unknown

We now discuss an extension of the SIR and MCMC
filters which allows them to address the case where
the number of targets is unknown and varies with

time. Following [20], we extend each target state to
include an indicator variable ey, which indicates the
presence or absence of the target. Thus the target
state is now given by {zn,er»}. In our analysis we
assume that the indicator variable evolves indepen-
dently of the target location and velocity and does so
independently for each of the targets. This approach
requires us to specify the maximum number of targets
Nmax that can be present at any given time. The SIR
and MCMC algorithms presented above are easily
modified; there is just an additional propagation step
for the indicator variable. Since the number of targets
is unknown, we need to estimate the number of
targets as well as the target locations. We employ a
simple heuristic: at any time step we declare a target
to be present if more than half of the corresponding
target particles have their indicator variable set to 1.

6 EXPERIMENTS AND RESULTS
6.1 Target dynamics and tracking parameters

A jump-state Markov model is a standard model for
describing the dynamics of a maneuvering object [21],
[22]. The model assumes that the target operates at
each time step in one of multiple modes of operation
(represented as a discrete state variable). The discrete
state jumps/switches are independent of the target
positions and are governed by a Markov chain.

We adopt the following jump-state Markov model
in our experiments. The initial distribution is modeled
as p(ug, 0o, zo). The update equations are:

ug, ~ plugup—1), (10)
O = Op—1 + c(uk) + sk, (11)
T = Tp_1+ m[cos 0, sin Gk] —+ vg. (12)

Here u; € {0,1,2} represents “no turn” (c(0) = 0),
“left-turn” (c(1) = 0.1 rad), and “right-turn” (¢(2) =
—0.1 rad), respectively. p(ug|ug—1) is the transition
probability matrix, ) indicates the current motion
angle and s, ~ N(0,02) and v, ~ N(0,0215x2) are
the innovation noise terms. xj, is the position vector
and speed of motion is specified by m.

We set m = 0.1 ? in our experiments since it
approximates walking speed. We model p(ux|ux—1) as:
0.75 0.65 0.65
0.125 0.3 0.05
0.125 0.05 0.3

The matrix is chosen to approximate typical human
motion characteristics. Higher values in the first row
indicate a greater tendency to walk straight than to
make turns. Angle innovation noise variance o? is set
to 0.001 to model smooth target motion. The tracking
performance is robust to small changes in o2, m and

the matrix entries. The parameter o, is set to 0.1,

2. The effect of changing the velocity parameter m can be found
in the technical report [23].



although we examine the impact of changing it to 0.2
for the single-target case.

Observation model parameters were selected based
on training phases performed at the three experimen-
tal sites. The test data sets do not include any data
from the training phases. For the MCMC filter, we
use Npyrn, = 1000 and Nyp;, = 3, which are standard
values from the literature, observed to be sufficient
in many cases to substantially reduce correlation be-
tween samples.

6.2 Experimental setup

We performed multiple experiments at three different
experiment sites and repeated each experiment multi-
ple (8-10) times. The first site is in the Trottier Building
at McGill University (Figure 7(b)). An area of 8m x 8m
was monitored by 24 sensor nodes (Figure 7(a)). It
is referred to as Setupl henceforth. A concrete pillar
lies within the network. The second experiment site
(Setup2) is the Computer Networks Lab of McGill
University (Figure 7(d)). An area of 9m x 9m is mon-
itored by 24 sensor nodes (Figure 7(c)). Numerous
desks and chairs are present within the network and
there are walls just outside. The third experiment
site (Setup3) is in the Beijing University of Posts
and Telecommunications (BUPT), China. Data was
collected in a completely through-wall environment
(Figure 7(f)) using 28 nodes covering a 5.2m x 6.7m
region (Figure 7(e)).

We performed multiple single and multi-target ex-
periments. The single target experiments at Setupl,
Setup2 and Setup3 are respectively referred to as
"Exp. 17, "Exp. 2” and "Exp. 3”. The two-target
experiments at Setupl and Setup?2 are called “Exp. 4”
and "Exp. 5” respectively. The three-target experiment
at Setupl is called "Exp. 6”. The time-varying number
of targets experiment at Setup? is called "Exp. 7”. The
setup description and experiments are summarised in
Table 2.

Setup Experiment Description
Exp. 1 | single target 24 sensors in 8m X 8m,
Setupl | Exp. 4 two target concrete pillar obstruction
Exp. 6 | three target
Exp. 2 single target 24 sensors in 9m X 9m,
S Exp. 5 two target desks and chairs obstruction
etup2 E
xp. 7 two target,
time varying
. 28 sensors in 5.2m x 6.7m,
Setup3 | Exp. 3 | single target through-wall environment

Table 2
Description of the different indoor experimental setups
and the nature of the experiments used to collect data.

The transceivers of the sensor nodes are system-
on-chip (SoC) TI CC2530 devices; each node has a
monopole antenna and uses the 2.4 GHz IEEE 802.15.4
standard for communication. A simple token ring

protocol is used to control transmission. A single mea-
surement interval corresponds to the period required
for all nodes to transmit (200ms). During each time
interval of 6.7 ms, one node broadcasts a data packet.
All of the other nodes receive this packet and measure
the RSS. The token is then passed to the next node.

Some links exhibit large variance in their RSS mea-
surements even when the network is vacant. Those
links have severe impacts on the tracking results,
as the variation of the RSS is not caused by the
targets. Thus we exclude the RSS measurements of
any links whose variance is higher than 1 for the
vacant network as a pre-processing step.

6.3 Tracking performance

To compare and evaluate the algorithms, we need
metrics to measure the deviation of the estimated
tracks from the ground truth tracks. When the number
of targets is fixed we use the optimal mass transfer
(OMAT) metric [24]. The p-th order OMAT metric is:

n 1/p
1 .
dy(X,Y) = (n gggZd(xi,ywp> (13)
=1

where II is the set of possible permutations of
{1,2,...,n} and d(z,y) is the Euclidean distance be-
tweenzand y. X = {z1,...,zptand Y = {y1,...,yn}
are arbitrary sets and p is a fixed parameter. We use
the value p = 2. The OMAT metric uses the permuta-
tion of the target location estimates which minimizes
the mean squared error from the true locations.

The OMAT metric is unsuitable for a time-varying
number of targets because it does not penalize errors
in the estimation of the number of targets. The optimal
subpattern assignment (OSPA) metric [24] adds an
additional term (c) which penalizes the cardinality
error. When there are n targets and we estimate m
targets then for m < n the OSPA metric is

1/p

c 1 3 - c
A (X,Y) = (n frnellrjlz_:l (@3, y(iy)P + P (n —m)
) (14)
where d©(z,y) = min{d(z,y),c}, X = {x1,...,Zm}

and Y = {y1,...,yn}. When m > n, we calculate
d,(f) (Y, X). The OSPA metric finds the best permu-
tation of the larger set which minimizes its distance
from the smaller set and assigns a fixed penalty for
each cardinality error.

The reported tracking errors are calculated by aver-
aging over the multiple repetitions of the experiments
and for each experiment running the tracking algo-
rithm with 10 different random initializations.

6.3.1 Single target tracking

Table 3 summarizes the tracking performance for the
different single target experiments using the algo-
rithms of SIR, MCMC and ALM. For all filters, we
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Figure 7. Layouts and photos of the three experiments: (a), (b) Setup1 (uncluttered indoor environment); (c), (d)
Setup?2 (cluttered indoor environment); (e), (f) Setup3 (through-wall measurements).
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set N, = 500 (larger values were observed to give
minimal improvement and smaller values lead to
larger tracking error). The MPF is identical to the
SIR algorithm in the single target case. Tracking is
performed using the measurement models discussed
in Section 4: the magnitude model (Mag), modified
skew-Laplace model (SL) and original skew-Laplace
model (SL [5]). We detail the best-fit skew-Laplace
parameters for the three experimental sites in [25].
For the magnitude model, we use o, = 2, ¢ = 4
and o, = 0.2. Since the particle implementation of
the ALM filter in [9] is obtained assuming the mea-
surement noise to be Gaussian, we do not perform its
skew-Laplacian analysis.

Two different values of the innovation noise stan-
dard deviation, o, = 0.1 and o, = 0.2, are consid-
ered to analyze the robustness of the measurement
models. A higher value of o, implies less confidence
in the motion model; it also facilitates recovery from
tracking errors. Table 3 suggests the original skew-
Laplace model performance is sensitive to the choice
of o,. In most cases the magnitude model has a lower
error than the modified skew-Laplace model, which in
turn generally performs better than the original skew-
Laplace model. The magnitude model is relatively
insensitive to the choice of o, for both the SIR and
MCMC algorithms. The SIR and MCMC have similar
performance and both perform better than the ALM
filter. Figures 8(b) and 8(c) plot sample target trajecto-
ries obtained using the SIR filter and the magnitude
model for the three different experiments.

SIR [ MCMC [ ALM

oy, = 0.1

0

=
Ny

1 0000000

(c) Exp. 3.

Figure 8. (a) Box-and-whisker plot of the OMAT error
over time for the Exp.1 data using the MCMC algorithm.
(b), (c) Sample single target trajectories using the
magnitude model in different indoor environments. The
small diamond indicates the start of trajectory.

Exp. Mag SL SL [5] | Mag SL SL [5] | Mag

Exp.1 | 0.31 | 0.35 2.73 0.31 | 0.40 1.06 0.45

Exp.2 | 0.41 | 1.01 3.10 0.37 | 0.46 1.50 0.50

Exp.3 | 0.36 | 0.56 1.55 0.30 | 0.37 0.37 0.46

oy = 0.2

Exp.1 | 0.35 | 0.38 0.54 0.32 | 0.40 0.34 0.53

Exp.2 | 0.43 | 0.47 0.59 0.41 | 0.45 0.46 0.56

Exp.3 | 0.34 | 0.45 0.41 0.30 | 0.36 | 0.29 0.54

Table 3
Single target: Average error (in meter) using different
tracking algorithms and different measurement
models for Exp. 1, Exp. 2, and Exp. 3. o, = 0.1,0.2.
Data partitioned into training and testing data set.

Figure 8(a) shows the OMAT error over time using
a box-and-whisker diagram for the MCMC algorithm
(o, = 0.1). Boxes range from the 25" to 75" per-
centile, the line within the box indicates the median
value, and the pluses indicate outliers. Using the origi-
nal skew-Laplace model, there are multiple lost tracks;
with the modified model, performance is comparable
to the magnitude model. The computational time
requirements of the tracking algorithms also play an
important role in their practical applicability. Table 4
summarizes the average normalized processing times



of each of the algorithms with different measurement
model combinations. The normalized processing time
is the ratio of time required to process the data® to
the duration of the experiment. A normalized time
less than 1 indicates a real-time performance of the
algorithm. The SIR, MPF and ALM algorithms are
computationally fast and can perform real time track-
ing when a single target is present.

SIR MCMC ALM

Exp. Mag | SL | SL[5] | Mag SL SL [5] | Mag

Exp.1 | 0.19 | 0.45 | 0.50 6.79 | 22.79 | 26.06 | 0.38

Exp.2 | 0.11 | 0.24 0.37 13.19 | 22.70 | 25.11 0.63

Exp.3 | 0.12 | 0.34 | 0.41 7.79 | 13.58 | 15.80 | 0.46
Table 4

Single target: Average normalized processing time
using different tracking algorithms and different
measurement models for Exp. 1, Exp. 2, and Exp. 3.

6.3.2 Multiple target tracking with known and fixed
number of targets

We now consider tracking experiments in which there
are multiple (two or more) targets and the number of
targets is fixed and known. Two-target experiments
were performed at Setupl and Setup2 and a three-
target experiment was conducted at Setupl. We exam-
ined the performance of the skew-Laplace measure-
ment model for multiple targets but it frequently leads
to lost tracks and has significantly higher average
error for all algorithms. Hence, in this section, we
only report results for the multi-target magnitude
measurement model discussed in Section 4.2. We use
the model parameters o,, =2, ¢ =3 and o) = 0.4.

Tables 5 and 6 report the average OMAT errors
for the two-target experiments, Exp. 4 and Exp. 5.
To examine the effect of prior information on the
overall tracking performance, we consider two dif-
ferent initial particle distributions. For the “Informed
Prior”, we initialize the particles at the first time step
according to a Gaussian distribution with variance 1,
centered at the true target locations. In the “Uniform
Prior”, we initialize the particles uniformly at random
within the observation region.

The MPF performs best when the “Informed Prior”
is used. For all the methods except ALM the average
error reduces as the number of particles is increased.
There is minimal gain in accuracy for any algorithm
if the number of particles per target is increased
beyond N, = 750. The error fluctuations for the ALM
filter with respect to the number of particles are due
primarily to errors during the clustering stage.

When the particles are initialized using the non-
informative “Uniform Prior”, the SIR and MPF al-

3. All the processing has been performed using algorithms im-
plemented in Matlab on Two Xeon 4-core 2.5GHz, 14GB RAM
computers.
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Exp. 4 N, | SIR | MPF | MCMC | ALM
Informed | 100 | 1.46 | 1.00 | 0.86 0.93
Prior 250 | 1.05 | 0.79 | 0.83 0.86
500 | 0.02 | 0.67 | 0.80 0.88
750 | 0.80 | 0.62 | 0.80 0.88
Uniform | 100 | 1.63 | L1.78 1.06 0.96
Prior 250 | 1.27 | 1.58 T.00 0.89
500 | 1.06 | 1.44 0.97 091
750 | 1.0I | 1.36 0.92 091
Table 5

Two targets: Average error (in meters) using different
algorithms with N, = 100, 250, 500 & 750 for Exp. 4,

Setup1.
Exp. 5 Np SIR | MPF | MCMC | ALM
Informed | 100 | 1.11 | 0.94 0.72 0.93
Prior 250 1.00 0.82 0.70 0.92
500 [ 0.83 [ 0.71 0.70 0.89
750 [ 0.72 | 0.70 0.69 0.88
Uniform | 100 | 1.15 | 1.21 0.74 0.92
Prior 250 | 0.94 1.01 0.72 0.89
500 | 0.88 [ 0.92 0.72 0.91
750 | 0.80 | 1.00 0.72 0.89

Table 6

Two targets: Average error (in meters) using different
algorithms with NV, = 100, 250, 500 & 750 for Exp. 5,
Setup2.

gorithm performances worsen significantly for Ex-
periment 4. The MCMC algorithm is more robust
with respect to the prior information, and the ALM
filter displays little sensitivity to the initialization.
The computational requirements of the different algo-
rithms are displayed in Table 7. Results for both cases
“Informed Prior” and “Uniform Prior” were observed
to be similar and hence we report only for the latter.
The SIR, MPF (500 particles or less) and ALM filter
(250 particles or less) can execute in real-time. The
MCMC algorithm has a major computational over-
head and cannot execute in real-time with the current
implementation and processor.

Figures 9(a) and 9(b) show sample target trajectories
obtained using the MPF algorithm in Exp. 4 and Exp.
5 respectively. Figure 10 displays box-and-whisker
OMAT error plots for the Exp. 4 data for the four
tracking algorithms. The boxes range from the 25" to
75th percentiles, the line within the box indicates the
median value, and the pluses indicate outliers.

Table 8 reports the average OMAT error for Exp.
6 data when three targets are simultaneously present.
When using the “Informed Prior”, the MPF algorithm
has the lowest tracking error. When the “Uniform
Prior” is used, the ALM filter performs noticeably bet-
ter than the other algorithms. The ALM filter operates
in the single-target state space; increasing the number
of targets has less impact on its performance. The
corresponding computational time requirements for
the algorithms are summarized in Table 9. Real-time



Exp. 4 Np | SIR | MPF | MCMC | ALM
Uniform | 100 | 0.12 | 0.11 16.42 0.61
Prior 250 | 0.34 [ 0.30 25.97 0.95
500 | 0.75 [ 0.68 41.81 1.57
750 | 1.23 | 1.10 57.41 2.21

Exp. 5
Uniform | 100 [ 0.12 | 0.11 16.37 0.56
Prior 250 [ 0.34 | 0.30 25.90 0.88
500 | 0.76 [ 0.67 41.78 1.44
750 | 1.21 [ 1.10 57.68 2.02

Table 7

Two targets: Average normalized processing time
using different algorithms with NV, = 100, 250, 500 &
750 for Exp. 4 and Exp. 5.
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Figure 9. Example target tracks estimated by the MPF
algorithm when two targets are present.

tracking is possible with the SIR and MPF algorithms
using 250 particles or less, but this involves some
decrease in accuracy. The ALM filter can execute in
real time for 100 particles, but its accuracy is less
sensitive to the number of particles.
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Figure 10. Box-and-whisker plot of OMAT error over

time using magnitude model for Exp. 4 data.

Exp. 6 N, | SIR | MPF | MCMC | ALM
Informed | 100 | 1.94 | 0.75 0.90 0.75
Prior 250 | 1.34 | 0.58 | 0.89 0.76

500 | 1.04 | 0.56 | 0.84 0.80

750 | 0.901 | 0.64 | 0.83 0.83

Uniform | 100 | 2.08 | 1.20 | 098 | 0.76

Prior 250 | 1.56 | 1.07 | 0.92 | 0.77

500 | 1.09 | 0.96 | 097 | 0.83

750 | 0.95 | 1.03 | 091 | 0.84
Table 8

Three targets: Average OMAT error (meters) for Exp.

6, Setup1.

6.3.3 Multiple target tracking with unknown and vary-
ing number of targets

We now address the most challenging indoor target
tracking task of tracking a time varying number of tar-
gets. We use the SIR and MCMC algorithms, adapted
to account for varying target number as discussed
in Section 5.2, to track the targets. The multi-target
magnitude measurement model is used for likelihood
computation. We assume the maximum number of
targets is Ny;q, = 4. The model parameters are o, = 2,
¢=>5and o, =0.1.

Table 10 shows the average error values for the
Exp. 7 data for different values of the cardinality
penalty c. We set the number of particles per target
to N, = 500 and use the “Informed Prior” particle
initialization. When the cardinality penalty is small
(¢ = 1), the error is comparable to the two-target
error when the number of targets is known, indicating
that the tracking performance of the algorithms is not
significantly affected by the missing information. Both
the algorithms have similar error values for small ¢
and MCMC error increases slightly with ¢ indicating
the MCMC cardinality estimate is not as robust as
the SIR. More sophisticated methods to estimate car-
dinality rather than the simple heuristic method we
currently employ are expected to give better results.



Exp.6 | N, | SIR | MPF | MCMC | ALM

Uniform | 100 | 0.29 | 0.25 | 31L.49 | 0.86

Prior 250 | 0.83 | 0.60 | 54.51 1.48

500 | 1.04 | 1.58 | 93.63 | 2.50

750 | 2.05 | 2.45 | 1314 | 3.62
Table 9

Three targets: Average normalized processing time for
Exp. 6, Setup1.

Exp. 7 OSPA error
Algorithm | c=1 | ¢=25 | c=5
SIR 0.60 0.91 1.32
MCMC 0.60 0.93 1.38
Table 10
Varying target number: Average OSPA errors for Exp.
7 data.

Figure 11 compares the actual number of targets
to the SIR cardinality estimate. Also shown is the
corresponding error variation for ¢ = 1 and ¢ = 5.
The algorithm makes numerous cardinality estimation
errors, particularly in the time-period 25-30s, when
one of the targets is in the region between the desks
(Figure 7(c)) and hence is more difficult to detect.

7 CONCLUSION

We have presented measurement models and particle-
based algorithms for RF-tomographic multi-target
tracking in indoor environments. We introduced a
modification to the skew-Laplace measurement model
of [5] and proposed a new magnitude measurement
model. We demonstrated through experiments at
three different sites, representing a variety of measure-
ment challenges, that the algorithms can successfully
track up to three targets. The algorithms can track
a time-varying number of targets, but struggle to
estimate the number of targets. The good performance
of the ALM filter for the three-target case motivates
future exploration of a recently-proposed generaliza-
tion [11] that explicitly tracks the cardinality.

The system and algorithms can perform well when
sensors are deployed inside a room with furniture, or
densely deployed outside a small, uncluttered room
with thick concrete walls. Through-wall tracking us-
ing fewer sensors deployed outside a cluttered, large
room remains as an important challenge for these
systems and algorithms.

The experiments reported in this work do not ad-
dress several of the key challenges in multi-target
tracking. Further experiments are necessary to explore
whether the algorithms can perform well when the
targets come together in groups, then separate.

The truncated Gaussian model adopted for the
likelihood function does not capture the heavy tails
we observe in the distribution of the attenuation mea-
surements. This does not substantially compromise
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Figure 11. (a) Example of the true number of targets
and the SIR cardinality estimate (Exp. 7, Setup2). (b)
Average OSPA error forc=1and ¢ = 5.

performance in the reported experiments because the
sensors are relatively densely deployed, but the devel-
opment of more accurate likelihood models should be
explored in future work.
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