
Performance Comparison of Randomized Gossip,
Broadcast Gossip and Collection Tree Protocol for

Distributed Averaging

Jun Ye Yu
Electrical and Computer Engineering

McGill University
Montreal, Quebec

Email: jun.y.yu@mail.mcgill.ca

Michael Rabbat
Electrical and Computer Engineering

McGill University
Montreal, Quebec

Email: michael.rabbat@mcgill.ca

Abstract—Gossip and tree-based aggregation algorithms are
two popular solutions for distributed averaging in wireless
networks. The former uses only local message exchanges and
requires no routing structures whereas the latter requires building
a spanning tree. In this paper we provide a detailed comparison
of their performance in terms of communication overhead,
accuracy, latency and energy consumption using the network
simulator Castalia. We use randomized gossip, broadcast gossip
and the collection tree protocol as practical representatives in
each category. Through simulations, we show that broadcast
gossip requires, in general, the least communication overhead
and lowest latency and energy at the expense of lower accuracy.
Randomized gossip requires more transmissions than broadcast
gossip, but has higher accuracy. The collection tree protocol
requires, in general, the most communication overhead.

I. INTRODUCTION

There is currently a large amount of literature dedicated to
distributed applications for wireless sensor networks (WSN).
The problem of distributed averaging in particular has received
much attention because it can be used as a basic building block
for more complex applications in distributed signal processing.
The premise of distributed averaging is simple. All nodes in
a network have an initial data value. They must communicate
with only their neighboring nodes to determine the network-
wide average.

Gossip algorithms and tree-based aggregation algorithms
have emerged as two popular paradigms for distributed aver-
aging. Randomized gossip does not require any network-wide
coordination. Rather, in its simplest form [1], at the tick of
a Poisson clock, two randomly selected neighbors exchange
messages and average their values. If the network is strongly
connected, all nodes’ values can be made arbitrarily close to
the network average after sufficiently many exchanges. There
is no need to set up and maintain specific routing structures and
there is no single point of failure or bottleneck. Alternatively, in
tree-based algorithms, a spanning tree is used for aggregating
data from all nodes up to the root node, and then the resulting
aggregate is sent back down the tree so that all nodes receive
the result. Although fewer messages are required, in principle,
for aggregation, these algorithms require additional overhead
for constructing and maintaining the spanning tree.

The existing literature has mainly focused on reducing

the communication overhead and convergence time of gossip
algorithms (e.g., [2], [3]) and constructing the minimum-cost
spanning trees in static networks (e.g., [4], [5]). Yet very little
work has compared the two approaches directly. Which algo-
rithm has lower overall communication overhead, especially
in a dynamic network? One previous work [6] provides partial
answers to these questions and shows that broadcast gossip
has the lowest communication overhead, followed by the
collection tree protocol, and then randomized gossip. However,
the simulations in [6] use a simplified model that omits key
aspects such as packet collisions and asymmetric links, which
may well lead to detrimental effects on the final results.

To avoid the same pitfalls, we use Castalia, a popular WSN
simulator that provides features such as path loss calculation
and SINR-based packet reception [7], so we may conduct com-
plex simulations while focusing only on the algorithms. In this
paper we adopt broadcast gossip (BG) and randomized gossip
(RG) as representatives of gossip algorithms. BG exploits the
broadcast nature of wireless networks and does not require
nodes to have any prior knowledge of the network topology,
making it attractive for dynamic networks. RG preserves the
network sum so nodes converge to the true average almost
surely rather than in expectation. We adopt the collection tree
protocol (CTP) as a representative of tree-based algorithms
because it is included in the TinyOS [8] distribution and is
thus widely used in WSNs.

The main contributions of our work are twofold. First,
we present a performance comparison of RG, BG and CTP
in terms of communication overhead, accuracy, latency and
energy consumption using Castalia. Second, we address some
subtle issues in algorithm implementations often overlooked
in the existing literature. For instance, existing gossip algo-
rithms have no self-termination. Nodes continually exchange
messages until the per-node variance is below a threshold. We
present implementations for all three algorithms that address
these issues. The remainder of the paper is organized as
follows. Section II provides the background on the topics of
interest. Section III outlines the three algorithms’ implemen-
tations in Castalia. Section IV presents our main results, and
Section V concludes the paper.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

978-1-4673-3146-3/13/$31.00 ©2013IEEE 93

II. BACKGROUND

A. Gossip Algorithms

Boyd et al. [1] propose randomized pairwise gossip, one of
first gossip algorithms for distributed averaging in arbitrarily
connected networks. Each node maintains a Poisson clock and
has knowledge of its one-hop neighbors. When node i’s clock
ticks, it selects a random neighbor j and the two exchange
messages to average their values. If the network is strongly
connected, after sufficiently many iterations, all nodes’ val-
ues can be arbitrarily close to the true average with high
probability. The algorithm is asynchronous, fully distributed,
fault-tolerant and has no single point failure; however, the
algorithm has slow convergence speed due to slow diffusion
of information across the network.

Broadcast gossip is first proposed by Aysal et al. [2] as
the first gossip algorithm to fully exploit the broadcast nature
of wireless transmissions. Unlike gossip algorithms requiring
two-way message exchanges, BG is an asynchronous push-
only protocol. Each node has a Poisson clock and an initial
data value xi(0). At the tth clock tick, node i broadcasts its
value, xi(t). All nodes j receiving the broadcast update their
value as

xj(t+ 1) = δxj(t) + (1− δ)xi(t) ∀(i, j) ∈ E (1)

where δ > 0 is a mixing parameter controlling the trade-
off between convergence speed and mean-square error with
an optimal value of 0.5 [2]. All other nodes in the network
maintain their current value. Broadcasting removes the need
to keep track of neighboring nodes since messages have no
particular destination, a process often ignored or taken for
granted in the existing literature. On the downside, broadcast
gossip updates are not guaranteed to preserve the network
sum, and the algorithm only converges to initial average
xave(0) =

∑n
i=1

xi(0)
n in expectation.

B. Collection Tree Protocol

CTP [9] is designed for data aggregation. We present
here only a brief overview of its core mechanisms. Interested
readers are referred to [9], [10] for more technical and imple-
mentation details.

Two types of messages are used in CTP. Beacons are
broadcast messages used to build and maintain the spanning
tree. They contains key information such as distance to the
root and the parent node ID. Data packets contain the actual
application values being aggregated.

The cost metric CTP uses for spanning tree formation is
the expected number of transmissions (ETX) to the root. The
ETX from a node i to its one-hop neighbor j is calculated as
a function of both incoming and outgoing link qualities. The
outgoing link quality is the ratio of the transmitted messages
to the received acknowledgments. The incoming link quality
depends on the number of received beacons from j and total
number of beacons from j. The multi-hop ETX of a node is the
sum of the one-hop ETX to its parent and the multi-hop ETX
of its parent to the root. To form a minimum-cost spanning
tree, non-root nodes always choose the neighboring node with
lowest multi-hop ETX as parent. Note that the root node is
identified with an ETX of 0.

Because link qualities can be highly dynamic, beacons
must be broadcast periodically to inform neighboring nodes
of the current ETX. However, it is difficult to determine
the proper beacon interval due to the trade-off between fast
response and energy conservation. CTP bypasses this problem
using adaptive beaconing. If there is no change in the network,
after each beacon is sent, the beaconing interval is doubled un-
til an upper limit is reached. Specific events such as detection
of loops will reset the beaconing interval.

Finally, loops are detected through datapath validation.
Whenever a node transmits a data packet to its parent, it
includes its own ETX in the packet header. If a parent receives
a packet from its child with an ETX lower than its own, there
is a routing loop and the parent node requests a routing update
through its own beacons.

C. Castalia

Castalia is an event-driven simulator for wireless sensor
networks and body area networks based on OMNeT++ [7].
It has a modular design mimicking the IP protocol stack,
enabling users to easily change components based on their
simulation needs. For our purpose, we focus on implementing
the three algorithms in the application module.

Castalia bases its channel model on the work of Zuniga et
al. [11] and uses the lognormal-shadowing model to calculate
path loss. The path loss between nodes at distance d is

PL(d) = PL(d0) + 10η log(
d

d0
) +Xσ (2)

where PL(d0) is the path loss at a reference distance d0,
η is the path-loss exponent and Xσ is a Gaussian zero-
mean random noise with standard deviation σ. The path loss
and transmission power are used to calculate received signal
strength indicator, RSSI, which in turn is used to calculate
signal to interference and noise ratio, SINR, and to determine
packet reception.

To capture the variation in path loss between the two
directions of a link, Castalia calculates the average path
loss for both direction and adds a Gaussian zero-mean ran-
dom variable with standard deviation equal to the parameter
bidirectionSigma. A value of 0 will create symmetric
links while a large value will create directed links.

Other features of Castalia include the modeling of tem-
poral variation in network connectivity, calculation of energy
consumption and inclusion of mobile sensor nodes. Interested
readers are referred to [7] for more details.

III. ALGORITHM IMPLEMENTATIONS IN CASTALIA

A. Randomized Gossip

Three issues need to be addressed in order to implement
randomized gossip in an actual network: neighbor discovery,
communication delay during gossiping and self-termination.
We consider each in turn.

We adopt and modify the algorithm presented in [12] for
neighbor discovery. Each node needs to broadcast a fixed
number of ”Hello” beacons. Nodes receiving these beacons
add the sender as a potential neighbor, but do not reply. As

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

94

network connectivity can vary over time, nodes also rely on
overheard data packets to keep track of their neighbors.

After a node i sends a data request to neighboring node
j, it starts a timer, Discovery Delay. All incoming data
requests during this time interval are ignored. If no response is
received when the timer expires, node i initiates another data
request with another randomly selected neighbor. Nodes with
repeated lack of responses are removed from neighbor list.

Finally, we adopt the silencing rule, based on [13], so nodes
can determine locally when to stop gossiping. Whenever a
node updates its value, it increments a counter if its value
does not change by more than a threshold, τ , and resets it to
0 otherwise. When the counter exceeds an upper limit, C, the
node stops requesting data, but still replies when it receives
a request. For optimal values of τ and C, the randomized
gossip is guaranteed to converge with bounded error [13]. For
simplicity, we fix C to 1 and let τ be an algorithm parameter in
our implementation. The algorithm terminates when all nodes
stop gossiping.

B. Broadcast Gossip

Broadcast gossip does not require neighbor discovery nor
two-way message exchanges. Therefore, we only include the
silencing rule. The algorithm terminates when all nodes stop
broadcasting.

C. Collection Tree Protocol

CTP is included as part of standard Castalia release, but
only provides data gathering features. We modify this code to
perform in-network aggregation and broadcasting. Distributed
averaging using CTP follows three basic steps. First, a span-
ning tree is constructed. Then, nodes send their data to their
parent. Once the root receives the data from all its children, it
calculates the average, and then broadcasts it down the tree.

The simple algorithm raises several questions. How do
nodes know when the tree is constructed, so they can start
aggregation? How do nodes know when they have all the data
from their children? Finally, how can we guarantee that all
nodes receive the calculated average from their parent?

To determine when the tree is constructed, nodes start a
timer, Startup Delay, after acquiring the initial data value.
To determine when they receive data packets from all their
children, nodes maintain a second wait timer after which they
combine whatever data packets they already have received
and send the aggregated data to their parent. We define a
parameter, Max ETX, and calculate the wait time of node i
as the ratio of Max ETX to the multi-hop ETX of node i.
For root node with an ETX of 0, the timer is initialized to
Max ETX. As a starting point, we set Max ETX to 5n so it
is much larger than any node’s multi-hop ETX. This reduces
the probability of discarding delayed packets. Finally, nodes
send out an acknowledgment when they receive the calculated
average from either their parent or a neighbor with higher ETX
(in case the update from the parent is lost). We also introduce
a third timer, Acknowledge Delay, which specifies how
long nodes wait for acknowledgments before rebroadcasting
the average, up to a maximum of three attempts. The algorithm
terminates when all nodes receive the update or all non-leaf
nodes broadcast the average three times, whichever comes first.

IV. SIMULATION RESULTS

A. Simulation Setup

We evaluate the algorithms’ performance in terms of effi-
ciency and accuracy. For efficiency, we consider the average
number of transmissions per node, the latency and the energy
consumption. For accuracy, we consider two metrics related
to the average of nodes’ values when the algorithm terminates
at time T. First, we calculate the normalized absolute error
(NAE) defined as |xave(T)−xave(0)|

xave(0)
1. Second, we consider the

standard deviation ‖x(T) − xave(T)‖2 of the nodes’ final
values. Note that CTP is a deterministic algorithm and all
nodes are expected to receive the exact average. However, root
may miss data packets and certain nodes may not receive the
update. Therefore, for CTP, we only measure the efficiency
when all nodes receive the exact average and we only measure
the accuracy otherwise.

We compare the algorithms’ performance in random geo-
metric graphs (RGG). [14] shows that a connectivity radius
scaling in O(

√
log n/n) produces a connected network with

high probability in an unit square. We extrapolate this result
and set the ratio of the effective transmission radius (based
on the transmission power) to

√
log n/n as the size of our

network.

B. Performance Overview

Many algorithm parameters in our implementations are
timers and have a direct impact on the latency and hence
energy consumption. For a fair comparison, we select val-
ues that minimize latency without suffering degradation in
accuracy by more than 20%. For all other parameters, we
opt for optimal values, if these exist, or select values that
minimize communication overhead if trade-off is required.
We also consider different value initialization schemes due
to their impact on the gossip algorithms [15]. In Gaussian
initialization, the initial values are drawn from a Gaussian
distribution. In slope initialization, the initial value is equal to
the sum of node’s X and Y coordinates. In spike initialization,
one randomly selected node’s value is equal to n and all other
nodes’ values are equal to 0.

Fig. 1 presents the simulation results. Consider first the
efficiency. BG requires the least amount of communication
overhead regardless of initialization scheme. As expected, CTP
is unaffected by the initialization scheme and generally has
the highest communication overhead. RG is in-between but its
slow diffusion speed causes very poor performance in slope
initialization. BG also has the lowest latency because nodes
can transmit data at any time without any restrictions. CTP
on the other hand has several wait timers which establish a
minimal latency and postpones data transmission whenever the
spanning tree requires maintenance. The energy consumption
depends directly on the latency as shown in Fig. 1c because
the radio is always on. A higher latency translates directly into
higher energy consumption.

Consider now the accuracy. BG only converges to the true
average in expectation and, unsurprisingly, has a significantly
higher NAE compared to RG and CTP. What is interesting is

1We slightly abuse the notations. xave(T) is either a scalar or a vector.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

95

Gaussian Spike Slope
0

5

10

15

20

Initialization

A
v
e
ra

g
e
 T

ra
n
s
m

is
s
io

n
 p

e
r

N
o
d
e

CTP (0.074)

RG

BG

(a) Communication Overhead

Gaussian Spike Slope
0

20

40

60

80

Initialization

L
a
te

n
c
y
 (

s
)

CTP (0.074)

RG

BG

(b) Latency

Gaussian Spike Slope
0

1

2

3

4

5

Initialization

E
n
e
rg

y
 C

o
n
s
u
m

p
ti
o
n
 (

J
)

CTP (0.074)

RG

BG

(c) Energy Consumption

Slope Gaussian Spike

10
−2

10
−1

10
0

Initialization

N
o
rm

a
liz

e
d
 A

b
s
o
lu

te
 E

rr
o
r

BG

CTP (0.926)

RG

(d) Normalized Absoulte Error

Slope Gaussian Spike

10
−4

10
−2

10
0

Initialization
S

ta
n
d
a
rd

 D
e
v
ia

ti
o
n

RG

CTP (0.926)

BG

(e) Standard Deviation

Fig. 1. Overall Performance Comparison for Different Initializations, Network Size=100 nodes, Transmission Radius=11m, Network Area=43x43m2. The
number in brackets is the fraction of 500 CTP simulation runs applicable to calculate each performance metric

that, for Gaussian and slope initializations, RG has a lower
NAE compared to CTP. As both algorithms preserve the
network sum in theory, the error only occurs when data packets
are lost. Our simulation suggests that lost data packets have a
bigger impact on CTP than on RG as more nodes are affected.
For standard deviation, we note the inverse trends. BG has the
lowest standard deviation, followed by RG and CTP.

V. CONCLUSION

We conduct a series of simulations to evaluate and compare
the performance of broadcast gossip, randomized gossip, and
the collection tree protocol for distributed averaging. Overall,
BG has the highest efficiency because it does not require any
prior setup and can exchange data without any restriction, but it
has the highest NAE because it does not preserve network sum.
RG and CTP are hindered by various timers and unexpected
delays which degrade their performance.

REFERENCES

[1] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” Information Theory, IEEE Transactions on, vol. 52, no. 6,
pp. 2508 – 2530, June 2006.

[2] T. Aysal, M. Yildiz, A. Sarwate, and A. Scaglione, “Broadcast gossip
algorithms for consensus,” Signal Processing, IEEE Transactions on,
vol. 57, no. 7, pp. 2748 –2761, July 2009.

[3] D. Ustebay, B. Oreshkin, M. Coates, and M. Rabbat, “Greedy gossip
with eavesdropping,” Signal Processing, IEEE Transactions on, vol. 58,
no. 7, pp. 3765 –3776, July 2010.

[4] C. Yanez-Marquez, I. Lopez-Yanez, O. Camacho-Nieto, and A. J.
Arguelles-Cruz, “Bdd-based algorithm for the minimum spanning tree
in wireless ad-hoc network routing,” Latin America Transactions, IEEE
(Revista IEEE America Latina), vol. 11, no. 1, pp. 600–601, 2013.

[5] D. Montoya and J. Ramirez, “A minimal spanning tree algorithm
for distribution networks configuration,” in Power and Energy Society
General Meeting, 2012 IEEE, 2012, pp. 1–7.

[6] B. Hakoura and M. Rabbat, “Data aggregation in wireless sensor
networks: A comparison of collection tree protocols and gossip algo-
rithms,” in Electrical Computer Engineering (CCECE), 2012 25th IEEE
Canadian Conference on, May 2012, pp. 1 –4.

[7] B. Athnassios, “Castalia a simulator for wireless sensor
networks and body area networks,” Mar 2011, avail-
able at http://castalia.npc.nicta.com.au/pdfs/Castalia%20-
%20User%20Manual.pdf.

[8] R. Fonseca, O. Gnawali, K. Jamieson, S. Kim, P. Levis, and
A. Woo, “The collection tree protocol (ctp),” Feb 2007, available at
http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html.

[9] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Col-
lection tree protocol,” in Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, ser. SenSys ’09, 2009, pp. 1–14.

[10] U. Colesanti and S. Santini, A performance evaluation of the collection
tree protocol based on its implementation for the castalia wireless
sensor networks simulator. ETH, Department of Computer Science,
2010.

[11] M. Zuniga and B. Krishnamachari, “Analyzing the transitional region
in low power wireless links,” in Sensor and Ad Hoc Communications
and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE
Communications Society Conference on, 2004, pp. 517–526.

[12] “Implementation of average consensus protocols for commercial sensor
networks platforms,” in Grid Enabled Remote Instrumentation, ser. Sig-
nals and Communication Technology, F. Davoli, N. Meyer, R. Pugliese,
and S. Zappatore, Eds., 2009.

[13] A. Daher, M. Rabbat, and V. Lau, “Local silencing rules for randomized
gossip,” in Distributed Computing in Sensor Systems and Workshops
(DCOSS), 2011 International Conference on, June 2011, pp. 1 –8.

[14] M. Penrose, Random geometric graphs. Oxford University Press
Oxford, 2003, vol. 5.

[15] A. Dimakis, A. Sarwate, and M. Wainwright, “Geographic gossip:
Efficient averaging for sensor networks,” Signal Processing, IEEE
Transactions on, vol. 56, no. 3, pp. 1205 –1216, March 2008.

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

96

