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Separable Convex Optimization	



Consider problems of the form 
 
 
 
where          are convex,  
and             is convex 
 
Solve in a network where         only available at node 
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Distributed Model Fitting	



Fit a model to data at all 
nodes 
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Distributed Model Fitting	



Fit a model to data at all 
nodes 
 
 
 
 
Communicate over logical 
overlay network 
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Distributed Primal Averaging	



Operation at node   ,  first initialize 
repeat: 

 communicate: send         to neighbors, receive 
 compute: 

 
 
 
 
until satisfying convergence criterion 
Assume       doubly stochastic 
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Ram, Nedic, Veeravalli, “Distributed stochastic subgradient projection algorithms,” J Opt Theory & Apps, 2010 
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Distributed Dual Averaging (DDA)	



Operation at node   ,  first initialize 
repeat: 

 communicate: send         to neighbors, receive 
 compute: 

 
 
 
 
until satisfying convergence criterion 
Assume       doubly stochastic 
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Convergence of DDA	



DDA updates: 
 
 
 
 
Theorem (Duchi, Agarwal, and Wainwright ’11): For the running 
average, 
 
 
we have 
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Communication-Computation 
Tradeoffs	


Tsianos, Lawlor, and Rabbat, NIPS 2012 
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A Closer Look at DDA	



Error after T iterations 
 
 
•  Bound increases with network size 
•  Assume fixed data set 

 
•  (Sub)Gradient computation is n times faster 
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Time Model	



•  Computation: Normalize time so that 

–  Then takes        time for     nodes 

•  Communication: Define problem-specific constant 

–  Assume graph is k-regular 
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Communication-Computation Tradeoff	



•  DDA error bound 

•  Assume a favorable topology (G = Kn or k-regular expander) 

•  Time to reach    accuracy is 

–  If communication is free (r = 0): perfect linear speedup 
–  If G = Kn : minimal time when 
–  If G is k-regular expander, get diminishing returns with 

increasing n 
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Sparse Communication	



•  If each node transmits once every    iterations we prove that 

•  Of the T iterations,               involve communication, so 

•  There is an optimal 
•  Complete Graphs: 
•  Expander Graphs:  
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Increasingly Sparse Communication	



•  To reach    accuracy will take  
      where 

•  For constant k, arbitrarily close to linear speedup 
•  The rate is slower in number or iterations than when 

communicating every iteration: 

but the algorithm scales better with n 
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Experimental Evaluation	



•  Cluster with 14 nodes, complete graph,  
•  Network transmits 11 mb/sec 
•  Learn a distance metric 

–  1 cpu needs 29 seconds to compute 
–  Sending/receiving 1 gradient takes 0.85 seconds 

•  Gradient dimension: 614657 
•  Gradient size: 4.7 MB 

–  Communication/Computation trade-off: 
–  Complete graph optimal size is   
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Metric Learning Problem	
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Non-smooth Minimization	



•  Complete graph of 10 nodes 
–    
–    
–  For h=2 each node communicates                       times  
–  For p=0.3 each node communicates                       times  

16 

fi(w) =
PM

j=1 max

�
l

1
(w, xj|i), l

2
(w, xj|i)

�
,

w 2 R10,000,M = 15, 000F (w) = 1
n

Pn
i=1 fi(w),

r = 0.00089
h
opt

= 1
HT = 55
HT = 53

l

⇠(w, xj|i) = (w � x

⇠
j|i)

T (w � x

⇠
j|i), ⇠ 2 {1, 2}



Non-smooth Minimization	
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Practical Considerations	



Tsianos, Lawlor, and Rabbat, Allerton 2012 
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Distributed Dual Averaging	



Operation at node   ,  first initialize 
repeat: 

 communicate: send         to neighbors, receive 
 compute: 

 
 
 
 
until satisfying convergence criterion 
Assume       doubly stochastic 
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Consensus-Based Distributed Optimization	



General operation: 
repeat: 

 communicate 
 compute 

until (convergence) 
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Synchronous or Asynchronous ? 

Push-Pull or Push (or Pull) ? 

Doubly stochastic P ? 
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Synchronous or Asynchronous?	



•  Need neighbors values to update 

•  Could wait to receive values from all neighbors 
–  But then the whole network moves at the pace of the slowest node 

•  Motivates asynchronous communications 
•  Implication: time-varying update weights 
•  Allows to also model: 

–  Communication delays 
–  Time-varying inter-communication intervals 
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Push-Pull vs. Push (or Pull)	



•  Pairwise Push-Pull protocols cause deadlocks 

•  Need to finish one update before processing the next 
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Push-Pull vs. Push (or Pull)	



•  Pairwise Push-Pull protocols cause deadlocks 

•  Need to finish one update before processing the next 

•  Motivates using Push-only protocol 
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Doubly-Stochastic Weights P ?	



•  Resigned to using asynchronous push protocols 
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Doubly-Stochastic Weights P ?	



•  Resigned to using asynchronous push protocols 
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Doubly-Stochastic Weights P ?	



•  Resigned to using asynchronous push protocols 

•  Need                              for unbiased optimization 
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Doubly-Stochastic Weights P ?	



•  Resigned to using asynchronous push protocols 

•  Need                              for unbiased optimization 

•  But asynchronous push protocols cannot be doubly stochastic 
–  Each node controls a row or column of P, but not both 
–  (Both would require synchronous coordination) 
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Push-Sum Distributed Averaging	



•  Initialize  

•  Send                               to neighbor (     column stochastic) 
•  Receive                                    from neighbors 

–  Buffer incoming messages while sending and computing 
•  Update  

 
•  Theorem: 
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Experiments	



•  n=15 nodes 
–  Open MPI v1.4.4 
–  Armadillo v2.3.91 (linked to LAPACK and BLAS) 

•  Test problem: 
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Unbalanced Network Topology	



•  One node communicates 
more than others 
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Consensus vs. Push-Sum	



•  Delays bias objective 
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Synchronous vs.  Asynchronous	



•  G = Kn  
•  One slow node (takes longer to compute) 
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Summary	



•  Communication costs can greatly affect the performance of 
distributed algorithms 

•  Comparing performance in terms of iterations can be 
deceiving 
–  Iterations involve communication and computation 
–  Tradeoff is problem- and system-specific 

•  Communication becomes less important with time 
–  Have something interesting “to say” before communicating 

•  Communication protocols: averaging, asynchronous, push-
based 
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