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Separable Convex Optimization

Consider problems of the form
S BN
minimize ; fi(z)
subject to x € X

where fi(z) are convex,

and X C R? is convex

Solve in a network where fi(x) only available at node i



Distributed Model Fitting

Fit a model to data at all E ﬁ

nodes
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Distributed Model Fitting

Fit a model to data at all fi(z)
nodes ﬁ ~—~——
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Distributed Primal Averaging

Operation at node i, first initialize 2;(0) € R?
repeat:
communicate: send z;(t) to neighbors, receive ()

compute: g, (¢) € 9f;(x;(t))

ri(t+1) =Ty | > Pja,(t) — augi(t)
j=1

until satisfying convergence criterion
Assume P doubly stochastic P;; >0« (i,7) € B

Nedic and Ozdaglar,“Distributed subgradient methods for multi-agent optimization,” IEEE T Auto Control, 2009
Ram, Nedic,Veeravalli,“Distributed stochastic subgradient projection algorithms,” | Opt Theory & Apps,2010



Distributed Dual Averaging (DDA)

Operation at node 14, first initialize z;(0), z;(0) € R®
repeat:

communicate: send z;(t) to neighbors, receive z;(?)

compute: g;(t) € 8f7;(33i( )

ZPZJZJ gi(t)

1
it +1) = arg min {<z,x> ' @er\%}

until satisfying convergence criterion
Assume P doubly stochastic P;; >0« (i,7) € B

Duchi, Agarwal, Wainwright, “Dual averaging for distributed optimization,” [EEE Trans Auto Control, 201 |



Convergence of DDA

DDA updates: z;( Z P; jz;(t) — gi(?)

1
it +1) = arg min {<z,x> + lolf

Theorem (Duchi,Agarwal, and Wainwright ’| |): For the running

average, T
=7 2_=(T)
t=1
we have
log(+/nT
FE(T)) - F* < 008D

T (=T



Communication-Computation
Tradeoffs

Tsianos, Lawlor, and Rabbat, NIPS 2012



A Closer Look at DDA

Error after T iterations

R (TY) — B log(v/nT)
e(T) = F(zi(T)) - F SC(1—A2)\/T

* Bound increases with network size

* Assume fixed data set Y1,¥Y2;,---,Ym
m/n
TONCEEED M D SLETR
7,—1
fvz(m)
* (Sub)Gradient computation is n times faster
m/n

Vo fi(x szgcyﬂ



Time Model

 Computation: Normalize time so that
™m
1 time unit = time to compute Z l(x,y;)
j=1
— Then takes 1/n time for n nodes

* Communication: Define problem-specific constant
r = time to transmit z;(¢) to one neighbor

— Assume graph is k-regular

total time for one iteration = — + k7 time units
n



Communication-Computation Tradeoff

* DDA error bound ¢(T) =C log(v/nT)
(1= X)VT

* Assume a favorable topology (G = K. or k-regular expander)
1—X=0(1) asn—x

* Time to reach accuracy is
€

C? 1
~ —(— + kr) ti 1t
7 (€) > (n + kr) time units

— If communication is free (r = 0): perfect linear speedup

— If G = Kn : minimal time when n = 1//r

— If G is k-regular expander, get diminishing returns with
increasing n



Sparse Communication

Wait h time steps

, Wiait h time steps
Communicate Communicate

* If each node transmits once every / iterations we prove that

€ = Chlog(f—TﬁT), Ch, =1+ cah

e Of theT iterations, Hy = % involve communication, so

2
7(€) = % + %kr = % (l + %) time units

€ n

* There is an optimal i, = c3vVnkr
e Complete Graphs: 7(¢) = O(n)
« Expander Graphs: 7(¢€) = o=t



Increasingly Sparse Communication

t-th comm t+1|-th comm z(t + 1) = Pz(t) — g(t)

" /
D e e e e e e e e e

| | |t

wait tP steps wait (t + 1)?  steps

* To reach € accuracy will take 7(¢) = O (T (% 4 R >>
i2p pt+i
where T = (ﬂ) g

€

* For constant k, arbitrarily close to linear speedup O (%)

* The rate is slower in number or iterations than when

communicating every iteration:

L ovs —
6 -~
el—2p

but the algorithm scales better with n




Experimental Evaluation

* Cluster with 14 nodes, complete graph,
e Network transmits | | mb/sec
e Learn a distance metric da(u,v) = \/(u —v)A(u — v)

— | cpu needs 29 seconds to compute VF(w)

— Sending/receiving | gradient takes 0.85 seconds

* Gradient dimension: 614657
* Gradient size: 4.7 MB

— Communication/Computation trade-off: - — Oé_%5 — 0.0293

— Complete graph optimal size is ,, — \/LF — 5.8



Metric Learning Problem
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Network of 6 cpus is the fastest. Theory predicts 5.8.



Non-smooth Minimization

F(w)= 3", filw), we RO M =15 000

filw) = 3230 max (1N (w, 2),), 2 (w, m,))

S (w, z5) = (w— a5 )T (w—af),), €€ {1,2}
* Complete graph of 10 nodes

— 7 = 0.00089

- hfopt —

— For h=2 each node communicates /- — 55  times

— For p=0.3 each node communicates 1 = 53  times



Non-smooth Minimization
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Practical Considerations

Tsianos, Lawlor, and Rabbat, Allerton 2012



Distributed Dual Averaging

Operation at node 14, first initialize z;(0), z;(0) € R®
repeat:
communicate: send z;(t) to neighbors, receive z;(?)

compute: g;(t) € @fq;(wz'( )

ZPZJZJ - gi(1)

1
it +1) = arg min {<z,az> ' @er\%}

until satisfying convergence criterion
Assume P doubly stochastic P;; >0« (i,7) € B

Duchi, Agarwal, Wainwright, “Dual averaging for distributed optimization,” IEEE T Auto Control, 201 |



Consensus-Based Distributed Optimization

General operation:
repeat: i(t+1) Z Pi,jzi(t) = gi(1)

commuhnicate

compute Synchronous or Asynchronous !

until (convergence
( gence) Push-Pull or Push (or Pull) ?

Doubly stochastic P ?

Tsitsiklis, Bertsekas, Athans, “Distributed asynchronous gradient optimization algs” IEEE T Auto Control, 1986
Nedic and Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE T Auto Control, 2009
Ram, Nedic,Veeravalli,“Distributed stochastic subgradient projection algorithms,” | Opt Theory & Apps, 2010
Duchi, Agarwal, Wainwright, “Dual averaging for distributed optimization,” [EEE T Auto Control, 201 |

Chen and Sayed, “Diffusion adaptation strategies for distributed optimization,” IEEET Sig Proc, 2012

Jakovetic, Xavier, and Moura, “Fast distributed gradient methods,” submitted, 2012 20



Synchronous or Asynchronous!?

Need neighbors values to update

zi(t+1) ZPMZJ — gi(t) P,>0& (i,j) € B

Could wait to receive values from all neighbors

— But then the whole network moves at the pace of the slowest node
* Motivates asynchronous communications

* Implication: time-varying update weights P; ()

Allows to also model:
— Communication delays

— Time-varying inter-communication intervals



Push-Pull vs. Push (or Pull)

* Pairwise Push-Pull protocols cause deadlocks

* Need to finish one update before processing the next

Zzi(t+1)=z;(t+1) = zi(t) ‘g zj(t)

2kt +1) = 2,(t) for k#i,j i




Push-Pull vs. Push (or Pull)

* Pairwise Push-Pull protocols cause deadlocks

* Need to finish one update before processing the next

Zzi(t+1)=z;(t+1) = zi(t) ‘g zj(t)

2kt +1) = 2,(t) for k#i,j i

* Motivates using Push-only protocol



Doubly-Stochastic Weights P ?

* Resigned to using asynchronous push protocols

zi(t+ 1 ZPZ]ZJ gi(t)



Doubly-Stochastic Weights P ?

* Resigned to using asynchronous push protocols

2(t+1) = P(t)z(t)



Doubly-Stochastic Weights P ?

* Resigned to using asynchronous push protocols
2(t + 1) = P(t)z(t)

* Need HP — — 11 for unbiased optimization

minimize - Z fi(x)  NOT  minimize Z i fi(x)



Doubly-Stochastic Weights P ?

* Resigned to using asynchronous push protocols
2(t + 1) = P(t)z(t)

* Need HP — — 11 for unbiased optimization
minimize EZ fi(x) NOT  minimize Zm fi(x)

* But asynchronous push protocols cannot be doubly stochastic
— Each node controls a row or column of P, but not both

— (Both would require synchronous coordination)



Push-Sum Distributed Averaging

* Initialize 2;(0) € R w;(0) = 1

 Send (Pi;z(t), Pijwi(t)) to neighbor (P column stochastic)
* Receive {(P},iz;(t'), Pjyw;(t))} from neighbors j
— Buffer incoming messages while sending and computing
* Update
zi(t+1) Z Pjiz;(t w;(t+1) = Z P; jw;(t)
queue queue

n

e Theorem: =zi(t+1) 1 ZZ'(O)

wi(t+1) " n

1=1

Kempe, Dobra, Gherke,“Gossip-based computation of aggregate information” FOCS, 2003

Bénézit Blondel, Thiran, Tsitsiklis, Vetterli,“Weighted gossip,” ISIT, 2010

Tsianos, Lawlor, Rabbat, “Push-sum distributed dual averaging,” CDC, 2012

Dominguez-Garcia, Hadjicostis, Vaidya, “Robust average consensus over packet dropping links,” CDC, 2012



Experiments

* n=|5 nodes
— Open MPI vl.4.4
— Armadillo v2.3.91 (linked to LAPACK and BLAYS)

M
* Test problem: ( — ; (z — Cj|z')
=1
5,000
X, Cj|,,/ R
M = 500

X = B(0,2max ||cj;|)
1,]



Unbalanced Network Topology

* One node communicates
more than others
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Consensus vs. Push-Sum

* Delays bias objective

5
1.1%10

Push-Sum Dist Dual Avg

/ Consensus-based Dist Dual Avg

S
~
u
-
-
“u
" a
SEmaa

0.95 20 40 60 80 100 120
Time (sec) 3



Synchronous vs. Asynchronous
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Summary

* Communication costs can greatly affect the performance of
distributed algorithms

* Comparing performance in terms of iterations can be
deceiving

— lterations involve communication and computation
— Tradeoff is problem- and system-specific
* Communication becomes less important with time
— Have something interesting “to say”’ before communicating

* Communication protocols: averaging, asynchronous, push-
based

michael.rabbat@mcgill.ca
http://www.ece.mcgill.ca/~mrabba




