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Large Networked Systems

• The recent advances in wired and wire-

less technology lead to the emergence of

large-scale networks

• Internet

• Mobile ad-hoc networks

• Wireless sensor networks

• The advances gave rise to new network

applications including

• Decentralized network operations in-

cluding resource allocation, coordina-

tion, learning, estimation

• Data-base networks

• Social and economic networks

• As a result, there is a necessity to develop new models and tools for the design and

performance analysis of such large complex dynamics systems
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New Application Challenges

• Lack of central “authority”

• Centralized network architecture is not possible

� Size of the network / Proprietary issues

• Sometimes centralized architecture is not desirable

� Security issues / Robustness to failures

• Network dynamics

• Mobility of the network

� The agent spatio-temporal dynamics

� Network connectivity structure is varying in time

• Time-varying network

� The network itself is evolving in time

• The challenge is to design algorithms to support efficient operations over such networks.
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Trends: Areas of Research
• Network aspects

• Consensus, information diffusion, opinion dynamics

� Stability, characterization of equilibria, bounds on convergence rate/time

• Optimization issues

• Distributed algorithms for optimization over networks

� Different network performance measures

� Synchronous/asynchronous implementations

� Different information diffusion/exchange protocols

• Uncertainty issues in distributed systems

• Communication noise and delay (network dependent)

• Uncertain measurements (application dependent)

• Computational errors (algorithm dependent)
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Distributed Computational Model: Self-organized Agents
The model consists of a network of computing agents (nodes) that cooperate in

order to optimize a network-wide objective function

• Agents can communicate only with immediate neighbors in the network

• Agents have individual objective functions that they do not ”reveal” to each other

• Agents cooperate (share info.) with their neighbors

Distributed load-balancing in a network

Network objective:

minimize1′x=b

∑
i fi(xi)

Uplink power control in mobile cellular net

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)

Network objective:

minimizex∈X max1≤i≤m fi(x)

4



Bellairs Workshop, Barbados March, 2012

General Model

• Network of m agents represented by an undirected graph ([m], E ) where [m] =

{1, . . . ,m} and E is the edge set

• Each agent i has an objective function fi(x) known to that agent only

• Common constraint (closed convex) set X known to all agents

The problem can be:

minimize
m∑
i=1

fi(x) subject to x ∈ X ⊆ Rn

or

minimize max
1≤i≤m

fi(x) subject to x ∈ X ⊆ Rn

Distributed Self-organized Agent System

f2(x1, . . . , xn)

fm(x1, . . . , xn)

f1(x1, . . . , xn)
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How Agents Manage to Optimize

minimize
m∑
i=1

fi(x) subject to x ∈ X ⊆ Rn

minimize max
1≤i≤m

fi(x) subject to x ∈ X ⊆ Rn

• Each agent i will generate its own estimate xi(t) of an optimal solution to the problem

• Each agent will update its estimate xi(t) by performing two steps:

• Consensus-like step (mechanism to align agents estimates toward a common point)

• Local gradient-based step (to minimize its own objective function)

C. Lopes and A. H. Sayed, ”Distributed processing over adaptive networks,” Proc. Adaptive Sensor Array Processing Workshop,

MIT Lincoln Laboratory, MA, June 2006.

A. H. Sayed and C. G. Lopes, ”Adaptive processing over distributed networks,” IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, vol. E90-A, no. 8, pp. 1504-1510, 2007.

A. Nedić and A. Ozdaglar ”On the Rate of Convergence of Distributed Asynchronous Subgradient Methods for Multi-agent

Optimization” Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, USA, 2007, pp. 4711-4716.

A. Nedić and A. Ozdaglar, Distributed Subgradient Methods for Multi-agent Optimization IEEE Transactions on Automatic Control

54 (1) 48-61, 2009.
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Consensus Problem

Consider a connected network of m-agent,

each knowing its own scalar value xi(0) at

time t = 0.

The problem is to design a distributed and lo-

cal algorithm ensuring that the agents agree

on the same value x, i.e.,

lim
t→∞

xi(t) = x for all i.

Leaderless Heading Alignment

A system of autonomous agents are moving

in the plane with the same speed but with

different headings [Vicsek 95, Jadbabaie et

al. 03]

The objective is to design a local protocol that

will ensure the alignment of agent headings
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Consensus Algorithm

Each agent combines its estimate xi(t) with the estimates xj(t) received from its neighbors

xi(t+ 1) =
∑
j∈Ni

aij xj(t) for all i.

where Ni is the set of neighbors of agent i (including itself)

Ni = {j ∈ [m] | (i, j) ∈ E }
and aij ≥ 0 is a weight that agent i assigns to the information coming from its neighbor

j ∈ Ni.

The weights {aij, j ∈ Ni} sum to 1, i.e.,
∑

j∈Ni
aij = 1 for all agents i

Introducing the values aij = 0 when j 6∈ Ni, the consensus algorithm can be written as:

xi(t+ 1) =
m∑
j=1

aij xj(t)

where

aij ≥ 0 with aij = 0 when j 6∈ Ni
m∑
j=1

aij = 1
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Distributed Optimization Algorithm

minimize
m∑
i=1

fi(x) subject to x ∈ X ⊆ Rn

• At time t, each agent i has its own estimate xi(t) of an optimal solution to the

problem

• At time t + 1, agents communicate their estimates to their neighbors and update by

performing two steps:

• Consensus-like step to mix their own estimate with those received from neighbors

wi(t+ 1) =
m∑
j=1

aijx
j(t) (aij = 0 when j /∈ Ni)

• Followed by a local gradient-based step

xi(t+ 1) = ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]

where ΠX[y] is the Euclidean projection of y on X, fi is the local objective of

agent i and α(t) > 0 is a stepsize
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Intuition Behind the Algorithm: It can be viewed as a consensus steered by a ”force”:

xi(t+ 1) = wi(t+ 1) + (ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]− wi(t+ 1))

= wi(t+ 1) + (ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]−ΠX[wi(t+ 1)])︸ ︷︷ ︸
small stepsize α(t)

≈ wi(t+ 1)− α(t)∇fi(wi(t+ 1))

=
m∑
j=1

aijx
j(t)− α(t)∇fi

 m∑
j=1

aijx
j(t)


Matrices A that lead to consensus, also yield convergence of an optimization algorithm
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Convergence Result for Static Network

Convex Problem: Let X be closed and convex, and each fi : Rn → R be convex with

bounded (sub)gradients over X. Assume the problem minx∈X
∑m

i=1 fi(x) has a solution.

Stepsize Rule: Let the stepsize α(t) be such that
∑∞

t=0 α(t) =∞ and
∑∞

t=0 α
2(t) <∞.

Network: Let the graph ([m], E ) be directed and strongly connected. Let the matrix

A = [aij] of agents’ weights be doubly stochastic. Then,

lim
t→∞

xi(t) = x∗ for all i,

where x∗ is a solution of the problem.

Proof Outline:

Use
∑m

i=1 ‖xi(t)− x∗‖2 as a Lyapunov function, where x∗ is a solution to the problem

Due to convexity and (sub)gradient boundedness, we have
m∑
i=1

‖xi(t+1)−x∗‖2 ≤
m∑
i=1

‖wi(t+1)−x∗‖2−2α(t)
m∑
i=1

(
fi(w

i(t+ 1))− fi(x∗)
)
+α2(t)C2
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By wi(t+ 1) =
∑m

j=1 aij x
j(t) and the doubly stochasticity of A, we have

m∑
i=1

‖xi(t+1)−x∗‖2 ≤
m∑
j=1

‖xj(t)−x∗‖2−2α(t)
m∑
i=1

(
fi(w

i(t+ 1))− fi(x∗)
)
+α2(t)C2

Thus, letting s(t+ 1) = 1
m

∑m
i=1 x

i(t+ 1) we see
m∑
i=1

‖xi(t+ 1)− x∗‖2 ≤
m∑
j=1

‖xj(t)− x∗‖2 − 2α(t)
m∑
i=1

(fi(s(t+ 1))− fi(x∗))

+ 2α(t)
m∑
i=1

(
fi(s(t+ 1))− fi(wi(t+ 1))

)
+ α2(t)C2

Letting F (x) =
∑m

i=1 fi(x) and using (sub)gradient boundedness, we find
m∑
i=1

‖xi(t+ 1)− x∗‖2

︸ ︷︷ ︸
V (t+1)

≤
m∑
j=1

‖xj(t)− x∗‖2

︸ ︷︷ ︸
V (t)

−2α(t) (F (s(t+ 1))− F (x∗))︸ ︷︷ ︸
≥0

+ 2α(t)C
m∑
i=1

‖s(t+ 1)− wi(t+ 1)‖+ α2(t)C2

We can see
∑∞

t=0 α(t)C
∑m

i=1 ‖s(t+ 1)− wi(t+ 1)‖ <∞

The result would hold if we can show ‖s(t+ 1)− wi(t+ 1)‖ → 0 as t→∞ for all i
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The trouble is in showing ‖s(t+ 1)−wi(t+ 1)‖ → 0 as t→∞ for all i, which is exactly

where the network impact is – rate of convergence of At to its limit is needed

When the network is connected, the matrices At converge to the matrix 1
m
11′, as t→∞

The convergence rate is ∣∣∣∣[At]ij − 1

m

∣∣∣∣ ≤ qt, where q ∈ (0,1)

We have for arbitrary 0 ≤ τ < t

xi(t+ 1) = wi(t+ 1) + (ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]− wi(t+ 1)︸ ︷︷ ︸
ei(t)

)

=
m∑
j=1

aij x
j(t) + ei(t) = · · ·

=
m∑
j=1

[At+1−τ ]ij x
j(τ) +

t∑
k=τ+1

m∑
j=1

[Ak]ijej(t− k) + ei(t)

Similarly, for s(t+ 1) = 1
m

∑m
i=1 x

i(t+ 1) we have

s(t+1) = s(t)+
1

m

m∑
j=1

ej(t) = · · · =
m∑
j=1

1

m
xj(τ) +

t∑
k=τ+1

m∑
j=1

1

m
ej(t− k) +

m∑
j=1

1

m
ej(t)
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Thus,

‖xi(t+1)−s(t+1)‖ ≤ qt+1−τ
m∑
j=1

‖xj(τ)‖+
t∑

k=τ+1

m∑
j=1

qk‖ej(t−k)‖+
m∑
j=1

1

m
‖ej(t)‖+‖ei(t)‖

Since

ei(t) = ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]− wi(t+ 1)

we have

‖ei(t)‖ ≤ α(t)C

Hence

‖xi(t+ 1)− s(t+ 1)‖ ≤ qt+1−τ
m∑
j=1

‖xj(τ)‖+mC

t∑
k=τ+1

qkα(t− k) + 2Cα(t)

By choosing τ such that ‖e(t)‖ ≤ ε for all t ≥ τ and then, using some properties of the

sequences involved in the above relation, we show

‖xi(t+ 1)− s(t+ 1)‖ → 0

which in view of xi(t+ 1) = wi(t+ 1) + ei(t) and ei(t)→ 0 implies

‖wi(t+ 1)− s(t+ 1)‖ → 0
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Extension to Time-varying Networks
• Consensus-like step to mix their own estimate with those received from neighbors

wi(t+ 1) =
m∑
j=1

aij(t)x
j(t) (aij(t) = 0 when j /∈ Ni(t))

• Followed by a local gradient-projection step

xi(t+ 1) = ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]

For convergence, some conditions on the weight matrices A(t) = [aij(t)] are needed.

Convergence Result for Time-varying Network∗:

Let the problem be convex, fi have bounded (sub)gradients on X, and
∑∞

t=0 α(t) = ∞
and

∑∞
t=0 α

2(t) < ∞. Let the graphs G(t) = ([m], E (t)) be directed and strongly

connected, and the matrices A(t) be such that aij(t) = 0 if j 6∈ Ni(t), while aij(t) ≥ γ
whenever aij(t) > 0, where γ > 0. Also assume that A(t) are doubly stochastic†. Then,

lim
t→∞

xi(t) = x∗ for all i,

where x∗ is a solution of the problem.
∗AN and A. Ozdaglar ”Distributed Subgradient Methods for Multi-agent Optimization” IEEE Transactions on Automatic

Control 54 (1) 48-61, 2009.
†J. N. Tsitsiklis, ”Problems in Decentralized Decision Making and Computation,” Ph.D. Thesis, Department of EECS, MIT,

November 1984; technical report LIDS-TH-1424, Laboratory for Information and Decision Systems, MIT
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Other Extensions
wi(t+ 1) =

m∑
j=1

aij(t)x
j(t) (aij(t) = 0 when j /∈ Ni(t))

xi(t+ 1) = ΠX[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]

Extensions include

• Gradient directions ∇fi(wi(t+ 1)) can be erroneous

Ram, Nedić, Veeravali 2009, 2010, Srivastava and Nedić 2011

xi(t+ 1) = ΠX[wi(t+ 1)− α(t)(∇fi(wi(t+ 1) + ϕi(t+ 1))]

• The set X can be X = ∩mi=1Xi where each Xi is a private information of agent i

Nedić, Ozdaglar, and Parrilo 2010, Srivastava‡ and Nedić 2011

xi(t+ 1) = ΠXi
[wi(t+ 1)− α(t)∇fi(wi(t+ 1))]

• The links can be noisy i.e., xj(t) is sent to agent i, but the agent receives xj(t)+εij(t)

Srivastava and Nedić 2011

• The updates can be asynchronous - edge-set E (t) is random

Ram, Nedić, and Veeravalli, Nedić 2011

• Different sum-based functional structures [Ram, Nedić, and Veeravalli 2012]
‡Uses different weights
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Application to Data Classification
Given a set of data points {(zj, yj), j = 1, . . . , p}, find a vector (x, u) that

minimizes
λ

2
‖x‖2 +

p∑
j=1

max{0,1− yj(x′zj + u)}

Suppose that the data is distributed at m locations, with each location having data points

{(z`, y`), ` ∈ Si}, with Si being the index set

The problem can be written as:

minimize
m∑
i=1

 λ

2m
‖x‖2 +

∑
`∈Si

max{0,1− y`(x′z` + u)}


︸ ︷︷ ︸

fi(x)

over x = (x, u) ∈ Rn × R

The algorithm has the form:

wi(t+ 1) = xi(t)− η(t)
m∑
j=1

rijx
j(t) (rij = 0 when j /∈ Ni)

xi(t+ 1) = wi(t+ 1)− α(t) gi(w
i(t+ 1))︸ ︷︷ ︸

subgradient
Algorithm is discussed in K. Srivastava and AN ”Distributed Asynchronous Constrained Stochastic Optimization” IEEE Journal

of Selected Topics in Signal Processing 5 (4) 772-790, 2011.
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Case with perfect communications

Illustration uses a simple graph of 4 nodes organized in a ring-network

λ = 6

α(t) = 1
t

η(t) = 0.8

−5 −4 −3 −2 −1 0 1 2 3 4 5
−8

−6

−4

−2

0

2

4

6

8

After 20 iterations After 500 iterations
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Case with imperfect communications

minimize
m∑
i=1

 λ

2m
‖x‖2 +

∑
`∈Si

max{0,1− y`(x′z` + u)}


︸ ︷︷ ︸

fi(x)

over x = (x, u) ∈ Rn × R

wi(t+ 1) = x(t)− η(t)
m∑
j=1

rij(x
j(t) + ξij(t)︸ ︷︷ ︸

noise

)

with wij = 0 when j /∈ Ni, η(t) > 0 is a noise-damping stepsize

xi(t+ 1) = wi(t+ 1)− α(t)gi(w
i(t+ 1))

Noise-damping stepsize η(t) has to be coordinated with sub-gradient related stepsize α(t)∑
t

α(t) =∞,
∑
t

α2(t) <∞∑
t

η(t) =∞,
∑
t

η2(t) <∞

∑
t

α(t)η(t) <∞,
∑
t

α2(t)

η(t)
<∞
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Case with imperfect communications

Illustration uses a simple graph of 4 nodes organized in a ring-network

λ = 6

α(t) = 1
t

η(t) = 1
t0.55

After 1 iteration After 500 iterations
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Minimizing Max of Agents’ Objectives

Network objective: minimize maxi fi(x) over x ∈ X ⊆ Rn

Makes sense when ”fair network resource-utilization” is desired

Use epi-graph reformulation of the problem

minimize η

subject to fi(x) ≤ η for all i = 1, . . . ,m, x ∈ X, η ∈ R (1)

Under Slater condition (satisfied here) the strong duality holds for problem (1) and its dual

maximize q(µ) over µ ≥ 0, µ ∈ Rm,

where q(µ) = min
x∈X,η∈R

(
η +

m∑
i=1

µi(fi(x)− η)

)
So the problem can be solved by using a primal-dual algorithm or a penalty approach

Consider penalty approach: problem (1) is replaced with an equivalent ”penalized” problem

minimize F (x, η) = η +
m∑
i=1

ci(fi(x)− η)

subject to (x, η) ∈ X × R
where ci > 1 for all i.
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Distributed Algorithm for Min-Max Optimization

minimize F (x, η) =
m∑
i=1

( η
m

+ ci(fi(x)− η)
)

︸ ︷︷ ︸
Fi(x,η)

subject to (x, η) ∈ X × R
where ci > 1 for all i.

Fi(x, η) =

(
1

m
− 1

)
η + cifi(x)

Observations:

• Each agent can choose its own ci, as long as ci > 1

• Every agent has to know m

• ∇xFi(x, η) = ci∇fi(x) and ∇ηFi(x, η) = 1
m
− 1
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Example: Uplink Power Control

• m mobile users (MU) communicate with re-

spective base stations (BS)

• pi - power used by ith MU to communicate

with ith BS

• p = (p1, . . . , pm) power-allocation vec.

• hi,j - channel coefficient for MU j and BS i

• hi = (hi1, . . . , him) channel coef.vec. for i

• σ2
i - receiver noise variance

• SINR at BS i is given by

γi(p,hi) =
pih2

i,i

σ2
i +

∑
j 6=i pjh

2
i,j

,

The circles denote the base stations. The dotted lines

denote the communication links between adjacent BSs.

The cross denotes the MUs. The bold lines connect each

MU to its respective BS.

• Ui(γi(p,hi)) is the utility for BS i based on SINR

• V (pi) is a cost function penalizing excessive power

• We are interested in computing the min-max fair allocation

min
p∈Π

max
i∈V

[V (pi)− Ui(γi(p,hi))] , Π = {p ∈ Rm | 0 ≤ pi ≤ pmax for all i}
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Example: Uplink Power Control

• Generally a non-convex problem

• Logarithmic utility Ui(y) = ln(y)

• Linear power cost V (pi) = api, a > 0

• The coordinate transformation pi = exi

makes the problem a convex optimization

problem (in x)

The final iterate values after 2000 iterations of the

algorithm for step size αk = 50
k0.65 .

• The resulting convex problem is

min
x∈X

max
i∈V

fi(x),

fi(x) = ln

σ2
i h
−2
i,i e

−xi +
∑
j 6=i

h−2
i,i h

2
j,ie

xj−xi

+ V (exi)

and X = {x | xi ≤ ln(pmax) for all i}.
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Conclusions

• Considered algorithms for distributed optimization over network

• Illustrated them on data classification problem

• Considered dynamic TU games over networks

• Dynamic in the game and in the player’s network connectivity

• Discussed distributed allocation algorithms that converge to an allocation in the core

of the limiting game
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