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Separable Convex Optimization	


Consider problems of the form 
 
 
 
where          are convex,  
and             is convex 
 
Solve in a network where         only available at node 
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Distributed Model Fitting	


Fit a model to data at all 
nodes 
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Distributed Model Fitting	


Fit a model to data at all 
nodes 
 
 
 
 
Communicate over logical 
overlay network 
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Distributed Primal Averaging	


Operation at node   ,  first initialize 
repeat: 

 communicate: send         to neighbors, receive 
 compute: 

 
 
 
 
until satisfying convergence criterion 
Assume       doubly stochastic 
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Distributed Dual Averaging (DDA)	


Operation at node   ,  first initialize 
repeat: 

 communicate: send         to neighbors, receive 
 compute: 

 
 
 
 
until satisfying convergence criterion 
Assume       doubly stochastic 
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Convergence of DDA	


DDA updates: 
 
 
 
 
Theorem (Duchi, Agarwal, and Wainwright ’11): For the running 
average, 
 
 
we have 
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Communication-Computation 
Tradeoffs	

Tsianos, Lawlor, and Rabbat, NIPS 2012 
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A Closer Look at DDA	


Error after T iterations 
 
 
•  Bound increases with network size 
•  Assume fixed data set 

 
•  (Sub)Gradient computation is n times faster 
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Time Model	


•  Computation: Normalize time so that 

–  Then takes        time for     nodes 

•  Communication: Define problem-specific constant 

–  Assume graph is k-regular 
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Communication-Computation Tradeoff	


•  DDA error bound 

•  Assume a favorable topology (G = Kn or k-regular expander) 

•  Time to reach    accuracy is 

–  If communication is free (r = 0): perfect linear speedup 
–  If G = Kn : minimal time when 
–  If G is k-regular expander, get diminishing returns with 

increasing n 
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Sparse Communication	


•  If each node transmits once every    iterations we prove that 

•  Of the T iterations,               involve communication, so 

•  There is an optimal 
•  Complete Graphs: 
•  Expander Graphs:  
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Increasingly Sparse Communication	


•  To reach    accuracy will take  
      where 

•  For constant k, arbitrarily close to linear speedup 
•  The rate is slower in number or iterations than when 

communicating every iteration: 

but the algorithm scales better with n 
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Experimental Evaluation	


•  Cluster with 14 nodes, complete graph,  
•  Network transmits 11 mb/sec 
•  Learn a distance metric 

–  1 cpu needs 29 seconds to compute 
–  Sending/receiving 1 gradient takes 0.85 seconds 

•  Gradient dimension: 614657 
•  Gradient size: 4.7 MB 

–  Communication/Computation trade-off: 
–  Complete graph optimal size is   
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Metric Learning Problem	


15 

50 100 150 200 250 300 350 400 4500

0.5

1

1.5

2

2.5

3

3.5

4

Time (sec)

F̄
(t
)

 

 

n = 1
n = 2
n = 4
n = 6
n = 8
n = 10
n = 12
n = 14

Network of 6 cpus is the fastest. Theory predicts 5.8. 



Non-smooth Minimization	


•  Complete graph of 10 nodes 
–    
–    
–  For h=2 each node communicates                       times  
–  For p=0.3 each node communicates                       times  
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Non-smooth Minimization	
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Practical Considerations	


Tsianos, Lawlor, and Rabbat, Allerton 2012 
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Distributed Dual Averaging	


Operation at node   ,  first initialize 
repeat: 

 communicate: send         to neighbors, receive 
 compute: 

 
 
 
 
until satisfying convergence criterion 
Assume       doubly stochastic 
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Consensus-Based Distributed Optimization	


General operation: 
repeat: 

 communicate 
 compute 

until (convergence) 
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Synchronous or Asynchronous ? 

Push-Pull or Push (or Pull) ? 

Doubly stochastic P ? 
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Synchronous or Asynchronous?	


•  Need neighbors values to update 

•  Could wait to receive values from all neighbors 
–  But then the whole network moves at the pace of the slowest node 

•  Motivates asynchronous communications 
•  Implication: time-varying update weights 
•  Allows to also model: 

–  Communication delays 
–  Time-varying inter-communication intervals 
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Push-Pull vs. Push (or Pull)	


•  Pairwise Push-Pull protocols cause deadlocks 

•  Need to finish one update before processing the next 
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Push-Pull vs. Push (or Pull)	


•  Pairwise Push-Pull protocols cause deadlocks 

•  Need to finish one update before processing the next 

•  Motivates using Push-only protocol 

23 

zi(t+ 1) = zj(t+ 1) =
zi(t) + zj(t)

2
zk(t+ 1) = zk(t) for k 6= i, j i 

k 

j 



Doubly-Stochastic Weights P ?	


•  Resigned to using asynchronous push protocols 
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Doubly-Stochastic Weights P ?	


•  Resigned to using asynchronous push protocols 
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Doubly-Stochastic Weights P ?	


•  Resigned to using asynchronous push protocols 

•  Need                              for unbiased optimization 
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Doubly-Stochastic Weights P ?	


•  Resigned to using asynchronous push protocols 

•  Need                              for unbiased optimization 

•  But asynchronous push protocols cannot be doubly stochastic 
–  Each node controls a row or column of P, but not both 
–  (Both would require synchronous coordination) 
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Push-Sum Distributed Averaging	


•  Initialize  

•  Send                               to neighbor (     column stochastic) 
•  Receive                                    from neighbors 

–  Buffer incoming messages while sending and computing 
•  Update  

 
•  Theorem: 
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Experiments	


•  n=15 nodes 
–  Open MPI v1.4.4 
–  Armadillo v2.3.91 (linked to LAPACK and BLAS) 

•  Test problem: 
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Unbalanced Network Topology	


•  One node communicates 
more than others 
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Consensus vs. Push-Sum	


•  Delays bias objective 
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Synchronous vs.  Asynchronous	


•  G = Kn  
•  One slow node (takes longer to compute) 
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Summary	


•  Communication costs can greatly affect the performance of 
distributed algorithms 

•  Comparing performance in terms of iterations can be 
deceiving 
–  Iterations involve communication and computation 
–  Tradeoff is problem- and system-specific 

•  Communication becomes less important with time 
–  Have something interesting “to say” before communicating 

•  Communication protocols: averaging, asynchronous, push-
based 
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