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Abstract—In this work we examine, for the first time, the use of classification algorithms for early-

stage tumor detection with an experimental time-domain microwave breast screening system. The 

experimental system contains a 16-element antenna array, and testing is done on breast phantoms that 

mimic breast tissue dielectric properties. We obtain experimental data from multiple breast phantoms 

with two possible tumor locations. In this work, we investigate a method for detecting the tumors 

within the breast but without the usual complexity inherent to image-generation methods, and confirm 

its feasibility on experimental data. The proposed method uses machine learning techniques, namely 

Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA), to determine whether the 

current breast being scanned is tumor-free. Our results show that both SVM and LDA methods have 

promise as algorithms supporting early breast cancer microwave screening. 

1.  INTRODUCTION  

Microwave breast screening and imaging modalities have been the focus of many studies over the 

past decade. Microwave methods offer several advantages over the standard techniques of ultrasound, x-

ray mammography, and magnetic resonance imaging (MRI); (i) scans are painless and without breast 

compression, (ii) there is no use of potentially harmful ionizing radiation, and, (iii) microwave methods 

promise cost-effective screening [1]. In particular, research on microwave breast cancer detection, or 

imaging, can be subdivided into tomography and radar systems. Tomography aims to reproduce a full 

map of the dielectric properties of tissues inside the breast (for example, in [2] – [4]), whereas radar 

systems look to plot only regions of high dielectric scatters (e.g., the interface between healthy and 

malignant tissues) [5] - [7]. Further, each type of system can record measurements either in the 

frequency-domain (typically using a vector network analyzer (VNA)) [5], [8], or in the time-domain 

(using a pulse generator and an oscilloscope) [7], [9], [10].   

Recent literature has focused on the potential of using classification algorithms with microwave 

systems for breast cancer detection [11] – [14], stroke detection [15], and bladder monitoring [16]. To 

date, the use of classifiers for breast cancer detection has focused on microwave systems using a 

numerical analysis; most recently the first experimental study, using frequency-domain measurements, 

was reported in [17]. Major differences between this paper and [17], aside from the use of time-domain 

measurements, are that we use realistic breast phantoms with inherent dielectric variability, and we 

attempt to classify between phantoms with and without a tumor.  

One of the primary classification methods investigated for breast cancer detection has been Support 

Vector Machines (SVM) [12] – [14]. The analysis in [13] was concerned with classifying tumors by 



shape and size, and demonstrated that the size and shape category of a tumor can be determined 

correctly in more than 86% of cases. In [14], it was found that the SVM classification was successful in 

determining whether the breast was healthy or not at least 70% of the time, and in many cases more than 

80% of the time. The authors further showed that, in the series of tests they conducted, the SVM 

classifier always outperformed Linear Discriminant Analysis (LDA) [14]. 

In this paper, we present the application of machine learning classification techniques for breast 

screening on experimental signals obtained from breast phantoms with a range of realistic dielectric 

properties. In particular, we examine the accuracy of the LDA and SVM classifiers in detecting the 

presence of a tumor embedded in two possible locations within the breast phantom. Our system utilizes 

a time-domain microwave radar set-up, but instead of recreating a full image of breast scatterers we here 

analyze the scattered signals in such a way that the output is a numerical likelihood of whether the breast 

contains malignant tissue or not. This likelihood can, if desired, then be converted into a binary 

determination, i.e., ―healthy‖ or ―not-healthy‖. We use time-domain measurements over frequency-

domain measurements because they offer the potential for faster scan times and improved cost-

effectiveness [9]. This allows for improved accessibility for the general population, an important aspect 

for screening applications. 

In the here presented analysis, we aim to emulate the clinical application of our system. The data 

required to train the classification algorithms is first obtained from a specific set of breast phantoms. 

Testing data is then obtained from newly fabricated phantoms; thus, we simulate the procedure of first 

training the classifier with a known entity and then testing the trained classifier with an unknown data 

set (new patient). This procedure ensures that there is no overlap in the data source distribution, testing 

the robustness of the system.  

The paper is organized as follows. Section 2 describes in detail our measurement system, procedure 

and the breast phantoms. Section 3 explains the classification algorithms and the testing methodology. 

Finally, Section 4 presents the results, emphasizing the rates of successful tumor detection and a 

comparison between SVM and LDA. 

 

2.  MEASUREMENT DESCRIPTION 

This section details the breast cancer detection system, the phantoms that are used for testing, and the 

measurement procedure. 

 

2.1 System Set-up 

Our time-domain system has been described previously in [10]. The main component of the system 

is an antenna array held on the exterior of a hollow, hemi-spherical radome. The array is composed of 

16 ultrawideband elements; the antennas were specifically designed for biological sensing applications 

and are meant to operate in a region with dielectric properties similar to those of breast tissues. 

Description and characteristics of the Travelling-Wave Tapered and Loaded Transmission-Line 

Antennas (TWTLTLA) can be found in [18]. The breast phantom under test is positioned inside of the 

bowl-shaped radome, and in this series of experiments, fills the radome completely. 

The measurement system operates as follows. An impulse generator is triggered by a clock operating 

at 25 MHz; this pulse is then shaped using a Synthesized Broadband Reflector (SBR, as in [19]) such 

that its frequency content is concentrated from 2 – 4 GHz. The pulse is then amplified (+35 dB gain), 

passes through an automated 16x2 switching matrix that selects each transmitting antenna in turn, and 



propagates into the breast. The scattered response is picked up by the selected receive antenna and 

recorded by a sampling oscilloscope using an equivalent-time sampling rate of 80 GSa/s (also triggered 

by the 25 MHz clock). For each breast scan, we record a total of 240 bistatic signals. A photograph of 

the experimental system, including the radome and antennas, is shown in Fig. 1. 

                                                             

 
 

Figure 1. A photograph of the experimental system. The radome is the hemispherical bowl in the center of the image, with 

the antennas attached to its exterior surface. Also visible is the clock, pulse generator, switching matrix, oscilloscope, and 

the recording computer. 

 

2.2 Breast Phantoms 

2.2.1 General Phantom Description 

We use tissue phantoms that are designed to have dielectric properties matched to those of the actual 

tissues. The procedure for making the phantoms can be found in [20]; they are based on the actual 

tissue measurements reported in [21]. In particular, we use homogeneous phantoms that mimic adipose 

tissue. However, measurements have shown that, despite following the same recipe and fabrication 

procedure, there is significant variation in the dielectric properties of the tissue phantoms. The relative 

permittivity and conductivity can vary from phantom to phantom, as well as within a singular phantom.  

To confirm the level of variation within the tissue phantoms, we made multiple fat and tumor 

phantoms, ensuring consistency in mixing procedures.  We then used a dielectric probe (Agilent 

HP85070E) connected to a microwave network analyzer (Agilent N5242A PNA-X) to record the 

dielectric properties. The properties were recorded everyday over the span of a week at four locations 

on each of four phantoms. Figs. 2 and 3 show the measurement results for the healthy and tumor 

phantoms, respectively. The plots show the average relative permittivity, εr, over all tissue phantoms of 

that type, along with the maximum and minimum recorded values. From Fig. 2, it is seen that, over our 

2 – 4 GHz range of interest, the relative permittivity of the healthy phantom varies from approximately 

5.5 to 19, with an average of 11.5 (at 3 GHz), while the conductivity varies from 0.06 S/m to 1.2 S/m 

with an average value of 0.45 S/m. The relative permittivity for the tumor phantom, over the same 

frequency range, varies from 41 to 73 with an average of almost 50, as shown in Fig. 3. The measured 

conductivity of the tumor phantom has an average value of 2.1 S/m, a maximum of 4.5 S/m, and a 

minimum of 0.94 S/m. 

These results demonstrate that, even if each breast phantom is composed of 100% fat-mimicking 

material, the properties of this fat phantom can vary widely both between samples and within an 

individual sample. This adds to the complexity of experimental testing, and to the challenge of 

applying a signal classification algorithm. 

 



   
Figure 2. Plot of the measured variation in relative permittivity (left) and conductivity (right) for the healthy tissue 

phantoms. The red dashed line in the middle is the average while the black solid outer bounds of the shaded region represent 

the maximum and minimum measured values. 

 

   
Figure 3.  Plot of the measured variation in relative permittivity (left) and conductivity (right) for the tumor phantom. The 

red dashed line in the middle is the average while the black solid outer bounds of the shaded region represent the maximum 

and minimum measured values. 

2.2.2 Phantom Test Scenario 

The breast phantoms used in this study are composed of adipose-mimicking tissue that fills the 

radome entirely. Tumor phantoms are made separately, then are manually carved into the desired shape 

and size. In particular, we use tumors that are approximately spherical with 1 cm radius. The carved 

tumors are embedded into a healthy breast phantom at the chosen location to create the tumorous breast 

phantom. In this study, two tumor locations are tested, one centred at a depth of about 2 cm positioned 

on one side of the phantom (―Position A‖), and the other centred at a depth of about 3 cm on the other 

side of the phantom (―Position B‖). An illustration depicting the two possible tumor lcoations within 

the breast phantom is shown in Figure 4. 

 

    
 

Figure 4. An illustration showing the breast phantom (yellow), and the two possible tumor locations, denoted by the red 

spherical tumors. A side (left) and top (right) view is shown. 

 



2.3 Measurement Procedure 

Measurements were performed on both ―healthy‖ and ―tumorous‖ breast phantoms. As discussed in 

Section 2.2.2, two types of phantoms with malignancies were fabricated, each with a unique tumor 

location. For ―healthy‖ breast measurements, no tumor is placed into the fat phantom.  

In this study, a total of 230 breast scans from 15 different breast phantoms were performed over a 

period of eight weeks; of which 200 breast scans, from 10 breast phantoms, were used to train the 

classification algorithms. Scans were performed daily for each phantom over a week-long period to 

collect the training and test data. Each breast scan consists of 240 signals, recorded with a sampling 

period of 12.5 ps. The training data set consisted of an equal number (100 scans) of healthy and 

tumorous breast scans. Additionally, the tumorous breast scans were equally divided (50 scans) into 

recordings from both tumor positions. The 30 test data sets were obtained from a completely different 

set of five newly fabricated phantoms, with an equal number of recordings, 10 scans each, from healthy 

phantoms, tumor Position A, and tumor Position B.  

 

3.  METHODOLOGY AND DETECTION ALGORITHM 

In this section we describe the steps necessary to successfully implement the proposed classification 

method for breast cancer detection with our microwave time-domain system. The experimental data 

must first be processed to compensate for the effects of measurement uncertainty that arise from clock 

and trigger jitter. We then apply a feature extraction method, Principal Component Analysis (PCA), to 

the entire data set. The SVM and LDA classifiers are applied to selected principal components, and are 

optimized using a cross-validation method. The following subsections describe these steps in detail. 

The procedure is illustrated in Figure 5 with a flow-chart block diagram. 

3.1 Data Pre-Processing 

The first step in the data pre-processing algorithm is to group similar signals and to window these 

signals in the region of interest. We sort signals recorded by the same antenna pairs  (i.e., we group all 

the signals recorded with Antenna X as transmitter and Antenna Y as receiver, for all possible antenna 

pairs) for all of the breast scans. Thus, we create 240 separate data matrices to represent the recorded 

data for each antenna pair. This procedure allows us to investigate the effects of including or removing 

specific antenna pairs on the accuracy of the classification algorithms. The data recorded from the 

oscilloscope is a length of 4096 samples. We window the data, based on the longest possible path for a 

wave to travel within the radome, to only include the 400 samples (first 5ns) immediately after the start 

of the direct pulse. Thus, the entire training data set is represented by 240 matrices with dimension of 

200x400. Each of these matrices is referred to hereafter as  ̃i, where i = 1, …, 240.  

 



 
 

Figure 5. A flow-chart showing the steps followed to implement the detection algorithm. 

 

The second step of the pre-processing algorithm is to mitigate sources of measurement uncertainties. 

The two primary sources of measurement uncertainty in our experimental system are due to antenna 

and jitter effects. These effects can cause the backscattered electromagnetic (EM) energy recorded by 

the antennas to be buried within the noise of the system. Additionally, the horizontal noise associated 

with jitter introduces a large amount of phase variability in the recorded signals; in order to implement 

a machine learning algorithm to classify signals recorded from similar phantoms (i.e. be able to decide 

if the signals recorded are from a healthy or tumorous phantom), we ideally want to minimize the 

variability between signals of the same class and maximize the variability between classes. By 

performing the data pre-processing, we remove the variability associated with measurement 

uncertainty. Here, we present a summary of the steps followed to mitigate these effects (a complete 

analysis can be found in [22]) and to prepare the data for the classification algorithms.  

The primary concern with the antenna effects is due to slight positional differences between the 

antennas in different scans; these changes in position can alter the phase and amplitude of the recorded 

signals. This concern is addressed by solidly fixing the antenna locations within the radome [22].  

Jitter, inconsistent deviations in the timing of signals, is a source of horizontal noise that arises in 

both the reference clock signal and the oscilloscope trigger signal. These sources of jitter cause the 

misalignment of subsequent time-domain recordings; the signals recorded from various breast scans, 

will be out of phase with respect to each other. As in [22], we mitigate the effects of jitter by 

implementing a correlation alignment procedure; signals are shifted by some ΔT that maximizes the 

cross-correlation between the signals.  

In Figure 6 we show the result of the data pre-processing; we compare a plot (only showing a 

relevant sub-section) of all the collected signals, from both the healthy and tumorous phantoms, for a 

specific antenna pair (Antenna 1 transmits, Antenna 2 receives), before and after performing the 

aforementioned noise mitigation procedure. From this comparison it is clear that the phase difference 

and the horizontal noise between recordings has been greatly reduced; we observe that the signals are 

significantly better aligned after the data pre-processing. The remaining variation between the signals is 

due to the differences between phantoms, the inclusion of the tumor, and the difference in the tumor 

locations.  



    
Figure 6: Received signals before (left) and after (right) noise mitigation for a sample antenna pair (Antenna 1 is the 

transmitter, Antenna 2 receives). 

 

3.2 Feature Extraction  

The method proposed in this paper follows a similar procedure to that in [13], [14]; we apply PCA to 

the dataset and then apply the classification algorithms to the extracted features. Applying feature 

extraction to the recorded data allows us to reduce the dimensionality of the data, thus we can minimize 

the processing of the input data by extracting only the essential components, and using these 

components for analysis with the classifier. In [23] it was shown that PCA was the best feature 

extraction method on average; additionally, when combined with the SVM classifier, it yielded the best 

results compared to the combination of other classifier and feature extraction methods. Thus, we adopt 

a similar methodology in this paper. 

Prior to feature extraction the data set is first standardized on a signal-to-signal basis; the mean of the 

standardized data set is 0 and the standard deviation is 1. The standardized data set can be defined as: 

  
   

 ̃ 
 
    

 

  
                       (1), 

where Xi and  ̃i are the standardized data set and the original data set, respectively, for a specific 

antenna pair i, where i=1,...,240, m is a specific row of the matrices, and μi
m
 and σi

m
 are the mean and 

the standard deviation, respectively, of a specific row m of matrix  ̃ . Thus, resulting standardized data 

sets Xi are the same size as  ̃i. 

PCA is then applied to the standardized data set, Xi, in order to extract the most important features. 

The extracted data feature set is stored in xi, with i defined as above. The use of PCA reduces the 

dimensionality of the data by performing an orthogonal linear transformation to express the data in a 

new vector space such that each component that makes up this new coordinate system represents a 

diminishing amount of variance of the data (the projection of the data onto the first principle 

component represents the most variance), thus not all principle components need to be kept. This 

procedure diminishes the influence of the inherent noise of the experimental system. In Section 3.4 we 

discuss the procedure followed to determine the ideal number of principle components for use in this 

investigation; at this point only the first 50 components are saved. The training data is now represented 

by 240 matrices, xi, with dimension of 200x50. 

 



3.3 Classifier Implementation 

Previous applications of classification algorithms for breast cancer detection with a microwave 

system have demonstrated that the SVM method outperforms other classification methods [13], [14]. 

While these studies were focused on data obtained numerically, we attempt to confirm that these 

findings are relevant for an experimental system by applying the SVM classifier to our data. The LDA 

classifier is used as a benchmark; from [13], [14] and [23], it is expected that the use of an optimized 

SVM classifier will improve the detection accuracy of the proposed method. The classifiers are trained 

with the xi matrices found from feature extraction, such that classification is performed for each 

transmit-receive antenna pair independently (total 240 pairs). 

3.3.1 Support Vector Machines 

SVM is a machine learning algorithm that can be used when the data to be classified can be divided 

into exactly two groups (classes). In order to properly train the SVM classifier it is necessary to provide 

sample-label pairs for the training data (the classifier must know the specific group that the training 

data belongs to). In this study the two groups correspond to the healthy and tumorous breast phantoms. 

The SVM classifier will first map the training data to a higher dimensional space in order to determine 

the support vectors. A hyperplane that correctly separates the two classes is then created and the 

algorithm searches for the best hyperplane. The best hyperplane is one that maximizes the distance 

(margin) between the hyperplane and the nearest data points of each class (support vectors) [24]. A 

hard margin represents a slab region that is parallel to the hyperplane, the interior of which does not 

contain any of the training data points. In certain cases a separating hyperplane cannot be found, this 

can be due to the presence of outliers in the data. A soft margin, which separates the majority of the 

training data but not all, can be used in this case [25]. In this paper, we implement a soft-margin SVM. 

Additionally, it is possible to employ a more complex mathematical formulation to create a non-linear 

hyperplane to more accurately separate the training data. More details about the mathematical 

formulations and expressions governing the computation of the support vectors and the classification 

algorithm can be found in [24], [25]. 

3.3.2 Linear Discriminant Analysis 

In this study we apply a LDA classifier as a means for comparison with the performance of the SVM 

classifier. It is a method that is simple to implement and to apply to our application. The use of LDA as 

a benchmark for studying the effectiveness and performance of SVM was shown in [13], [14]. LDA is 

similar to PCA in that it also tries to find linear combinations of variables that best represent the data 

[26]; however, LDA directly characterizes the difference between the various data groups. Specifically, 

an LDA classifier is ideally suited to situations in which the groups to be classified have multivariate 

normal distributions [13], [14], and involves the calculation of an in-group covariance for each subset 

of test data which is used to first obtain the discriminant function and second to perform the 

classification. 

3.4 Classifier Optimization 

A procedure to optimize classifier performance was proposed in [27]. Based on this procedure, we 

adopt a similar method to optimize our SVM classifier, summarized as follows:  

(i) Choose the appropriate SVM kernel function.  

(ii) Scale the training data to ensure that it is in the [-1, +1] range. Apply the same scaling factor 

to the test data set. 



(iii) Use cross-validation to find the optimal number of principle components, and ideal SVM 

parameters (C, the box constraint, and γ, kernel scaling factor). 

(iv) Train the SVM classifier with the optimal settings solved for using cross-validation. 

 

As suggested in [27], we implement a Radial Basis Function (RBF) kernel to non-linearly map the 

data to some higher dimension vector space. Unlike the linear (base) kernel function, the RBF kernel is 

well suited to handle classification problems where a simple separating hyperplane, defined by a linear 

function in the vector space, cannot be used as a useful separating criterion. The RBF kernel allows for 

the discriminant hyperplane to be defined by a non-linear function, thus allowing for a more robust and 

precisely defined separating hyperplane. 

Once we have chosen the appropriate kernel function for the SVM classifier we linearly scale the 

training data set to the [-1, +1] range before training the classifier; this process ensures that training 

data in higher numeric ranges do not dominate the classifier [27]. A linear scaling is applied to each 

principle component to determine the necessary scaling factor; this factor is then applied to the test 

data.  

In order to optimize the performance of the SVM classifier we aim to identify the optimal number of 

principle components, n, to use in our analysis (previous work, [13], [14], has shown promising results 

with between 30 and 50 components), and to identify a good C and γ pair; this can be achieved by 

training and testing the classifier using only the training data set (known recorded data). The aim of this 

optimization is to find a (C, γ) pair that improves the classifier performance when predicting unknown 

(test) data. To accurately reflect this scenario, we implement 10-fold cross-validation to search for n, 

and (C, γ). In 10-fold cross-validation the training data set is equally divided into 10 randomly chosen 

subsets. Each subset is then sequentially tested with a classifier trained with the 9 remaining data 

subsets; thus, each subset of the training data is tested exactly once. The cross-validation accuracy is 

the mean of the correctly classified data across the 10 tests.  

As suggested in [27], a coarse-then-fine grid search is used to determine the optimal (C, γ) values. 

The results for the coarse- and fine-grid search are shown in Figures 7(a) and 7(b), respectively, as a 

contour plot. We compare the mean classifier accuracy from the 10-fold cross-validation, denoted by 

the color intensity, with variation of exponentially incremental (C, γ) values. The fine-grid search was 

conducted in the region within the most accurate region of the coarse grid search.  

 

   
(a)                   (b)                  

Figure 7: Results of grid search to find the optimal C and γ. A coarse grid search, (a), and a fine grid search, (b), are shown. 

The color intensity represents the mean classifier accuracy for 10-fold cross-validation.  

 



A simple linear search, ranging from 1 to 50, was used to determine the number, n, of principle 

components to use for the SVM classifier; additionally, a similar search was used to find the optimal 

value of n for the LDA classifier. In both cases, a 10-fold cross-validation was used to find n. Results 

of this search are shown in Figure 8; we plot a comparison of the mean cross-validation accuracy for 

the LDA and SVM classifiers as the number of principle components is varied. Additionally, we 

compare the computational cost for both the LDA and SVM classifiers as the number of principle 

components is increased. We observe that the cross-validation accuracy and the computational cost for 

the SVM classifier follow similar trends; additionally, there is minimal change in both accuracy and 

computation time for n > 20. For the LDA classifier the computational cost is relatively unchanged as 

the number of principle components is increased. Since the computational cost for both classifiers is 

relatively unchanged when n is increased, we can choose the optimal number of principle components 

based solely on the cross-validation accuracy without concern for increasing computational costs. The 

optimal number of principle components, based on the maximum cross-validation accuracy, is n=31 

and n=42 for the SVM and LDA classifiers, respectively. It is clear that the SVM classifier is more 

computationally expensive than the LDA classifier; however, it also outperforms the LDA classifier.  

 

 
Figure 8: Comparison of computational cost (blue, left-hand axis) and accuracy (red, right-hand axis) versus the number of 

principle components for SVM (dashed) and LDA (solid).  

 

4. RESULTS 

The final classifier is trained with the optimal values of (n, C, and γ) found from the optimization 

procedure listed in Section 3.4. The trained classifier is then tested with signals collected from newly 

fabricated phantoms, thus ensuring that there is minimal correlation between the training and testing 

data sets; furthermore, this serves to emulate a clinical setting in which the classifier is trained with 

known data sets and then tested with new patients of unknown health status. As stated in Section 2.3, 

the test data set is made up of signals recorded from 30 new breast scans. 

Due to the large antenna beamwidth [18], the low attenuation in the homogeneous phantoms, and the 

multi-path reflections that waves undergo while travelling through the radome, phantom, and back 

through the radome again, we expect the presence of a tumor (if there is one) to be identifiable above 

the noise level in signals from all 240 transmit-receive antenna pairs. Thus, we assume here that correct 

classification implies that each individual signal recorded from healthy and tumor phantoms, 

respectively, should be classified as such.  



We compare the performance of the optimized SVM and LDA classifiers in Table 1. We examine the 

overall detection performance as well as the percentage of correctly classified signals for each of the 

three phantom types (healthy, tumor position A, tumor position B). We confirm that the SVM 

algorithm improves the detection accuracy (defined as the percentage of correctly classified signals) of 

the system when compared with the LDA method; however, the difference is not as pronounced as was 

seen in [14]. Additionally, the prediction accuracy of the LDA classifier, here, outperforms the one 

presented in [14], perhaps suggesting that the LDA classifier, and not just the SVM classifier, is also 

suited for experimental analysis. While a direct comparison with the results presented in [14] is 

impossible, as we do not recreate the scenario exactly (different tumor sizes, shapes, material 

properties), we observe that the overall detection accuracy for both classifiers is decreased in our 

experimental scenario. There are several contributing reasons for this decrease, many of which are 

typical of experimental measurements; (i) the dielectric properties of both the healthy and tumor 

phantoms vary over a large range of values, (ii) we test, as in a real-life scenario, on a phantom with 

dielectric properties that the classifier has not been trained with, and, (iii) there are significant sources 

of noise that affect the signals, which are mitigated here but not eliminated. All of these factors make 

classification with a realistic experimental scenario more complex. 

 

Table 1. Detection accuracy of each classification algorithm. We compare the overall detection accuracy, as well as the 

accuracy for the three phantom types tested. 

 

 Healthy 
Tumor  

Overall 
Position A Position B 

LDA (%) 70.00 
70.45 

70.30 
62.90 78.00 

SVM (%) 67.48 
76.71 

73.64 
70.48 82.95 

 

The overall detection accuracy for the LDA and SVM classifiers, respectively, is 70.30% and 

73.64%. It is interesting to note that the while the LDA classifier slightly outperforms the SVM 

classifier in correctly identifying signals from healthy breast phantoms, with a detection accuracy of 

70.00% for the LDA classifier compared to 67.48% for the SVM classifier, the SVM classifier is much 

more successful at identifying tumors, correctly identifying signals from the tumorous phantoms with 

an accuracy of 76.71% as opposed to only 70.45% for LDA. We also notice that regardless of the 

choice of classifier, the system is more adept at classifying signals recorded with the tumor embedded 

in Position B (an increase of over 15% and 12% for the LDA and SVM classifiers, respectively).   

For the results described above, the LDA and SVM classifiers work on a signal-to-signal basis; each 

of the 240 signals making up a test data set is classified as being a signal derived from a healthy or 

tumorous phantom. Now, instead, we select the most relevant antenna clusters to apply our 

classification to. As was shown in our previous work [10], [19], transmit-receive antenna pairs that are 

located on the same side of the radome tend to better pick up the scattered tumor response. Thus, these 

clusters of antennas can be used for more reliable detection, particularly when the phantom is 

heterogeneous (when attenuation is higher, and tumor responses from far away transmit-receive 

antenna pairs may be lost below the noise level).  The antenna array is composed of four antennas lined 



up in each of four quadrants of the radome; therefore, the four antennas of each quadrant make up an 

antenna cluster, for a total of four antenna clusters.  

In Table 2 we compare the detection accuracy for both the LDA and SVM classifiers, for each 

phantom type, when using only signals from the four antenna clusters. Using these selected signals 

significantly improves the tumor detection accuracy, from 70.48% to 83.50% for a tumor in Position A, 

and from 82.95% to 91.75% for a tumor in Position B, for the SVM classifier. For LDA, an 

improvement from 62.90 % to 71.04% and from 78.00% to 83.75% are observed for Positions A and B, 

respectively. These values suggest that further investigation into the effect of antenna groupings on 

detection may be worthwhile to improve detection in scenarios with complex tissue composition. In 

particular, we hypothesize that transmit-receive antenna pairs that are in the quadrant closest to the 

tumor will be the most useful for confirming the presence of the tumor.  

As shown in Table 1 and Table 2, both classifiers perform poorly when attempting to classify signals 

from new healthy breast phantoms. The variation in the conductivity of the healthy phantom (Fig. 2) 

can lead to very large changes in signal attenuation (amplitude and phase shift), due to the long paths 

travelled. This means that there is a large variation in the collected baseline signals. The tumor, 

although it also has a large variation of dielectric properties, is small relative to the rest of the breast 

tissue and thus it does not have as much of an impact on the overall signal. In particular, the antenna 

clusters, which were shown to best pick up on differences in phantom properties, suffer the most when 

the healthy tissue properties vary so significantly (as shown in Table 2). We suspect that increasing the 

number of signals (and phantoms) used to train the classifiers can account for these variations and 

would improve classifier performance.  

 

Table 2. The detection accuracy for SVM and LDA when only signals from the four antenna clusters are used. 

 

 Healthy 
Tumor 

Position A Position B 

LDA (%) 54.79 
77.40 

71.04 83.75 

SVM (%) 57.00 
87.63 

83.50 91.75 

 

The results from Table 2 suggest that very few tumors will be misclassified at the cost of many 

misclassified healthy tissues; this situation likely does not represent the best trade-off between false-

positive and false-negative rates. Thus, future work will include a limit on the number of acceptable 

false alarms permissible in the classification algorithm. The changes seen in Table 2 towards better 

tumor detection, but inferior healthy detection as compared to Table 1, also suggests that taking 

antenna clusters shifts the false alarm rate, potentially due to a decrease in the overall number of signals 

used to train the classifiers. Our near-future investigations will question whether optimizing the SVM 

classifier with only this subset of antenna pairs can decrease the false-alarm rate and maintain the 

improved detection accuracy. 

 



5. CONCLUSION  

In this paper we implement machine learning classification algorithms to detect the presence of breast 

cancer with a time-domain microwave radar system. Specifically, we demonstrate that both the LDA 

and SVM classifiers can be used to detect the presence of tumors with experimental data obtained from 

dielectrically realistic breast phantoms. The classifiers are trained with data obtained from a set of 

phantoms and tested with data obtained from new phantoms, representing new patients. Detection 

accuracy is assessed by correct classification of the test signals. We demonstrate that the SVM classifier 

outperforms the LDA classifier, based on overall detection accuracy. This confirms the trend seen in 

past numerical studies in the literature. Additionally, we briefly examine the role that antenna clusters 

play in improving detection accuracy. 

Our future work will focus on using classification algorithms to monitor changes within the breast. 

Recent literature has suggested that using differential scans for monitoring can greatly improve the 

detection accuracy. We will apply similar analysis using heterogeneous breast phantoms, where both the 

glandular content and the tumor development can change over time. We plan to implement a 

classification algorithm for successful differentiation between healthy and unhealthy changes within the 

breast tissue. 
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