Consensus-Based Distributed Optimization Communication-Computation Tradeoffs

Konstantinos Tsianos, Sean Lawlor, & Michael Rabbat

Separable Convex Optimization

Consider problems of the form

minimize $\frac{1}{n} \sum_{i=1}^{n} f_i(x)$ subject to $x \in \mathcal{X}$

where $f_i(x)$ are convex, and $\mathcal{X} \subseteq \mathbb{R}^d$ is convex

Solve in a network where $f_i(x)$ only available at node *i*

Distributed Model Fitting

Fit a model to data at all nodes

minimize $\sum_{i=1}^{n} \sum_{y \in \mathcal{D}_i} \ell(x, y)$

Distributed Model Fitting

Fit a model to data at all nodes

Communicate over logical overlay network

$$G = (\{1, \ldots, n\}, E)$$

Distributed Primal Averaging

Operation at node i, first initialize $x_i(0) \in \mathbb{R}^d$ repeat:

communicate: send $x_i(t)$ to neighbors, receive $x_j(t)$ **compute**: $g_i(t) \in \partial f_i(x_i(t))$

$$x_i(t+1) = \Pi_{\mathcal{X}} \left[\sum_{j=1}^n P_{i,j} x_j(t) - \alpha_t g_i(t) \right]$$

until satisfying convergence criterion Assume P doubly stochastic $P_{i,j} > 0 \Leftrightarrow (i,j) \in E$

Nedic and Ozdaglar, "Distributed subgradient methods for multi-agent optimization," *IEEE T Auto Control,* 2009 Ram, Nedic, Veeravalli, "Distributed stochastic subgradient projection algorithms," *J Opt Theory & Apps,* 2010

Distributed Dual Averaging (DDA)

Operation at node i, first initialize $z_i(0), x_i(0) \in \mathbb{R}^d$ repeat:

communicate: send $z_i(t)$ to neighbors, receive $z_j(t)$ **compute**: $g_i(t) \in \partial f_i(x_i(t))$

$$z_i(t+1) = \sum_{j=1}^n P_{i,j} z_j(t) - g_i(t)$$
$$x_i(t+1) = \arg\min_{x \in \mathcal{X}} \left\{ \langle z, x \rangle + \frac{1}{a(t)} \|x\|_2^2 \right\}$$

until satisfying convergence criterion Assume P doubly stochastic $P_{i,j} > 0 \Leftrightarrow (i,j) \in E$

Duchi, Agarwal, Wainwright, "Dual averaging for distributed optimization," IEEE Trans Auto Control, 2011

Convergence of DDA DDA updates: $z_i(t+1) = \sum_{j=1}^n P_{i,j} z_j(t) - g_i(t)$ $x_i(t+1) = \arg \min_{x \in \mathcal{X}} \left\{ \langle z, x \rangle + \frac{1}{a(t)} \|x\|_2^2 \right\}$

Theorem (Duchi, Agarwal, and Wainwright '11): For the running average, T

$$\widehat{x}_i(T) = \frac{1}{T} \sum_{t=1}^{T} x_i(T)$$

we have

$$F(\widehat{x}_i(T)) - F^* \le C \frac{\log(\sqrt{nT})}{(1 - \lambda_2)\sqrt{T}}$$

Communication-Computation Tradeoffs

Tsianos, Lawlor, and Rabbat, NIPS 2012

A Closer Look at DDA

Error after T iterations

$$\epsilon(T) = F(\widehat{x}_i(T)) - F^* \le C \frac{\log(\sqrt{nT})}{(1 - \lambda_2)\sqrt{T}}$$

- Bound increases with network size
- Assume fixed data set y_1, y_2, \ldots, y_m

$$F(x) = \frac{1}{m} \sum_{j=1}^{m} l(x, y_j) = \frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(\frac{n}{m} \sum_{j=1}^{m/n} l(x, y_{j,i})\right)}_{f_i(x)}$$

• (Sub)Gradient computation is *n* times faster

$$\nabla_x f_i(x) = \frac{n}{m} \sum_{j=1}^{m/n} \nabla_x l(x, y_{j,i})$$

Time Model

Computation: Normalize time so that ۲

1 time unit = time to compute $\sum l(x, y_j)$

- Then takes 1/n time for n nodes
- **Communication:** Define problem-specific constant • r = time to transmit $z_i(t)$ to one neighbor
 - Assume graph is k-regular total time for one iteration = $\frac{1}{n} + kr$ time units

Communication-Computation Tradeoff

- DDA error bound $\epsilon(T) = C \frac{\log(\sqrt{nT})}{(1-\lambda_2)\sqrt{T}}$
- Assume a favorable topology (G = K_n or k-regular expander) $1 - \lambda_2 = \Theta(1)$ as $n \to \infty$
- Time to reach $_\epsilon$ accuracy is $\tau(\epsilon)\approx \frac{C^2}{\epsilon^2}(\frac{1}{n}+kr) \mbox{ time units}$
 - If communication is free (r = 0): perfect linear speedup
 - If G = Kn : minimal time when $n = 1/\sqrt{r}$
 - If G is k-regular expander, get diminishing returns with increasing n

Sparse Communication

- If each node transmits once every h iterations we prove that

$$\epsilon = C_h \frac{\log(\sqrt{nT})}{\sqrt{T}}, \quad C_h = \sqrt{c_1 + c_2 h}$$

- Of the T iterations, $H_T = \frac{T}{h}$ involve communication, so $\tau(\epsilon) = \frac{T}{n} + \frac{T}{h}kr = \frac{C_h^2}{\epsilon^2} \left(\frac{1}{n} + \frac{kr}{h}\right)$ time units
- There is an optimal $h_{opt} = c_3 \sqrt{nkr}$
- Complete Graphs: $\tau(\epsilon) = O(n)$
- Expander Graphs: $\tau(\epsilon) = \frac{c_5}{\sqrt{n}} + c_6$

Increasingly Sparse Communication

- To reach ϵ accuracy will take $\tau(\epsilon) = O\left(T\left(\frac{1}{n} + \frac{kr}{T^{\frac{1}{p+1}}}\right)\right)$ where $T = \left(\frac{C_p}{\epsilon}\right)^{\frac{2}{1-2p}}$
- For constant k, arbitrarily close to linear speedup $O\left(\frac{T}{n}\right)$
- The rate is slower in number or iterations than when communicating every iteration:

$$\frac{1}{\epsilon^2}$$
 VS $\frac{1}{\epsilon^{\frac{2}{1-2p}}}$

but the algorithm scales better with *n*

Experimental Evaluation

- Cluster with 14 nodes, complete graph,
- Network transmits II mb/sec
- Learn a distance metric $d_A(u,v) = \sqrt{(u-v)^T A(u-v)}$
 - I cpu needs 29 seconds to compute $\nabla F(w)$
 - Sending/receiving I gradient takes 0.85 seconds
 - Gradient dimension: 614657
 - Gradient size: 4.7 MB
 - Communication/Computation trade-off: $r = \frac{0.85}{29} = 0.0293$
 - Complete graph optimal size is $n = \frac{1}{\sqrt{r}} = 5.8$

Metric Learning Problem

Network of 6 cpus is the fastest. Theory predicts 5.8.

Non-smooth Minimization

$$F(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w), \quad w \in R^{10,000}, M = 15,000$$
$$f_i(w) = \sum_{j=1}^{M} \max\left(l^1(w, x_{j|i}), l^2(w, x_{j|i})\right),$$
$$l^{\xi}(w, x_{j|i}) = (w - x_{j|i}^{\xi})^T(w - x_{j|i}^{\xi}), \quad \xi \in \{1, 2\}$$

- Complete graph of 10 nodes
 - r = 0.00089
 - $-h_{opt} = 1$
 - For h=2 each node communicates $H_T=55$ times
 - For p=0.3 each node communicates $H_T=53$ times

Non-smooth Minimization

17

Practical Considerations

Tsianos, Lawlor, and Rabbat, Allerton 2012

Distributed Dual Averaging

Operation at node i, first initialize $z_i(0), x_i(0) \in \mathbb{R}^d$ repeat:

communicate: send $z_i(t)$ to neighbors, receive $z_j(t)$ **compute**: $g_i(t) \in \partial f_i(x_i(t))$

$$z_i(t+1) = \sum_{j=1}^n P_{i,j} z_j(t) - g_i(t)$$
$$x_i(t+1) = \arg\min_{x \in \mathcal{X}} \left\{ \langle z, x \rangle + \frac{1}{a(t)} \|x\|_2^2 \right\}$$

until satisfying convergence criterion Assume P doubly stochastic $P_{i,j} > 0 \Leftrightarrow (i,j) \in E$

Duchi, Agarwal, Wainwright, "Dual averaging for distributed optimization," IEEE T Auto Control, 2011

Consensus-Based Distributed Optimization

General operation: repeat: **communicate**

compute

until (convergence)

$$z_i(t+1) = \sum_{j=1}^n P_{i,j} z_j(t) - g_i(t)$$

Synchronous or Asynchronous ? Push-Pull or Push (or Pull) ? Doubly stochastic *P* ?

Tsitsiklis, Bertsekas, Athans, "Distributed asynchronous gradient optimization algs" *IEEE T Auto Control*, 1986 Nedic and Ozdaglar, "Distributed subgradient methods for multi-agent optimization," *IEEE T Auto Control*, 2009 Ram, Nedic, Veeravalli, "Distributed stochastic subgradient projection algorithms," *J Opt Theory & Apps*, 2010 Duchi, Agarwal, Wainwright, "Dual averaging for distributed optimization," *IEEE T Auto Control*, 2011 Chen and Sayed, "Diffusion adaptation strategies for distributed optimization," *IEEE T Sig Proc*, 2012 Jakovetic, Xavier, and Moura, "Fast distributed gradient methods," submitted, 2012

Synchronous or Asynchronous?

• Need neighbors values to update

$$z_i(t+1) = \sum_{j=1}^n P_{i,j} z_j(t) - g_i(t) \qquad P_{i,j} > 0 \Leftrightarrow (i,j) \in E$$

- Could wait to receive values from all neighbors
 - But then the whole network moves at the pace of the slowest node
- Motivates asynchronous communications
- Implication: time-varying update weights $P_{i,j}(t)$
- Allows to also model:
 - Communication delays
 - Time-varying inter-communication intervals

Push-Pull vs. Push (or Pull)

- Pairwise Push-Pull protocols cause deadlocks
- Need to finish one update before processing the next

$$z_i(t+1) = z_j(t+1) = \frac{z_i(t) + z_j(t)}{2}$$

$$z_k(t+1) = z_k(t) \text{ for } k \neq i, j$$

$$(i) \qquad (k)$$

Push-Pull vs. Push (or Pull)

- Pairwise Push-Pull protocols cause deadlocks
- Need to finish one update before processing the next

$$z_i(t+1) = z_j(t+1) = \frac{z_i(t) + z_j(t)}{2}$$
$$z_k(t+1) = z_k(t) \text{ for } k \neq i, j$$

• Motivates using Push-only protocol

• Resigned to using asynchronous push protocols $z_i(t+1) = \sum_{j=1}^n P_{i,j} z_j(t) - g_i(t)$

• Resigned to using asynchronous push protocols

z(t+1) = P(t)z(t)

• Resigned to using asynchronous push protocols

$$\begin{aligned} z(t+1) &= P(t)z(t) \\ \bullet \quad \text{Need} \ \prod_{t=1}^{\infty} P(t) \to \frac{1}{n} \mathbf{1} \mathbf{1}^T \text{ for unbiased optimization} \\ \text{minimize} \quad \frac{1}{n} \sum_{i=1}^n f_i(x) \quad \text{NOT} \quad \text{minimize} \quad \sum_{i=1}^n \pi_i f_i(x) \end{aligned}$$

• Resigned to using asynchronous push protocols

$$z(t+1) = P(t)z(t)$$
• Need $\prod_{t=1}^{\infty} P(t) \rightarrow \frac{1}{n} \mathbf{1} \mathbf{1}^T$ for unbiased optimization
minimize $\frac{1}{n} \sum_{i=1}^n f_i(x)$ NOT minimize $\sum_{i=1}^n \pi_i f_i(x)$

- But asynchronous push protocols cannot be doubly stochastic
 - Each node controls a row or column of P, but not both
 - (Both would require synchronous coordination)

Push-Sum Distributed Averaging

• Initialize
$$z_i(0) \in \mathbb{R}^d, w_i(0) = 1$$

- Send $(P_{i,j}z_i(t), P_{i,j}w_i(t))$ to neighbor (P column stochastic)
- Receive $\{(P_{j,i}z_j(t'), P_{j,i}w_j(t'))\}$ from neighbors j

- Buffer incoming messages while sending and computing

• Update

$$z_i(t+1) = \sum_{\text{queue}} P_{j,i} z_j(t') \qquad w_i(t+1) = \sum_{\text{queue}} P_{j,i} w_j(t')$$

• Theorem: $\frac{z_i(t+1)}{w_i(t+1)} \longrightarrow \frac{1}{n} \sum_{i=1}^n z_i(0)$

Kempe, Dobra, Gherke, "Gossip-based computation of aggregate information" FOCS, 2003 Bénézit Blondel, Thiran, Tsitsiklis, Vetterli, "Weighted gossip," ISIT, 2010 Tsianos, Lawlor, Rabbat, "Push-sum distributed dual averaging," CDC, 2012 Dominguez-Garcia, Hadjicostis, Vaidya, "Robust average consensus over packet dropping links," CDC, 2012

Experiments

- n=15 nodes
 - Open MPI vI.4.4
 - Armadillo v2.3.91 (linked to LAPACK and BLAS)

• Test problem:
$$f_i(x) = \sum_{j=1}^M (x - c_{j|i})^T (x - c_{j|i})$$
$$x, c_{j|i} \in \mathbb{R}^{5,000}$$
$$M = 500$$
$$\mathcal{X} = \mathcal{B}(0, 2 \max_{i,j} ||c_{j|i}||)$$

Unbalanced Network Topology

Consensus vs. Push-Sum

Synchronous vs. Asynchronous

Summary

- Communication costs can greatly affect the performance of distributed algorithms
- Comparing performance in terms of iterations can be deceiving
 - Iterations involve communication and computation
 - Tradeoff is problem- and system-specific
- Communication becomes less important with time
 - Have something interesting "to say" before communicating
- Communication protocols: averaging, asynchronous, pushbased

michael.rabbat@mcgill.ca http://www.ece.mcgill.ca/~mrabba1