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Outline 

• Super-positional sensors 

• Problem statement 

• Moment filters 

– PHD filter (ALM) 

– CPHD filter 

• Simulations 

• Future work 
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Sensors 

Standard sensors 

• Each target produces one or 
no measurement 

 

• Each measurement 
produced by single target or 
clutter 

 

 

Super-positional sensors 

• Targets cause additive 
measurement 

 

 

 

• Measurements are not 
independent 
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Problem – Multi-target tracking 

•       targets;   state  

• Independent target dynamics 

 

    Example 
 

• Super-positional sensor observations 
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Problem – Multi-target tracking 

• Given              and observations 

 

 

    find state estimate 

 

• Estimate state posterior 
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(Bayes) Optimal solution 

• Bayes recursive solution 
– Prediction 

 

 

– Update 

 

 

• Issues – Set integrals, no closed form solution, 
computationally intractable 
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(Bayes) Optimal solution 

• Traditional solutions 
– Fixed number of targets 

– Linear and Gaussian assumption 

– Particle filters 

 

• More recently 
– First moment based filters 

– PHD and CPHD [Mahler] 

– ALM [Thouin et al.] 
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First moment 

• First moment, 

• First-order multi-target moment OR 

    Probability Hypothesis Density (PHD) 
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Properties of PHD 

• Defined over single target state space 

 

• Integration 

 

• High where targets present 

 

• Amenable to particle methods 
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PHD filter (ALM) 

 
 

• PHD prediction 

 

 
• PHD update 

 

•                = function(model,         ) 
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PHD implementation 

• Particle approximation of PHD 

 

 

• Propagate particles, update weights 

• Issues 

– Estimating target number 

– Clustering particles 
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Cardinalized PHD (CPHD) filter 

• Additionally propagate cardinality distribution 

 

 

• CPHD prediction 
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CPHD filter 

• CPHD update 

 

 

 
•                 and 

                        = function(model,         ) 
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Particle MCMC filter 

• Sample from full posterior 

– Construct a Markov Chain 

– Metropolis-Hastings sampling 

– Gibbs sampling for each target 

 

• Handling time varying targets 

– Assumption on max. number of targets 

– Indicator variable for each target  
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Example – Acoustic sensors 

• 25 sensors deployed over 40m x 40m grid 

• Active targets, communication with sensors 

• Target motion – constant velocity 

• Measurement vector dim – 25 
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Target number estimate 

17 



Location estimates 
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Example – RF Tomography 

• 24 sensors deployed on periphery of 20m side 
square 

• Passive targets, sensor pairs record RSS 

• Target motion – constant velocity 

•  Measurement dim - 276 
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Target number estimate 
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Computational time (s) 

CPHD PHD MCMC 

Acoustic 41 355 354 

RF Tomography 36 199 653 
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Issues 

• Clustering of particles 

– Better clustering at every time step 

– Cluster evolution over time 

 

• High measurement dimension - stable weight 
update 

• Tracks - linking state estimates over time 
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