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ABSTRACT

Particle filters are among the most effective filtering al-
gorithms for nonlinear and non-Gaussian models. When
the state dimension is high, they are known to suffer from
weight degeneracy. Sequential Markov chain Monte Carlo
(SMCMC) methods have been proposed as an alternative se-
quential inference technique that can perform better in high
dimensional state spaces. In this paper, we propose to con-
struct a composite Metropolis-Hastings (MH) kernel within
the SMCMC framework using invertible particle flow. Sim-
ulation results show that the proposed kernel significantly
increases the acceptance rate and improves estimation accu-
racy compared with state-of-the-art filtering algorithms, in
high dimensional simulation examples.

Index Terms— Markov chain Monte Carlo, particle flow,
high dimensional filtering, Bayesian filtering

1. INTRODUCTION

Learning from sequential observations is an important task in
various fields. In applications including multi-target tracking
and weather forecasting, the underlying models usually have
high dimensions. Particle filters [1,2], which are the standard
tools for sequential inference in nonlinear non-Gaussian mod-
els, often suffer from the so-called weight degeneracy issue in
these high dimensional scenarios [3, 4].

Advanced particle filtering methods have been proposed
to combat weight degeneracy, including the auxiliary particle
filter [5] and Rao-Blackwellised particle filter [6]. Recently,
particle flow methods have been proposed as a promising av-
enue for high dimensional filtering. These algorithms migrate
particles continuously from the prior distribution to the pos-
terior distribution [7–9]. By eliminating the importance sam-
pling step, the weight degeneracy issue is avoided. The filters
are not statistically consistent due to approximation errors in-
troduced during implementation.

An alternative method is to use the particle flow to con-
struct a proposal distribution that is close to the posterior dis-
tribution [10–13]. With this approach, the statistical con-
sistency of particle filters is preserved. Most algorithms of
this type are computationally expensive due to complex im-
portance weight evaluation. One exception is the particle
flow particle filter (PF-PF) [13], which constructs invertible

particle flows to allow efficient importance weight calcula-
tions. It exhibits excellent performance when measurements
are highly informative. However, when the state dimension is
high, sampling errors from importance sampling may become
more significant than approximation errors of particle flow.

Another direction in high dimensional filtering is to in-
corporate Markov chain Monte Carlo (MCMC) methods into
particle filters. Gilks et al. proposed to use MCMC moves
after the resampling step of the particle filter to diversify
particles in a sequential inference setup [14]. However, in
high dimensional filtering, it is often the case that very few
duplicated particles remain after resampling. Thus, many
MCMC moves may be needed for good mixing. A more gen-
eral framework called sequential Markov chain Monte Carlo
(SMCMC) [15–18] avoids resampling by sampling directly
from the target distribution using rejection sampling. One
popular class of SMCMC algorithms consists of three steps
at time-step k. First, a joint draw step is used to sample from
the joint posterior distribution and update all states x1:k up
to the current time step. This is followed by two refinement
steps. In the first of these the past states x1:k−1 are updated;
subsequently the current state xk is updated.

Various MCMC kernels developed for sampling in high
dimensional spaces can be used inside the SMCMC frame-
work. Among them, the SmHMC algorithm [18], which uses
the manifold Hamiltonian Monte Carlo (mHMC) kernel [19]
to refine of the current state, has been shown to be one of the
most effective algorithms in high dimensional spaces.

In this paper, we propose to incorporate the invertible par-
ticle flow proposed in [13] into the joint draw step of the SM-
CMC framework. The goal is to better approximate the opti-
mal Metropolis-Hastings (MH) kernel in order to increase the
acceptance rate of the joint draw stage. The proposed com-
posite MH kernel incorporates the ability of the particle flow
to migrate particles into high posterior density regions and ex-
ploits the power of mHMC methods to efficiently explore the
state space. Numerical simulations show that the proposed
composite MH kernel significantly increases the acceptance
rate of the joint draw and reduces the estimation error.

The rest of the paper is organized as follows. Section 2
provides the problem statement and Section 3 discusses re-
lated work. We describe the proposed method in Section 4.
The simulation results are presented in Section 5. Conclud-
ing remarks are provided in Section 6.



2. SIMULATION MODEL

We consider the nonlinear filtering task with the following
models:

xk = gk(xk−1, vk) (1)
zk = hk(xk, wk) . (2)

gk : Rd × Rd′ → Rd specifies the dynamic model of the
state xk ∈ Rd at time step k and vk ∈ Rd′ is the dynamic
noise. The measurement zk ∈ RS is described by the mea-
surement model hk : Rd × RS′ → RS and wk ∈ RS′ is the
measurement noise. hk(xk, 0) is a C1 function, i.e. hk(xk, 0)
is a differentiable function whose derivatives are smooth. We
use xa:b to denote the set {xa, xa+1, . . . , xb} and za:b to de-
note the set {za, za+1, . . . , zb}, where a and b are integers and
a < b.

3. RELATED WORK

3.1. Sequential Markov chain Monte Carlo methods

A unifying framework of the Sequential Markov chain Monte
Carlo (SMCMC) methods has been provided in [18]. Instead
of performing the joint draw of p(x1:k|z1:k) whose dimension
is increasing over time, we adopt the strategy in [16] in which
the target joint distribution is p(xk, xk−1|z1:k). The purpose
of the joint draw is to avoid numerical integration of the
predictive density when the target distribution is p(xk|z1:k)
(see [16] for more details). Individual refinement steps that
update xk−1 and xk individually follow the joint draw step.
The general form of the composite MH kernel in the SM-
CMC framework is summarized in Algorithm 1. Different
choices of the MCMC kernel for high dimensional SMCMC
are discussed in [18].

3.2. Particle flow particle filters

The particle flow particle filters (PF-PF) proposed in [13] con-
struct invertible particle flows in a pseudo-time interval λ ∈
[0, 1], in order to move particles drawn from the prior distri-
bution into regions where the posterior density is high.

Suppose that Np particles {xjk−1}
Np
j=1 approximate the

posterior distribution at time step k − 1. At time step k, the
dynamic model is first used to generate two sets of particles:
ηj0 = gk(xjk−1, vk) and η̄j0 = gk(xjk−1, 0) for j = 1, . . . , Np.
{ηj0}

Np
j=1 are distributed according to the prior distribution.

The trajectory of the j-th particle ηjλ in λ ∈ [0, 1] is defined
by an ordinary differential equation (ODE):

dηjλ
dλ

= ζ(ηjλ, λ) , (3)

where ζ(ηjλ, λ) is a deterministic drift term. In the localized
exact Daum Huang (LEDH) version of the PF-PF,

ζ(ηjλ, λ) = Aj(λ)ηjλ + bj(λ) , (4)

Algorithm 1: Composite MH Kernels in a unifying
framework of SMCMC [16, 18].
Input: xj−1

k , {xsk−1}
Nb+Np
s=Nb+1.

Output: xjk.
Joint draw:

1: Propose {x∗k, x∗k−1} ∼ q1(xk, xk−1|xj−1
k , xj−1

k−1);
2: Compute the MH acceptance probability ρ1 =

min
(
1,

p(x∗k,x
∗
k−1|z1:k)

q1(x∗k,x
∗
k−1|x

j−1
k ,xj−1

k−1)

q1(xj−1
k ,xj−1

k−1|x
∗
k,x
∗
k−1)

p(xj−1
k ,xj−1

k−1|z1:k)

)
;

3: Accept xjk = x∗k, and xjk−1 = x∗k−1 with probability ρ1

otherwise set xjk = xj−1
k and xjk−1 = xj−1

k−1;
Individual refinement of xjk−1:

4: Propose x∗k−1 ∼ q2(xk−1|xjk, x
j
k−1);

5: Compute the MH acceptance probability

ρ2 = min
(
1,

p(x∗k−1|x
j
k,z1:k)

q2(x∗k−1|x
j
k,x

j
k−1)

q2(xjk−1|x
j
k,x
∗
k−1)

p(xjk−1|x
j
k,z1:k)

)
;

6: Accept xjk−1 = x∗k−1 with probability ρ2;
Individual refinement of xjk:

7: Propose x∗k ∼ q3(xk|xjk, x
j
k−1);

8: Compute the MH acceptance probability

ρ3 = min
(
1,

p(x∗k|x
j
k−1,z1:k)

q3(x∗k|x
j
k,x

j
k−1)

q3(xjk|x
∗
k,x

j
k−1)

p(xjk|x
j
k−1,z1:k)

)
;

9: Accept xjk = x∗k with probability ρ3;

where both Aj(λ) and bj(λ) admit analytic expressions and
are derived using η̄jλ, which is generated and propagated
independent of the sampling noise in the prior propagation
step [13]. Introducing η̄jλ allows the flow of ηjλ to constitute
an invertible mapping between ηj0 and ηj1, and this in turn
enables efficient calculations of the proposal densities.

The solutions to the ODEs are approximated using dis-
cretized pseudo-time integration atNλ positions [λ1, λ2, . . . , λNλ ],
with a sequence of discrete steps {εm}Nλm=1 where λm =∑m
s=1 εs, εm > 0 for m ∈ {1, . . . , Nλ}, and

∑Nλ
m=1 εm = 1.

Applying Euler’s method at the pseudo-time λm−1, we get

ηjλm = ηjλm−1
+ εm(Aj(λm)ηjλm−1

+ bj(λm))

= (I + εmA
j(λm))ηjλm−1

+ εmb
j(λm) (5)

From Equation (5), we can derive that

ηj1 = Cjηj0 +Dj , (6)

where

Cj =

Nλ∏
m=1

(I + εNλ+1−mA
j(λNλ+1−m)) (7)

Dj =

Nλ−1∑
m=1

([

Nλ−m∏
m=1

(I + εNλ+1−mA
j(λNλ+1−m))]εmb

j(λm))

+ εNλb
j(λNλ) . (8)



In [13], we prove that the mapping between ηj0 and ηj1 is in-
vertible with sufficiently small εm. Thus, Cj is invertible and
det(Cj) 6= 0. The invertible particle flow mapping is sum-
marized in Algorithm 2 and the proposal density is

q(ηj1|x
j
k−1, zk) =

p(ηj0|x
j
k−1, zk)

|det(Cj)|
=
p(ηj0|x

j
k−1)

|det(Cj)|
(9)

Algorithm 2: Function(ηj1, C
j , Dj) = T (ηj0, η̄

j
0)

1: Set λ = 0, η̄ = η̄j0;
2: for m = 1, . . . , Nλ do
3: Set λ = λ+ εj ;
4: Calculate Ajm(λ) and bjm(λ) with the linearization

being performed at η̄;
5: Migrate η̄: η̄ = η̄ + εm(Ajm(λ)η̄ + bjm(λ));
6: end for
7: Calculate Cj =

∏Nλ
m=1(I + εNλ+1−mA

j
Nλ+1−m(λ));

8: Calculate Dj =
∑Nλ−1
m=1 ([

∏Nλ−m
m=1 (I +

εNλ+1−mA
j
Nλ+1−m(λ))]εmb

j
m(λ)) + εNλb

j
Nλ

(λ);
9: Migrate particles: ηj1 = Cjηj0 +Dj ;

4. SMHMC WITH INVERTIBLE PARTICLE FLOW

The SMCMC framework allows for various choices of
MCMC kernels for the joint draw, as discussed in [18]. But
many choices are difficult to construct, especially in complex
and high dimensional problems. The simplest choice is the
independent MH kernel based on prior as proposal summa-
rized in [18], which constructs q1() based on the empirical
marginal posterior distribution at the previous time step and
the dynamic model. This strategy is adopted in the implemen-
tation of SmHMC in [18]. However, the acceptance rate ρ1

with this kernel can be very low in high dimensional systems.
Another choice of q1() is the approximation of the op-

timal independent MH kernel discussed in [18]. It is noted
in [18] that this kernel is difficult to construct in complex and
high dimensional problems. Here, we propose to use invert-
ible particle flow to approximate the optimal independent MH
kernel. The proposed composite MH kernel which combines
SmHMC and invertible particle flow is presented in Algo-
rithm 3. Nb is the burn-in period and Np is the number of
retained MCMC samples.

x∗k−1 is drawn uniformly at random from a set of equally
weighted particles at time k − 1 denoted by∑Np+Nb
s=Nb+1 δxsk−1

(dxk−1). Thus,

p(x∗k−1|x
j−1
k , xj−1

k−1, zk) =
1

Np
. (10)

The acceptance rate of the joint draw can then be derived as
follows:

ρ1 =min
(
1,
p(x∗k, x

∗
k−1|z1:k)p(xj−1

k , xj−1
k−1|x

j−1
k , xj−1

k−1, zk)

p(x∗k, x
∗
k−1|x

j−1
k , xj−1

k−1, zk)p(x
j−1
k , xj−1

k−1|z1:k)

=min
(
1,

p(x∗k|x∗k−1)p(zk|x∗k)| det(C∗)|p(ηj−1
0 |zk, xj−1

k−1)

p(η∗0 |x∗k−1)p(x
j−1
k |xj−1

k−1)p(zk|x
j−1
k )| det(Cj−1)|

)
.

(11)

When evaluating Equation (11) in Line 4 of Algorithm 3,
the value of xj−1

k is needed. Since xj−1
k may be generated

by the manifold Hamiltonian Monte Carlo kernel q3(), the
corresponding ηj0 is not available through Line 2 and 5 of Al-
gorithm 3. This can be resolved using the invertible mapping
property of the invertible particle flow. As Cj is invertible,
we can calculate ηj0 given xjk by solving Equation (6):

ηj0 = (Cj)−1(xjk −D
j) . (12)

Algorithm 3: Composite MH Kernels constructed with
the manifold Hamiltonian Monte Carlo kernel and in-
vertible particle flow.
Input: xj−1

k , ηj−1
0 , Cj−1, {xsk−1}

Nb+Np
s=Nb+1.

Output: xjk, η
j
0, C

j .
Joint draw:

1: Draw x∗k−1 uniformly from
∑Np+Nb
s=Nb+1 δxsk−1

(dxk−1);
2: Sample η∗0 = gk(x∗k−1, vk),

calculate η̄∗0 = gk(x∗k−1, 0);
3: Perform invertible particle flow (Algorithm 2)

(x∗k, C
∗, D∗) = T (η∗0 , η̄

∗
0);

4: Compute the MH acceptance probability ρ1 =

min
(
1,

p(x∗k|x
∗
k−1)p(zk|x∗k)| det(C∗)|p(ηj−1

0 |zk,xj−1
k−1)

p(η∗0 |x∗k−1)p(xj−1
k |xj−1

k−1)p(zk|xj−1
k )| det(Cj−1)|

)
;

5: Accept xjk = x∗k, xjk−1 = x∗k−1, ηj0 = η∗0 , Cj = C∗

and Dj = D∗ with probability ρ1.
Otherwise set xjk = xj−1

k , xjk−1 = xj−1
k−1, ηj0 = ηj−1

0 ,
Cj = Cj−1 and Dj = Dj−1;
Individual refinement of xjk−1:

6: Draw x∗k−1 uniformly from
∑Np+Nb
s=Nb+1 δxsk−1

(dxk−1);
7: Compute the MH acceptance probability

ρ2 = min
(
1,

p(xjk|x
∗
k−1)

p(xjk|x
j
k−1)

)
;

8: Accept xjk−1 = x∗k−1 with probability ρ2;
Individual refinement of xjk:

9: Propose x∗k ∼ q3(xk|xjk, x
j
k−1) using the manifold

Hamiltonian MCMC kernel;
10: Compute the MH acceptance probability

ρ3 = min
(
1,

p(x∗k|x
j
k−1,z1:k)

q3(x∗k|x
j
k,x

j
k−1)

q3(xjk|x
∗
k,x

j
k−1)

p(xjk|x
j
k−1,z1:k)

)
;

11: Accept xjk = x∗k with probability ρ3;
12: Calculate ηj0 = (Cj)−1(xjk −Dj);



5. SIMULATION AND RESULTS

5.1. Simulation setup

The SmHMC algorithm exhibits the smallest average mean
squared error among a variety of SMCMC algorithms in the
large sensor field simulation setup used in [18]. Thus, we
would like to compare the proposed composite MH kernel
with SmHMC in the same simulation examples.

The setup includes d sensors evenly deployed on a two-
dimensional grid {1, 2, . . . ,

√
d}×{1, 2, . . . ,

√
d}. The mea-

surement vector zk = [z1
k, z

2
k, . . . , z

d
k ] contains measurements

of the state at each sensor’s location. The state vector xk =
[x1
k, x

2
k, . . . , x

d
k] evolves according to the multivariate gener-

alized hyperbolic skewed-t distribution:

p(xk|xk−1) =
e(xk−αxk−1)TΣ−1γ√

(ν +Q(xk))(γTΣ−1γ)
− ν+d2 (1 + Q(xk)

ν )
ν+d
2

×K ν+d
2

(
√

(ν +Q(xk))(γTΣ−1γ)) (13)

where γ and ν determine the shape of the distribution, K ν+d
2

is the modified Bessel function of the second kind of order
ν+d

2 , and Q(xk) = (xk − αxk−1)TΣ−1(xk − αxk−1). The
(i, j)-th entry of the dispersion matrix Σ is:

Σi,j = α0e
− ||R

i−Rj ||22
β + α1δi,j (14)

where || · ||2 is the L2-norm, Ri is the physical location of the
i-th sensor, and δi,j is the Kronecker symbol. The measure-
ments are count data which are distributed according to:

p(zk|xk) =

d∏
c=1

P(zck;m1e
m2x

c
k) , (15)

where P(·; Λ) is the Poisson(Λ) distribution.

5.2. Parameter values

Parameter values are set according to [18]: α = 0.9, α0 =
3, α1 = 0.01, β = 20, ν = 7. All elements of the vector γ are
set to 0.3. True states start with xc0 = 0, for c = 1, . . . , d. For
the measurement model, m1 = 1 and m2 = 1

3 . We evaluate
two scenarios with d = 144 or 400. Each scenario is repeated
100 times while each simulation lasts for 10 time steps.

We compare the proposed SmHMC with particle flow
(SmHMC+flow) algorithm with SmHMC [18], the exact
Daum and Huang (EDH) filter [7], the PF-PF based on
EDH [13], and the bootstrap particle filter (BPF) [1]. All
filters are initialized with the same true state. Following the
practice in [13, 18], the burn-in period Nb is set to 20 for
SmHMC and SmHMC+flow. The number of retained par-
ticles Np is set to be 200 for SmHMC and SmHMC+flow.
EDH also uses 200 particles. The number of particles for
the BPF and the PF-PF (EDH) is 10000, as particle filters
can easily suffer from severe weight degeneracy in such high
dimensional scenarios if they only use 200 particles.

5.3. Results

We report the average estimation errors and the average ac-
ceptance rates (if applicable) in Table 1.

Table 1. Average MSE and acceptance rate (if applicable)
of different filters based on 100 simulation trials of the large
sensor field examples.

d Algorithm # particle MSE
Acceptance rate
ρ1 ρ2 ρ3

144

SmHMC + flow 200 0.68 0.55 0.01 0.68
SmHMC 200 0.82 0.003 0.01 0.73

EDH 200 0.69 - - -
PF-PF (EDH) 10000 0.82 - - -

BPF 10000 2.28 - - -

400

SmHMC + flow 200 0.59 0.48 0.02 0.52
SmHMC 200 0.73 0.002 0.02 0.63

EDH 200 0.60 - - -
PF-PF (EDH) 10000 0.89 - - -

BPF 10000 4.98 - - -

The proposed SmHMC + flow method leads to the small-
est average MSE in both simulation examples (d = 144 or
d = 400). Compared with SmHMC, we notice a significant
increase of ρ1, which is the joint draw acceptance rate. The
acceptance rate of SmHMC is so low that the refinement step
is responsible for generating almost all of the particles. By
increasing the joint draw acceptance, SmHMC+flow applies
the mHMC sampling procedure from many more initializa-
tions, leading to faster mixing, a better exploration of the state
space, and a reduction in estimation error.

The SmHMC+flow method achieves estimation accuracy
very similar to that of the EDH filter. Although the EDH filter
is computationally much more efficient, it is not statistically
consistent. The PF-PF (EDH) suffers from weight degeneracy
because it performs importance sampling (and resampling) in
such high dimensional spaces. The BPF suffers from severe
weight degeneracy and has the highest estimation error.

6. CONCLUSION

In this paper, we propose the use of invertible particle flow
to construct proposal distributions in the joint draw step of
the SMCMC algorithm. The proposed composite MH kernel
combines the desirable attributes of both of its constituents.
By incorporating particle flow, it can create initial particles in
regions of higher posterior density. The Hamiltonian Monte
Carlo process then allows it to efficiently explore the state
space in the neighbourhood of these initial particles. In the
examined simulation setups with 144 or 400 states, where
the SmHMC algorithm exhibited the smallest average MSE
among a variety of SMCMC algorithms in [18], the proposed
SmHMC+invertible particle flow algorithm leads to signifi-
cantly smaller MSEs and much higher acceptance rates in the
joint draw stage.
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