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Large Networked Systems

e The recent advances in wired and wire-
less technology lead to the emergence of
large-scale networks

e Internet
e Mobile ad-hoc networks
e Wireless sensor networks

e The advances gave rise to new network
applications including

e Decentralized network operations in-
cluding resource allocation, coordina-

tion, learning, estimation
e Data-base networks

e Social and economic networks
e As a result, there is a necessity to develop new models and tools for the design and
performance analysis of such large complex dynamics systems
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New Application Challenges

e Lack of central “authority”

e Centralized network architecture is not possible
) Size of the network / Proprietary issues
e Sometimes centralized architecture is not desirable

0 Security issues / Robustness to failures

e Network dynamics

e Mobility of the network

0 The agent spatio-temporal dynamics

11 Network connectivity structure is varying in time
e Time-varying network

0 The network itself is evolving in time

e The challenge is to design algorithms to support efficient operations over such networks.
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Trends: Areas of Research
e Network aspects

e Consensus, information diffusion, opinion dynamics

0 Stability, characterization of equilibria, bounds on convergence rate/time

e Optimization issues

e Distributed algorithms for optimization over networks

0 Different network performance measures
0 Synchronous/asynchronous implementations

0 Different information diffusion/exchange protocols

e Uncertainty issues in distributed systems

e Communication noise and delay (network dependent)
e Uncertain measurements (application dependent)

e Computational errors (algorithm dependent)
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Distributed Computational Model: Self-organized Agents

The model consists of a network of computing agents (nodes) that cooperate in
order to optimize a network-wide objective function

e Agents can communicate only with immediate neighbors in the network
e Agents have individual objective functions that they do not "reveal’ to each other
e Agents cooperate (share info.) with their neighbors

Distributed load-balancing in a network

() £,(x,) Uplink power control in mobile cellular net
JI] 2
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Network objective: minimizezex Maxi<i<m fi(x)

minimizeyr,—; > . fi(x;)
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General Model

e Network of m agents represented by an undirected graph ([m],&) where [m] =
{1,...,m} and & is the edge set

e Each agent i has an objective function f;(x) known to that agent only

e Common constraint (closed convex) set X known to all agents

Distributed Self-organized Agent System

The problem can be: Sl ) -
. / <~ folz1, ..., 2p)
minimize Zfi(m) subject to x € X C R" $ \
i=1
or
minimize max fi(x) subject tox € X CR" O

fnlx1, .. xy)
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How Agents Manage to Optimize

minimize Z fi(x) subjecttoxz € X CR"
i=1

minimize max f;(x) subjecttox € X CR"
1<i<m

e Each agent ¢ will generate its own estimate 2?(t) of an optimal solution to the problem

e Each agent will update its estimate x*(¢t) by performing two steps:

e Consensus-like step (mechanism to align agents estimates toward a common point)

e Local gradient-based step (to minimize its own objective function)

C. Lopes and A. H. Sayed, " Distributed processing over adaptive networks,” Proc. Adaptive Sensor Array Processing Workshop,
MIT Lincoln Laboratory, MA, June 2006.

A. H. Sayed and C. G. Lopes, " Adaptive processing over distributed networks,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. E90-A, no. 8, pp. 1504-1510, 2007.

A. Nedi¢ and A. Ozdaglar "On the Rate of Convergence of Distributed Asynchronous Subgradient Methods for Multi-agent
Optimization” Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007, pp. 4711-4716.

A. Nedi¢ and A. Ozdaglar, Distributed Subgradient Methods for Multi-agent Optimization IEEE Transactions on Automatic Control

54 (1) 48-61, 2000.
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Consensus Problem

Consider a connected network of m-agent, x,(2) x,(1)
each knowing its own scalar value z;(0) at . o
time ¢t = 0.
The problem is to design a distributed and lo-

cal algorithm ensuring that the agents agree

on the same value z, i.e.,

lim z;(t) =« for all 1.
t—00
Leaderless Heading Alignment x,(1) R;;%(t)
A system of autonomous agents are moving f
in the plane with the same speed but with Of”
different headings [Vicsek 95, Jadbabaie et . \O x(1)
al. 03] (0
The objective is to design a local protocol that : ®
will ensure the alignment of agent headings o . 2}
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Consensus Algorithm

Each agent combines its estimate x;(t) with the estimates x;(t) received from its neighbors
ZIJZ'(t —|— 1) = Z Qij xj(t) for all <.
jEN;

where Nj is the set of neighbors of agent ¢ (including itself)

Ny ={j€lm]|(ij) €&}
and a;; > O is a weight that agent ¢ assigns to the information coming from its neighbor
7 € Nj.
The weights {a;j,j € N;} sum to 1, i.e., > ..\ ai; =1 for all agents 1

Introducing the values a;; = O when j € N;, the consensus algorithm can be written as:

xi(t + 1) = Zaij xj(t)

j=1
where
Q;j >0 with aj; = O when j € N;

m
g a;; =1
j=1
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Distributed Optimization Algorithm

minimize Z fi(x) subjecttoxz € X CR"
i=1

e At time t, each agent 7 has its own estimate x'(t) of an optimal solution to the
problem

e At time t 4 1, agents communicate their estimates to their neighbors and update by
performing two steps:

e Consensus-like step to mix their own estimate with those received from neighbors
w'(t+1) =) aga!(t) (aij = 0 when j & N;)
j=1
e Followed by a local gradient-based step
z'(t+ 1) = Nx[w'(t + 1) — a(O)V fi(w'(t + 1))]
where Mx[y] is the Euclidean projection of y on X, f; is the local objective of
agent 7 and «(t) > O is a stepsize
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Intuition Behind the Algorithm: It can be viewed as a consensus steered by a "force”:

z'(t4+1) =w'(t+ 1)+ (Nx[w'(t+1) —a@) Vi (t+1))] —w'(t+ 1))
=w'(t+ 1)+ (Ox[w't+ 1) - a@®Vfiw'(t+ 1)] - Nxlw'(t + D)

small stepsize a(t)

~w'(t+ 1) — a@®)Vi(w'(t+ 1))

= Z aijxj(t) — a(t)Vf; Z aijxj(t)
j=1 j=1

Matrices A that lead to consensus, also yield convergence of an optimization algorithm

10
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Convergence Result for Static Network

Convex Problem: Let X be closed and convex, and each f; : R™ — R be convex with
bounded (sub)gradients over X. Assume the problem min,cx > " ; fi(x) has a solution.

Stepsize Rule: Let the stepsize a(t) be such that > 72 ja(t) = coand > 2 a?(t) < oo.
Network: Let the graph ([m],&) be directed and strongly connected. Let the matrix
A = [ai;] of agents’ weights be doubly stochastic. Then,

lim z'(t) = z* for all 3,

t—00
where x* is a solution of the problem.

Proof Outline:
Use > | ||z(t) — *||? as a Lyapunov function, where z* is a solution to the problem

Due to convexity and (sub)gradient boundedness, we have

S et (D) =22 <) lw' D) -2 P -2a() Y (filw' (t + 1)) — fi(z"))+e2 (1) C?
1=1 1=1 =1

11
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By w'(t + 1) = >_"_, ai; 2/(t) and the doubly stochasticity of A, we have

D et —a(? <> flaf () -2 P—2a(t) Y (fi(w'(t+ 1)) = fi(z*)) 4 (t)C?
i=1 j=1 i=1

Thus, letting s(t + 1) = % Yo x(t+ 1) we see

Yot +1) =2 P <) lla? () — 2P = 2a(t) Y (fi(s(t+ 1)) — fi(z"))

i=1 j=1 i=1

+20(t) Y (fi(s(t 4+ 1)) = fi(w'(t 4+ 1)) + > (H)C?
i=1
Letting F'(z) = >, fi(z) and using (sub)gradient boundedness, we find

m

Yol (t+1) — 2P <) llaf (1) — 2| —2a(t) (F(s(t 4 1)) — F(a"))
j=1 NG

>0

=1

.

7 /

V(ZH) VTt)

+20(t)C Y " ||s(t 4+ 1) —w'(t + 1)|| 4+ o (t)C?
=1
We can see > 2 a(t)C Y " st + 1) —w'(t+ 1) < o0

The result would hold if we can show |[s(t + 1) —w*(t + 1)|| — 0 as t — oo for all i

12
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The trouble is in showing ||s(t+ 1) —w*(t+ 1)|| — 0 as t — oo for all i, which is exactly
where the network impact is — rate of convergence of A’ to its limit is needed

When the network is connected, the matrices A! converge to the matrix %11’, as t — oo

The convergence rate is
1
'[At]ij - —' <¢',  where g € (0,1)
m

We have for arbitrary 0 < 7 < t

' (t+1) =w'(t+ 1)+ (Ox[w' (¢t 4 1) — a(t)Vfgwi(t + 1)) —w'(t+1))
el(t)

3

=Y ayai(t) +ei(t) = -

=1

[AH_l T]z] z’ (1) + Z Z[Ak]wej (t—Fk)+ Z(t)

I
Ms

1=1 k=7+17=1
Similarly, for s(t + 1) = %ZT LT (t+ 1) we have
1 o
S(t1) = s+ () = = —a:fm EDIDIETIGED +3 —eﬂ(t)

13
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Thus,
o' (t+1)—s(t+1)| < ¢ TZHOJJ(T)IH- Z Zq le;(t— k)IH-Z—||6‘7(t)\|+|\€’(t)|\
j=1 k=141 j=1
Since
e'(t) = Nx[w'(t + 1) — a(@)Vfi(w'(t+1))] — w'(t + 1)
we have
le' (D]l < a(t)C
Hence
|z’ (t+1) — st + DI < g7 (DI +mC D> dFalt — k) +2Ca(t)
j=1 k=141

By choosing 7 such that ||e(t)|| < € for all ¢ > 7 and then, using some properties of the
sequences involved in the above relation, we show

|z'(t+1) —s(t+1)|| =0
which in view of zi(t + 1) = w'(t + 1) + €%(t) and €(t) — O implies

|lw'(t+1) —s(t+1)|| =0

14



Bellairs Workshop, Barbados March, 2012

Extension to Time-varying Networks

e Consensus-like step to mix their own estimate with those received from neighbors

w(t+1) = ay()a!(t) (aij(t) = 0 when j ¢ Ny())

j=1

e Followed by a local gradient-projection step

z'(t+1) = Nx[w'(t + 1) — a(®)Vfi(w'(t + 1))]
For convergence, some conditions on the weight matrices A(t) = [a;;(t)] are needed.
Convergence Result for Time-varying Network*:
Let the problem be convex, f; have bounded (sub)gradients on X, and > 2 ja(t) = oo
and Y 72 a?(t) < co. Let the graphs G(¢t) = ([m],&(¢)) be directed and strongly
connected, and the matrices A(t) be such that a;;(t) = 0 if j & N;(¢t), while a;;(t) > ~
whenever a;;(t) > 0, where v > 0. Also assume that A(t) are doubly stochastic’. Then,

lim z'(t) = z* for all 1,
t—00

where x* is a solution of the problem.

*AN and A. Ozdaglar "Distributed Subgradient Methods for Multi-agent Optimization” IEEE Transactions on Automatic
Control 54 (1) 48-61, 20009.

fJ.N. Tsitsiklis, " Problems in Decentralized Decision Making and Computation,” Ph.D. Thesis, Department of EECS, MIT,
November 1984; technical report LIDS-TH-1424, Laboratory for Information and Decision Systems, MIT

15
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~ Other Extensions
wit+1) =3 ay(®)a(¢) (aij(t) = 0 when j & Ny(t))

j=1
2'(t+1) = Nx[w'(t + 1) —a@®Vfi(w'(t + 1))]
Extensions include
e Gradient directions V f;(w*(t + 1)) can be erroneous
Ram, Nedi¢, Veeravali 2009, 2010, Srivastava and Nedi¢ 2011

2t 4+ 1) = Nx[w'(t+ 1) — a@) (VAW (t+ 1) 4+ ¢;(t + 1))]

e The set X can be X = N, X; where each X; is a private information of agent 3
Nedi¢, Ozdaglar, and Parrilo 2010, Srivastava® and Nedi¢ 2011

' (t+ 1) = Nx,[w'(t + 1) — a)V fi(w' (t + 1))]
e The links can be noisy i.e., 7(t) is sent to agent 7, but the agent receives =7 (t) + €7 (t)
Srivastava and Nedi¢ 2011

e The updates can be asynchronous - edge-set &(t) is random
Ram, Nedi¢, and Veeravalli, Nedi¢ 2011

e Different sum-based functional structures [Ram, Nedi¢, and Veeravalli 2012]

Uses different weights

16
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Application to Data Classification
Given a set of data points {(z;,vy;),5 = 1,...,p}, find a vector (x,u) that

A p
minimizes §||:1;||2 + Z max{0,1 — y;(z'z; + u)}
j=1

Suppose that the data is distributed at m locations, with each location having data points
{(z¢,y¢),£ € S;}, with S; being the index set

The problem can be written as:

N D
minimize ) %Hxﬂz + ) max{0,1 —y(a'z +u)} | overx = (x,u) €R" xR
=1

KESZ'
169
The algorithm has the form:
w'(t+ 1) =x'(t) = n(t) > riyxI (t) (rij = 0 when j ¢ N;)
j=1

xi(t+1) = w'(t+1) — a(t),gi(wi(i+ 1))

Algorithm is discussed in K. Srivastava and AN " Distributed Asynchronous Constrained Stochastic Optimization” IEEE Journal

of Selected Topics in Signal Processing 5 (4) 772-790, 2011.

17
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Case with perfect communications

[llustration uses a simple graph of 4 nodes organized in a ring-network

A=206
a(t) = %
n(t) = 0.8
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Case with imperfect communications

m|n|m|zez —HxH2 + Z max{0,1 — y,(x'z + u)} over x = (z,u) € R" xR
Les;
£ ()
w'(t + 1) = x(t) — n(t) Z i (< (8) + &5 (1)
=1 nonse

with w;; = 0 when j € N;, n(t) > 0 is a noise-damping stepsize

X'(t+1) =w'(t+ 1) — a(t)gi(w'(t + 1))
Noise-damping stepsize n(t) has to be coordinated with sub-gradient related stepsize a(t)

Za(t) = o0, Zaz(t) < 00
d ont) =00, Y nP(t) <oo

a?(t) _
Za(t)n(t) < 00, Z (t)

19
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Case with imperfect communications

lllustration uses a simple graph of 4 nodes organized in a ring-network

A=206
oz(t)z%
n(t) = 555

| 1
6 8

After 500 iterations

-8
-8 -6

After 1 iteration
20
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Minimizing Max of Agents’ Objectives

Network objective: minimize max; fi(x) over x € X C R"
Makes sense when " fair network resource-utilization” is desired
Use epi-graph reformulation of the problem

minimize n
subject to  fi(z) <nforalli=1,....,m, z€ X, neR (1)
Under Slater condition (satisfied here) the strong duality holds for problem (1) and its dual

maximize q(u) over u > 0,u € R™,

reX,neR

where  ¢g(p) = min (77 + Zﬂz(fz(fﬁ) — 77))
i=1

So the problem can be solved by using a primal-dual algorithm or a penalty approach
Consider penalty approach: problem (1) is replaced with an equivalent " penalized” problem

minimize F(x,m) =n+ Zcz(fz(x) —n)
subject to (x,n) € X X R

where ¢; > 1 for all 3.

21
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Distributed Algorithm for Min-Max Optimization

+e(fi(z) =)

i
m 7

m
minimize F(x,n) = Z (
=1

F@?;,U)
subject to (x,n) € X xR

where ¢; > 1 for all 3.
1
mwm>=(——¢)n+qﬁ@>
m

Observations:

e Each agent can choose its own ¢;, as long as ¢; > 1
e Every agent has to know m

o V. Fi(z,n) = c¢;Vfi(x) and V,Fi(x,n) = % —1

22
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Example: Uplink Power Control

e m mobile users (MU) communicate with re-
spective base stations (BS)

T Sy . — e W
e p; - power used by i’® MU to communicate 7 Ey
with it" BS ol o L e L E -
e p= (p1,...,pm) power-allocation vec. Sy | - | e i
e h;; - channel coefficient for MU j and BS i o7 | R
e h, = (hs1,...,hun) channel coef.vec. for ¢ T G b N \

° aiQ - recelver noise variance

The circles denote the base stations. The dotted lines

e SINR at BS i is given by denote the communication links between adjacent BSs.
p'h2 The cross denotes the MUs. The bold lines connect each
(RN ; ;
%‘(P, hz) — 5 n h2 7 MU to its respective BS.
g; Zj#z’ Dj 1,]

e U;(vi(p,h;)) is the utility for BS 7 based on SINR
e V(p;) is a cost function penalizing excessive power

e We are interested in computing the min-max fair allocation

min max [V (p;) — Ui(vi(p, hi))], M= {p € R™ | 0 < pi < pmax for all 7}
PE 1€

23
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Example: Uplink Power Control

12

—#— Cenfralized Gradient Descent

=+ Distributed Exact Penalty Algorithm

[ ) Ge nera | |y a hon-convex prO b | em —B— Distributed Primal Dual Algorithm

—*— Centralized Primal Dual Algorithm

e Logarithmic utility U;(y) = In(y)

Power Level

e Linear power cost V(p;) = ap;, a > 0

e The coordinate transformation p;, = e%i

makes the problem a convex optimization .

problem (in x)

Mode Indices

The final iterate values after 2000 iterations of the
50

algorithm for step size oy, = 70.65"

e The resulting convex problem is

min max f;
X eV fi=),

fi(x) =In [ o7h;7e ™ + > h;7h2ei " | 4V (e™)
i
and X = {ZU | Xj S |n(pmax) for a” ’L}

24
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Conclusions

e Considered algorithms for distributed optimization over network

e lllustrated them on data classification problem

e Considered dynamic TU games over networks

e Dynamic in the game and in the player's network connectivity

e Discussed distributed allocation algorithms that converge to an allocation in the core
of the limiting game

37



