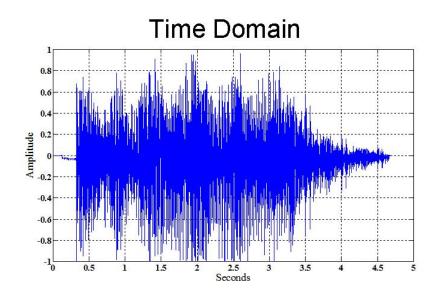
Processing Signals Supported on Graphs

Michael Rabbat

Traditional Signal Processing

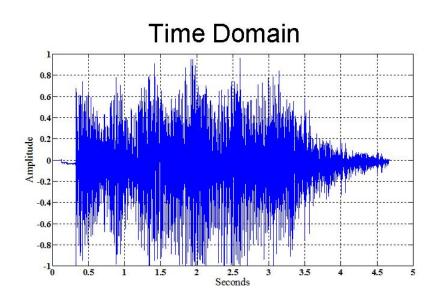


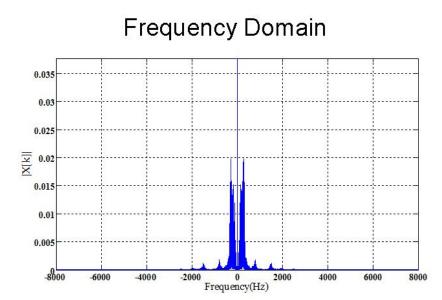
1-D (e.g., audio)

2-D (e.g., images)

Smoothness

Example: Audio signal

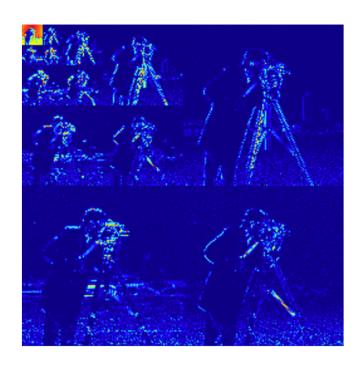




Smooth = (mostly) low frequency

Sparsity

Example: 2D Image and its Wavelet Transform



Sparsity = most wavelet coefficients are (nearly) zero (Note: zero = blue)

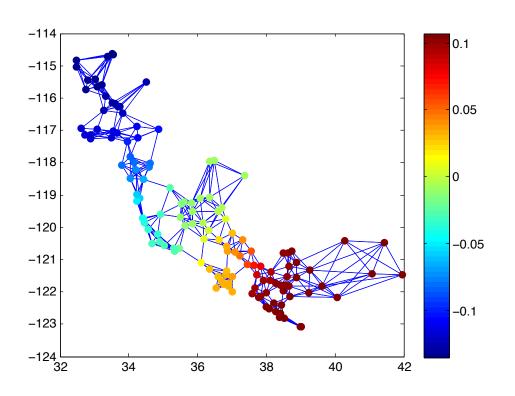
Implications of Smoothness & Sparsity

- Signal processing tasks
 - Signal measurement, acquisition → Estimation
 - Signal storage, communication → Compression
- Approximation Theory

When/how can one signal be approximated well by another?

- Other signal is "cleaner" or "simpler" than the other
- Smoothness (focus on low frequency)
- Sparsity (focus on few high-energy coefficients)

Signals Supported on Graphs



Many applications:

- Sensor networks
- Smart grid
- Social networks
- Transportation
- Internet monitoring
- Economic networks

•

Questions

- When and how can we approximate signals on graphs?
- What is a "smooth" signal on a graph?
- What is a "Fourier" transform for signals on a graph?
- Which graphs have meaningful "Fourier" transforms?
- Which graphs have interesting smooth signals?
- When and how can smooth signals be helpful?

Outline

- Introduction and motivation
- Approximating signal supported on graphs
 - Classical approximation theory
 - Approximation theory for graphs
- Field estimation in sensor networks

- Based on joint work with Xiaofan Zhu
 - X. Zhu and M. Rabbat, "Approximating signals supported on graphs," ICASSP 2012
 - X. Zhu and M. Rabbat, "Graph spectral compressed sensing," ICASSP 2012

APPROXIMATING SIGNALS SUPPORTED ON GRAPHS

Classical Approximation Theory

Let
$$f \in L^2([0,1])$$

$$\widehat{f}(\omega) = \int_0^1 f(t)e^{-i\omega t}dt$$

Total variation
$$||f||_V = \int_0^1 |f'(t)| dt$$

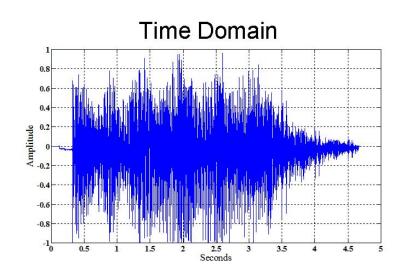
Proposition:
$$|\widehat{f}(\omega)| \leq \frac{\|f\|_V}{|\omega|}$$

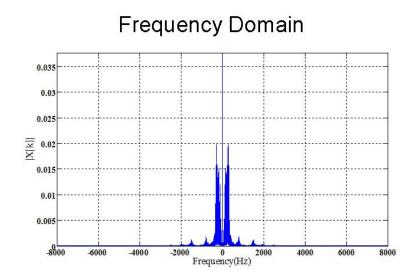
Small TV → energy mainly in low frequencies

Fourier Approximation

Fourier coefficient $\langle f(u), e^{i2\pi mu} \rangle = \int_0^1 f(u)e^{-i2\pi mu} du$

Fourier expansion
$$f(t) = \sum_{m=-\infty}^{\infty} \langle f(u), e^{i2\pi mu} \rangle e^{i2\pi mt}$$





M-term Linear Approximation

Only keep M lowest frequency coefficients (Force others to zero)

M-term linear approximation:

$$f_M(t) = \sum_{m:|m| < M/2} \langle f(u), e^{i2\pi mu} \rangle e^{i2\pi mt}$$

M-term linear approximation error:

$$\epsilon_l(M, f) = ||f - f_M||^2$$

$$= \sum_{m:|m|>M/2} |\langle f(u), e^{i2\pi mu} \rangle|^2$$

Approximation Error Scaling

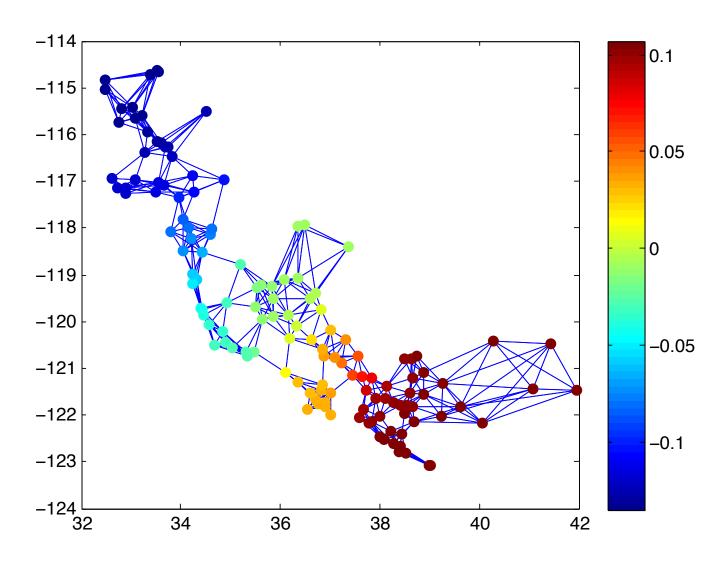
Theorem: If $||f||_V < \infty$ then $\epsilon_l(M, f) = O\left(\frac{||f||_V}{M^{-1}}\right)$

Theorem: For any s > 1/2, if

$$\sum_{m=0}^{\infty} |m|^{2s} |\langle f, e^{i2\pi mu} \rangle|^2 < \infty$$

then $\epsilon_l(M,f) = o(M^{-2s})$.

Signals on Graphs?



Quick Intro to Spectral Graph Theory

- Set representation of a graph G = (V, E, w)
- Adjacency Matrix A with entries

$$A_{u,v} = \begin{cases} w_{u,v} & \text{if } (u,v) \in E \\ 0 & \text{otherwise} \end{cases}$$

- Degree of node u: $d(u) = \sum_{v \in V} w_{u,v}$
- Degree matrix D is diagonal with entries $D_{u,u} = d(u)$

Smoothness and the Graph Laplacian

- Signal $x \in \mathbb{R}^{|V|}$ defined on vertices of G where x_v is the value at node v
- The graph Laplacian is L = D A
- Define graph variation $||x||_G$ so that

$$||x||_G^2 = x^T L x$$

$$= \sum_{(u,v)\in E} w_{i,j} (x_u - x_v)^2$$

Graph Fourier Transform (GFT)

Consider eigenvalue decomposition of L

$$L = U\Lambda U^{-1}$$

with eigenvalues

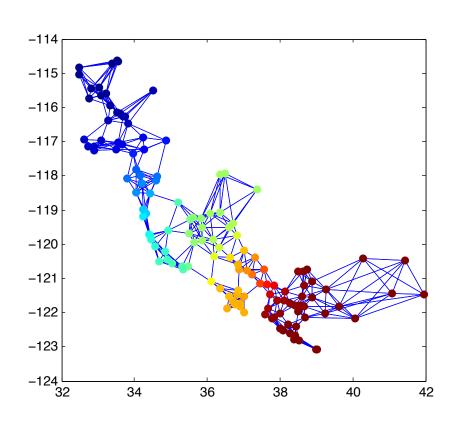
$$0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n \qquad n = |V|$$

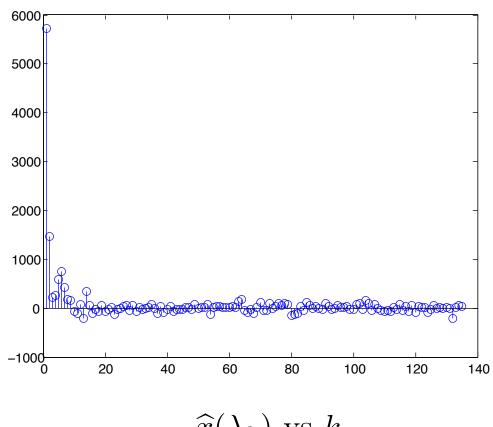
and corresponding ith eigenvector u_i

We'll call $\widehat{x}(\lambda_i) = \langle x, u_i \rangle$ the *i*th graph Fourier coefficient. Clearly,

$$x = \sum_{i=1}^{n} \widehat{x}(\lambda_i) u_i$$

GFT Example





x and G

 $\widehat{x}(\lambda_k)$ vs k

Many Other Applications Using GFT

Machine Learning

- J. Shi and J. Malik, "Normalized cuts and image segmentation,"
 IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000.
- M. Belkin and P. Nyogi, "Using manifold structure for partially labeled classification," NIPS, 2002.
- X. Zhu, J. Kandola, J. Lafferty, and Z. Gharamani, "Nonparametric transforms of graph kernels for semi-supervised learning," NIPS, 2005.
- A. Smola and R. Kondor, "Kernels and regularization on graphs,"
 COLT, 2003.

Computer graphics

 Z. Karni and C. Gotsman, "Spectral compression of mesh geometry," ACM Conf. on Computer Graphics and Interactive Techniques, 2000.

Why the Graph Laplacian Eigenbasis?

- Consider a ring graph on n vertices
 - Its Laplacian is circulant
 - Circulant matrices diagonalized by DFT matrix

$$U_{j,k} = e^{2\pi i jk/n}$$

- Eigenvalues $\lambda_k = 2 - 2\cos(2\pi k/n)$ $\approx (2\pi k/n)^2$

Does this always make sense?

- Consider a complete graph on *n* vertices
 - Its Laplacian is circulant
 - Circulant matrices diagonalized by DFT matrix

$$U_{j,k} = e^{2\pi i jk/n}$$

- Eigenvalues $\lambda_1 = 0$

$$\lambda_k = n \quad k \ge 2$$

 What does it mean to have a "smooth" signal on the complete graph?

Smooth Signals on Graphs

Intuitively x smooth on G if $||x||_G = x^T L x$ small

Theorem: Let $\widehat{x}(\lambda_i) = \langle x, u_i \rangle$ where u_i is the *i*th eigenvector of L. Then

$$|\widehat{x}(\lambda_k)| \le \frac{\|x\|_G}{\sqrt{\lambda_k}}$$

Approximating Signals on Graphs

Define M-term linear approximation of x on G as

$$x_M = \sum_{k=0}^{M} \widehat{x}(\lambda_k) u_k$$

M-term linear approximation error

$$\epsilon_l(M, x) = \sum_{k=M+1}^n |\widehat{x}(\lambda_k)|^2$$

Theorem: $\epsilon_l(M,x) \leq ||x||_G^2 \lambda_M^{-1}$

Asymptotics

Let G be a graph with $|V| = \infty$

If
$$\sum_{k=0}^{\infty} k\lambda_k |\widehat{x}(\lambda_k)|^2 \le \infty$$

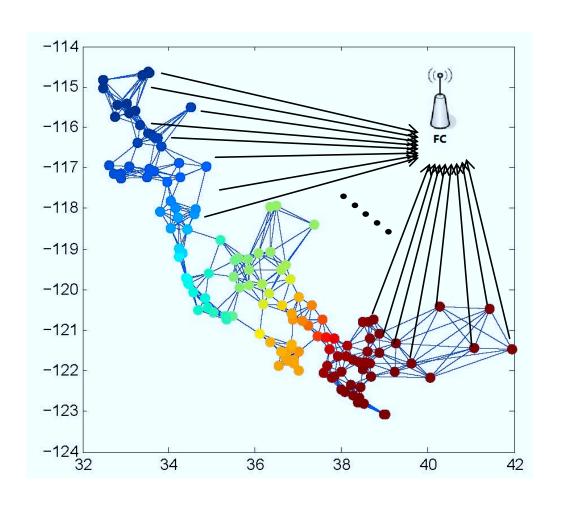
then
$$\epsilon_l(M,x) = o\left(\frac{1}{M\lambda_{M/2}}\right)$$
 as $M \to \infty$

Summary

- GFT has many similarities to the Fourier transform
 - Notion of smoothness
 - Linear approximation error
- Not all graphs support meaningful "smooth" signals
 - Laplacian eigenvalues should grow
- Can be used for "fitting" a graph to a signal or sequence of signals

GRAPH SPECTRAL COMPRESSED SENSING

Field Estimation in Sensor Networks



Estimate sensor measurements at fusion center (FC)

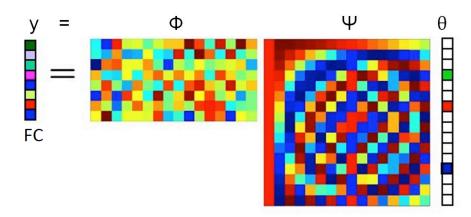
Performance metrics

- Distortion, MSE
- Bandwidth usage
- Energy usage

Compressed Sensing



- Assume signal is sparse
- Measure few random linear combinations



Candes & Tao, "Near-optimal signal recovery from random projections," *IEEE Trans Info Theory*, 2006.

D. Donoho, "Compressed sensing," IEEE Trans Info Theory, 2006.

W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, "Joint source-channel communication for distributed estimation in sensor networks," *IEEE Trans Info Theory*, 2007

Using CS for Field Estimation

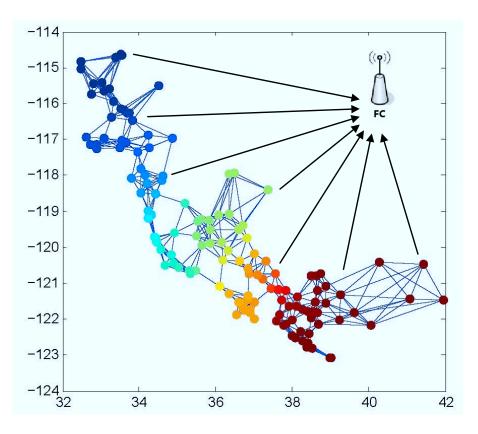
• Pros:

- Require fewer overall measurements
- Each measurement is equally important
- Distortion performance nearly optimal

Cons:

- Requires synchronization across network
- Fewer total measurements, but every node transmits for every measurement

Graph Spectral Compressed Sensing



- Randomly sample a few sensors
- Interpolate remaining values wrt GFT basis

Reconstruction Guarantee

Suppose there are constants s and S such that

$$\epsilon_l(M,x) \leq SM^{-s}$$

If the number of measurements m obeys

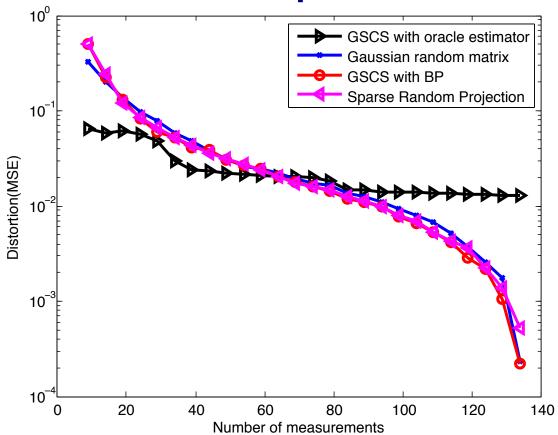
$$m \ge C_1 M \log(M/\delta)$$

then, with probability $1-\delta$,

$$||x - \tilde{x}||_2 \le ||x - x_M||_2 + C_2 S M^{-s} \log \lceil n/M \rceil$$

where $\tilde{x} = \Phi_M^{\dagger} y$

Performance Example



- Using CIMIS data
- Comparing with
 - Gaussian random matrix: Bajwa, Haupt, Sayeed, and Nowak 2007
 - Sparse random projections: Wang, Garofalakis, Ramchandran 2007

Summary

- Graph structure can be useful for interpolation
 - When signal is smooth
 - (Graph should have interesting smooth signals)
- Potential implications for
 - Distributed measurement systems
 - Network design
 - Semi-supervised learning

Discussion and Directions

- From smoothness to sparsity
- Connection to random walks
 - Either G has interesting smooth signals
 - Or it has a rapidly mixing Markov chain
- Connection to gossip and network diffusion
 - Stop early, randomly sample a few nodes, and interpolate?
- Uncertainty principles for signals on graphs