Moment based filters for multi-target tracking using super-positional sensors

Santosh Nannuru

2012 Bellairs Research Workshop

Outline

- Super-positional sensors
- Problem statement
- Moment filters
 - PHD filter (ALM)
 - CPHD filter
- Simulations
- Future work

Sensors

Standard sensors

- Each target produces one or no measurement
- Each measurement produced by single target or clutter

Super-positional sensors

• Targets cause additive measurement

$$z^1, z^2, z^3 \dots z^{N_k}$$

- $z = z^1 + z^2 + \dots + z^{N_k}$
- Measurements are not independent

Problem – Multi-target tracking

- N_k targets; state $X_k = \{x_{1,k}, x_{2,k}, ..., x_{N_k,k}\}$
- Independent target dynamics

 $f(x_{n,k+1}|x_{n,k})$

Example $x_{n,k+1} = x_{n,k} + w_{n,k+1}$

Super-positional sensor observations

$$z_k^n = g(x_{n,k})$$
 $Z_k = \sum_{n=1}^{N_k} g(x_{n,k}) + W_k$

Problem – Multi-target tracking

• Given $p(X_0)$ and observations

$$Z_{1:k} = \{Z_1, Z_2 \dots Z_k\}$$

find state estimate \hat{X}_k

• Estimate state posterior $p(X_k|Z_{1:k})$

(Bayes) Optimal solution

- Bayes recursive solution
 - Prediction

$$p(X_k|Z_{1:k-1}) = \int f(X_k|X) * p(X|Z_{1:k-1})\mu(\delta X)$$

- Update $p(X_k|Z_{1:k}) = \frac{g(Z_k|X_k) * p(X_k|Z_{1:k-1})}{\int g(Z_k|X) * p(X|Z_{1:k-1})\mu(\delta X)}$
- Issues Set integrals, no closed form solution, computationally intractable

(Bayes) Optimal solution

- Traditional solutions
 - Fixed number of targets
 - Linear and Gaussian assumption
 - Particle filters
- More recently
 - First moment based filters
 - PHD and CPHD [Mahler]
 - ALM [Thouin *et al.*]

First moment

- First moment, $E = ? \int X * p(X) * \mu(\delta X)$
- First-order multi-target moment OR
 Probability Hypothesis Density (PHD)

$$D(x) = \int p(\{x\} \cup X) * \mu(\delta X)$$

Properties of PHD

• Defined over single target state space

• Integration
$$\int D_{k|k}(x)dx = E(N_k)$$

• High where targets present

• Amenable to particle methods

PHD filter (ALM)

$$D_{k|k} \xrightarrow{prediction} D_{k+1|k} \xrightarrow{update} D_{k+1|k+1}$$

• PHD prediction

$$D_{k+1|k}(x) = b_{k+1|k}(x) + \int p_{S}(y) * f_{k+1|k}(x|y) * D_{k|k}(y) dy$$

PHD update

$$D_{k+1|k+1}(x) = L_{k+1}(x) * D_{k+1|k}(x)$$

• $L_{k+1}(x) =$ function(model, Z_{k+1})

PHD implementation

- Particle approximation of PHD $D_{k|k}(x) \approx \sum_{i=1}^{N_p} w_i * \delta(x^i)$
- Propagate particles, update weights
- Issues
 - Estimating target number
 - Clustering particles

Cardinalized PHD (CPHD) filter

Additionally propagate cardinality distribution

$$p_{k|k}^n \xrightarrow{prediction} p_{k+1|k}^n \xrightarrow{update} p_{k+1|k+1}^n$$

• CPHD prediction $p_{k+1|k}^{n}(m) = \sum_{j=0}^{m} p_{b}(m-j) *$ $\sum_{l=j}^{\infty} C_{j}^{l} * p_{s}^{j}(1-p_{s})^{l-j} * p_{k|k}^{n}(l)$

CPHD filter

• CPHD update

$$p_{k+1|k+1}^{n}(m) \propto \ell_{k+1}(m) * p_{k+1|k}^{n}(m)$$
$$D_{k+1|k+1}(x) = L_{k+1}(x) * D_{k+1|k}(x)$$

• $\ell_{k+1}(m)$ and $L_{k+1}(x)$ = function(model, Z_{k+1})

Particle MCMC filter

- Sample from full posterior $p(X_k|Z_{1:k})$
 - Construct a Markov Chain
 - Metropolis-Hastings sampling
 - Gibbs sampling for each target

- Handling time varying targets
 - Assumption on max. number of targets
 - Indicator variable for each target $(x_{n,k}, e_{n,k})$

Example – Acoustic sensors

- 25 sensors deployed over 40m x 40m grid
- Active targets, communication with sensors
- Target motion constant velocity
- Measurement vector dim 25

Target number estimate

Location estimates

Example – RF Tomography

- 24 sensors deployed on periphery of 20m side square
- Passive targets, sensor pairs record RSS
- Target motion constant velocity
- Measurement dim 276

$$z = \sum_{n=1}^{N_k} \varphi * \exp\left(-\frac{\lambda_n}{\sigma_\lambda}\right) + w_k$$

Target number estimate

Computational time (s)

	CPHD	PHD	MCMC
Acoustic	41	355	354
RF Tomography	36	199	653

Issues

- Clustering of particles
 - Better clustering at every time step
 - Cluster evolution over time

- High measurement dimension stable weight update
- Tracks linking state estimates over time

References

- [1] R. Mahler, "Multitarget Bayes filtering via first-order multitarget moments," IEEE Trans. on Aerospace and Electronic Systems, Oct. 2003.
- [2] R. Mahler, "PHD filters of higher order in target number", IEEE Trans. on Aerospace and Electronic Systems, Oct. 2007.
- [3] R. Mahler, "CPHD filters for superpositional sensors," in Proc. Signal and Data Processing of Small Targets, San Diego, CA, Aug. 2009.
- [4] Thouin, F., Nannuru, S., and Coates, M., "Multi-target tracking for measurement models with additive contributions," Proc. 14th Int'l Conf. on Information Fusion, Chicago, July 2011.

THANK YOU !

QUESTIONS?