
Consensus-Based Distributed Optimization���
Communication-Computation Tradeoffs	

Konstantinos Tsianos, Sean Lawlor, & Michael Rabbat	

	

Separable Convex Optimization	

Consider problems of the form

where are convex,
and is convex

Solve in a network where only available at node

2

fi(x)

minimize

1

n

nX

i=1

fi(x)

subject to x 2 X

i

fi(x)

X ✓ Rd

Distributed Model Fitting	

Fit a model to data at all
nodes

3

D1

D2

D3

D4

D5 D6

minimize
nX

i=1

X

y2Di

`(x, y)

Distributed Model Fitting	

Fit a model to data at all
nodes

Communicate over logical
overlay network

4

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)
f6(x)

minimize
nX

i=1

X

y2Di

`(x, y)

| {z }
fi(x)

G = ({1, . . . , n}, E)

Distributed Primal Averaging	

Operation at node , first initialize
repeat:

 communicate: send to neighbors, receive
 compute:

until satisfying convergence criterion
Assume doubly stochastic

5

i

Nedic and Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE T Auto Control, 2009
Ram, Nedic, Veeravalli, “Distributed stochastic subgradient projection algorithms,” J Opt Theory & Apps, 2010

gi(t) 2 @fi(xi(t))

P Pi,j > 0 , (i, j) 2 E

xi(0) 2 Rd

xi(t) xj(t)

xi(t+ 1) = ⇧X

2

4
nX

j=1

Pi,jxj(t)� ↵tgi(t)

3

5

Distributed Dual Averaging (DDA)	

Operation at node , first initialize
repeat:

 communicate: send to neighbors, receive
 compute:

until satisfying convergence criterion
Assume doubly stochastic

6

i

zi(t) zj(t)

Duchi, Agarwal, Wainwright, “Dual averaging for distributed optimization,” IEEE Trans Auto Control, 2011

gi(t) 2 @fi(xi(t))

zi(t+ 1) =
nX

j=1

Pi,jzj(t)� gi(t)

x

i

(t+ 1) = argmin
x2X

⇢
hz, xi+ 1

a(t)
kxk22

�

P Pi,j > 0 , (i, j) 2 E

zi(0), xi(0) 2 Rd

Convergence of DDA	

DDA updates:

Theorem (Duchi, Agarwal, and Wainwright ’11): For the running
average,

we have

7

bxi(T) =
1

T

TX

t=1

xi(T)

zi(t+ 1) =
nX

j=1

Pi,jzj(t)� gi(t)

x

i

(t+ 1) = argmin
x2X

⇢
hz, xi+ 1

a(t)
kxk22

�

F (bxi(T))� F

⇤ C

log(

p
nT)

(1� �2)
p
T

Communication-Computation
Tradeoffs	

Tsianos, Lawlor, and Rabbat, NIPS 2012

8

A Closer Look at DDA	

Error after T iterations

•  Bound increases with network size
•  Assume fixed data set

•  (Sub)Gradient computation is n times faster

9

✏(T) = F (bxi(T))� F

⇤ C

log(

p
nT)

(1� �2)
p
T

y1, y2, . . . , ym

r
x

f

i

(x) =
n

m

m/nX

j=1

r
x

l(x, y
j,i

)

F (x) =
1

m

mX

j=1

l(x, y
j

) =
1

n

nX

i=1

0

@ n

m

m/nX

j=1

l(x, y
j,i

)

1

A

| {z }
fi(x)

Time Model	

•  Computation: Normalize time so that

–  Then takes time for nodes

•  Communication: Define problem-specific constant

–  Assume graph is k-regular

10

1 time unit = time to compute

mX

j=1

l(x, yj)

1/n n

r = time to transmit zi(t) to one neighbor

total time for one iteration =

1

n
+ kr time units

Communication-Computation Tradeoff	

•  DDA error bound

•  Assume a favorable topology (G = Kn or k-regular expander)

•  Time to reach accuracy is

–  If communication is free (r = 0): perfect linear speedup
–  If G = Kn : minimal time when
–  If G is k-regular expander, get diminishing returns with

increasing n

11

✏(T) = C
log(

p
nT)

(1� �2)
p
T

1� �2 = ⇥(1) as n ! 1

✏

⌧(✏) ⇡ C2

✏2
(
1

n
+ kr) time units

n = 1/
p
r

Sparse Communication	

•  If each node transmits once every iterations we prove that

•  Of the T iterations, involve communication, so

•  There is an optimal
•  Complete Graphs:
•  Expander Graphs:

12

✏ = Ch
log(

p
nT)p
T

, Ch =
p
c
1

+ c
2

h

HT = T
h

⌧(✏) = T
n + T

h kr = C2
h

✏2

�
1
n + kr

h

�
time units

h
opt

= c3
p
nkr

⌧(✏) = O(n)

⌧(✏) = c5p
n
+ c6

h

Communicate
Wait h time steps

Communicate

t

P P I I I I I I
…

z(t+ 1) = Pz(t)� g(t)

Wait h time steps

Increasingly Sparse Communication	

•  To reach accuracy will take
 where

•  For constant k, arbitrarily close to linear speedup
•  The rate is slower in number or iterations than when

communicating every iteration:

but the algorithm scales better with n
13

✏ ⌧(✏) = O

✓
T

✓
1
n + kr

T
1

p+1

◆◆

T =
⇣

Cp

✏

⌘ 2
1�2p

O
�
T
n

�

1
✏2 vs 1

✏
2

1�2p

t
…

t-th comm t+1-th comm

wait steps tp wait steps (t+ 1)p

z(t+ 1) = Pz(t)� g(t)

Experimental Evaluation	

•  Cluster with 14 nodes, complete graph,
•  Network transmits 11 mb/sec
•  Learn a distance metric

–  1 cpu needs 29 seconds to compute
–  Sending/receiving 1 gradient takes 0.85 seconds

•  Gradient dimension: 614657
•  Gradient size: 4.7 MB

–  Communication/Computation trade-off:
–  Complete graph optimal size is

14

r = 0.85
29 = 0.0293

n = 1p
r
= 5.8

dA(u, v) =
p

(u� v)TA(u� v)

rF (w)

Metric Learning Problem	

15

50 100 150 200 250 300 350 400 4500

0.5

1

1.5

2

2.5

3

3.5

4

Time (sec)

F̄
(t
)

n = 1
n = 2
n = 4
n = 6
n = 8
n = 10
n = 12
n = 14

Network of 6 cpus is the fastest. Theory predicts 5.8.

Non-smooth Minimization	

•  Complete graph of 10 nodes
– 
– 
–  For h=2 each node communicates times
–  For p=0.3 each node communicates times

16

fi(w) =
PM

j=1 max

�
l

1
(w, xj|i), l

2
(w, xj|i)

�
,

w 2 R10,000,M = 15, 000F (w) = 1
n

Pn
i=1 fi(w),

r = 0.00089
h
opt

= 1
HT = 55
HT = 53

l

⇠(w, xj|i) = (w � x

⇠
j|i)

T (w � x

⇠
j|i), ⇠ 2 {1, 2}

Non-smooth Minimization	

17

0 20 40 60 80 100 120 140 1601.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 105

Time (sec)

F̄
(t
)

h = 1
h = 2
h = t0.3

h = t

Practical Considerations	

Tsianos, Lawlor, and Rabbat, Allerton 2012

18

Distributed Dual Averaging	

Operation at node , first initialize
repeat:

 communicate: send to neighbors, receive
 compute:

until satisfying convergence criterion
Assume doubly stochastic

19

i

zi(t) zj(t)

Duchi, Agarwal, Wainwright, “Dual averaging for distributed optimization,” IEEE T Auto Control, 2011

gi(t) 2 @fi(xi(t))

zi(t+ 1) =
nX

j=1

Pi,jzj(t)� gi(t)

x

i

(t+ 1) = argmin
x2X

⇢
hz, xi+ 1

a(t)
kxk22

�

P Pi,j > 0 , (i, j) 2 E

zi(0), xi(0) 2 Rd

Consensus-Based Distributed Optimization	

General operation:
repeat:

 communicate
 compute

until (convergence)

20

Tsitsiklis, Bertsekas, Athans, “Distributed asynchronous gradient optimization algs” IEEE T Auto Control, 1986
Nedic and Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE T Auto Control, 2009
Ram, Nedic, Veeravalli, “Distributed stochastic subgradient projection algorithms,” J Opt Theory & Apps, 2010
Duchi, Agarwal, Wainwright, “Dual averaging for distributed optimization,” IEEE T Auto Control, 2011
Chen and Sayed, “Diffusion adaptation strategies for distributed optimization,” IEEE T Sig Proc, 2012
Jakovetic, Xavier, and Moura, “Fast distributed gradient methods,” submitted, 2012

Synchronous or Asynchronous ?

Push-Pull or Push (or Pull) ?

Doubly stochastic P ?

zi(t+ 1) =
nX

j=1

Pi,jzj(t)� gi(t)

Synchronous or Asynchronous?	

•  Need neighbors values to update

•  Could wait to receive values from all neighbors
–  But then the whole network moves at the pace of the slowest node

•  Motivates asynchronous communications
•  Implication: time-varying update weights
•  Allows to also model:

–  Communication delays
–  Time-varying inter-communication intervals

21

zi(t+ 1) =
nX

j=1

Pi,jzj(t)� gi(t) Pi,j > 0 , (i, j) 2 E

Pi,j(t)

Push-Pull vs. Push (or Pull)	

•  Pairwise Push-Pull protocols cause deadlocks

•  Need to finish one update before processing the next

22

zi(t+ 1) = zj(t+ 1) =
zi(t) + zj(t)

2
zk(t+ 1) = zk(t) for k 6= i, j i

k

j

Push-Pull vs. Push (or Pull)	

•  Pairwise Push-Pull protocols cause deadlocks

•  Need to finish one update before processing the next

•  Motivates using Push-only protocol

23

zi(t+ 1) = zj(t+ 1) =
zi(t) + zj(t)

2
zk(t+ 1) = zk(t) for k 6= i, j i

k

j

Doubly-Stochastic Weights P ?	

•  Resigned to using asynchronous push protocols

24

zi(t+ 1) =
nX

j=1

Pi,jzj(t)� gi(t)

Doubly-Stochastic Weights P ?	

•  Resigned to using asynchronous push protocols

25

z(t+ 1) = P (t)z(t)

Doubly-Stochastic Weights P ?	

•  Resigned to using asynchronous push protocols

•  Need for unbiased optimization

26

z(t+ 1) = P (t)z(t)

minimize
1

n

nX

i=1

fi(x) minimize
nX

i=1

⇡ifi(x)NOT

1Y

t=1

P (t) ! 1

n
11T

Doubly-Stochastic Weights P ?	

•  Resigned to using asynchronous push protocols

•  Need for unbiased optimization

•  But asynchronous push protocols cannot be doubly stochastic
–  Each node controls a row or column of P, but not both
–  (Both would require synchronous coordination)

27

z(t+ 1) = P (t)z(t)

minimize
1

n

nX

i=1

fi(x) minimize
nX

i=1

⇡ifi(x)NOT

1Y

t=1

P (t) ! 1

n
11T

Push-Sum Distributed Averaging	

•  Initialize

•  Send to neighbor (column stochastic)
•  Receive from neighbors

–  Buffer incoming messages while sending and computing
•  Update

•  Theorem:

j

�
Pi,jzi(t), Pi,jwi(t)

�
��

Pj,izj(t
0), Pj,iwj(t

0)
�

zi(t+ 1) =
X

queue

Pj,izj(t
0) wi(t+ 1) =

X

queue

Pj,iwj(t
0)

zi(t+ 1)

wi(t+ 1)
�! 1

n

nX

i=1

zi(0)

zi(0) 2 Rd, wi(0) = 1

Kempe, Dobra, Gherke, “Gossip-based computation of aggregate information” FOCS, 2003
Bénézit Blondel, Thiran, Tsitsiklis, Vetterli, “Weighted gossip,” ISIT, 2010
Tsianos, Lawlor, Rabbat, “Push-sum distributed dual averaging,” CDC, 2012
Dominguez-Garcia, Hadjicostis, Vaidya, “Robust average consensus over packet dropping links,” CDC, 2012

P

Experiments	

•  n=15 nodes
–  Open MPI v1.4.4
–  Armadillo v2.3.91 (linked to LAPACK and BLAS)

•  Test problem:

29

fi(x) =
MX

j=1

(x� cj|i)
T (x� cj|i)

x, cj|i 2 R5,000

M = 500

X = B(0, 2max

i,j
kcj|ik)

Unbalanced Network Topology	

•  One node communicates
more than others

30

20 40 60 80 100 1200.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7x 105

Time (sec)

F
(w

i(
t)
)

F (x) =
1

n

nX

i=1

fi(x)

1

2

3 4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

Consensus vs. Push-Sum	

•  Delays bias objective

31
20 40 60 80 100 1200.95

1

1.05

1.1x 105

Time (sec)

1 n

∑
n i=

1
F
(w

i(
t)
)

PS DDA
DDA

1

2

3 4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

Push-Sum Dist Dual Avg

Consensus-based Dist Dual Avg

Synchronous vs. Asynchronous	

•  G = Kn
•  One slow node (takes longer to compute)

32

10 20 30 40 50 600.8

1

1.2

1.4

1.6

1.8

2x 105

TIme (sec)

1 n

∑
n i=

1
F
(w

i(
t)
)

Blocking
Blocking slow
Async
Async slow

1

n

F
(x̂

i(
t
))

Summary	

•  Communication costs can greatly affect the performance of
distributed algorithms

•  Comparing performance in terms of iterations can be
deceiving
–  Iterations involve communication and computation
–  Tradeoff is problem- and system-specific

•  Communication becomes less important with time
–  Have something interesting “to say” before communicating

•  Communication protocols: averaging, asynchronous, push-
based

33

michael.rabbat@mcgill.ca"
http://www.ece.mcgill.ca/~mrabba1"

