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Abstract—We study the problem of decentralized detection
in wireless sensor networks. First, we will review the classical
framework for decentralized detection. The classical framework
does not take into account the power constraints of wireless
sensor networks and also the characteristics of wireless channels
such as fading and noise. Next, we will review the algorithms
that consider these constraints. We assume that these algorithms
know the channel fading and noise statistics, and hence the
term channel-aware. Two main approaches are approximating
the fusion rule based on the value of SNR, and sensor censoring,
where not all the peripheral nodes send their decisions to the
central node. In the end, we will propose a fully decentralized
channel aware algorithm for decentralized detection which is
based on gossiping. We will show the validity of the proposed
algorithm by proving the convergence and also performing some
simulations.

I. INTRODUCTION

Wireless Sensor Networks consist of a set of sensors, which
are capable of sensing, computation, and communication and
are spatially distributed in order to cooperatively monitor
physical or environmental conditions. The ability to detect
events of interest is essential to the success of emerging sensor
network technology. Detection often serves as the initial goal
of a sensing system. For example in applications where we
want to estimate attributes such as position and velocity, the
first step is to ascertain the presence of an object. Moreover,
in some applications such as surveillance, the detection of an
intruder is the only purpose of the sensor system. In situations
where the peripheral nodes do some preprocessing on their
observation before sending data to a central node (called fusion
center), the corresponding decision making problem is termed
decentralized detection.

Assume that there are M hypotheses on the state of the
environment and each one of the sensors observes some
relevant information about it. In a centralized scheme, each
sensor transmits all of its observation (without any additional
processing) to the fusion center, which solves a classical
hypotheses testing problem and decides on one of the M
hypotheses. However, in a classical decentralized scheme, each
sensor will do some preprocessing and send a summary of its
observation, which is chosen from a finite alphabet, to the
fusion center. Then, the fusion center will decide on one of
the M hypotheses, based on the messages it has received.

The described centralized and decentralized schemes, differ
in some aspects. First, it is clear that the performance of the

decentralized scheme is suboptimal in comparison with the
centralized scheme due to loss of information in the nodes
local preprocesses. On the other hand the communication
requirements of decentralized scheme is much smaller than
those of centralized one. The reason is that instead of sending
raw voluminous observation, each node sends a summary of its
observation, taken from a finite alphabet. So, in brief, the de-
centralized detection offers a great reduction in communication
requirements, at the expense of some performance reduction.
However, it turns out that the performance reduction is often
negligible [1].

In the decentralized scheme, while the fusion center faces
a classical hypotheses testing problem (if we look at the
messages received from other nodes as its observations), the
problem is more complex for the peripheral sensors. One
may expect that each sensor should decide independently
and make decision only based on its own observation and
use its own likelihood ratio test. This is not true in general.
When the detectors decide in a way to achieve a system-wide
optimization, they often use different strategies than in cases
where the joint costs of their decisions separates into a cost
for each. Even under a conditional independence assumption
(which means that the observations of different sensors are in-
dependent from each other under the same hypothesis), finding
optimal decision-making algorithms (based on the observation)
at the sensor nodes remains, in most cases, a difficult task.
This optimization problem is known to be tractable only under
restrictive assumptions regarding the observation space and the
topology of the underlying network [1].

In section II we will explain the problem formulation and
briefly review the works that study the classical framework [1],
[2], [3]. Next, in section III we will review [4] and [5] where
some channel aware algorithms for decentralized detection
have been introduced. To be specific, the optimum likelihood
ratio has been approximated in low and high SNR cases there.
Section IV is devoted to the review of sensor censoring which
is one of the main approaches in the litearture for interacting
with channel constraints [6], [7]. Sensor censoring is a scheme
in which, not all the nodes send their decisions to the fusion
center and only the sensors with “informative” observations
will communicate with the central node. Finally, as the original
part of this work, we will propose a channel aware algorithm
for decentralized detection in section V which is based on
gossiping. We will prove the convergence of the algorithm in
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the absence of noise and fading and also show the validity
of the proposed algorithm with channel constraints through
simulations.

II. PROBLEM DEFINITION AND CLASSICAL FRAMEWORK

Here, we will focus on binary hypotheses testing problem
which is stated as follows. There are N peripheral sensors
each of which sends its message (“summary” of its observation
which is chosen from a binary alphabet) to the fusion center
directly (i.e. parallel or star topology). The two hypotheses
are H0 and H1 with prior probabilities Pr(H0) and Pr(H1),
respectively. Each of these hypotheses induces a different
joint probability distribution for the observations of peripheral
sensors:

Under H1 : Pr(ri|H1) (1)
Under H0 : Pr(ri|H0) (2)

where ri, i = 1, . . . , N are the observations of peripheral
nodes. Each sensor receives an observation ri, which is a
realization of a random variable whose pdf is known from (1)
and (2), and evaluates a message ui = γi(ri), and transmits it
to the fusion center. We call the function γi, as the decision
rule of the sensor i. The fusion center receives all these
messages and using its own decision rule (which is also called
fusion rule), γ0, decides on one of the two possible hypotheses.
The set of all these decision rules is called strategy.

The classical framework, which has been extensively ex-
plored (e.g., see [1], [2], [3]), does not adequately take into
account important features of the wireless sensor networks
such as nodes power constraints and limits on the channel
capacity. Also, it is assumed that the sent messages from
the peripheral nodes will be received by the fusion center
correctly, hence ignoring noise, intereference, and fading in
communication channels. In this section we will briefly review
the results of the classical framework, and in the following
sections, we will study the effect of the mentioned constraints.
Here, we will review the results from [1], [3].

In the Bayesian formulation, we are given a cost function

C(U0, U1, . . . , UN , H) (3)

where C(u0, u1, . . . , uN , Hi) is the cost associated with the
event that hypothesis Hi, i = 0, 1 is true, the messages from
the peripheral sensors are u1, . . . , uN , and the fusion center
decision is u0. Our objective in Bayesian framework is to
find a strategy, γ that minimizes the expectation of the cost
function: J(γ) , E[C(U0, U1, . . . , UN , H)].

Note that the cost function defined above is a function of
the fusion decision as well as the peripheral nodes messages.
However, for different purposes we can define different cost
functions that only depend on some of decisions. For example,
if C only depends on U0, the performance of the system
is judged on the basis of the fusion center’s decision. The
minimum probability of error criterion for the final decision
lies in this type of cost functions. As another case, we may
wish to interpret each sensor’s message as a local decision,
based on the true hypothesis. Then, with the suitable choice
of C, we can penalize incorrect decisions by the fusion center

as well as the peripheral sensors. As an extreme case, the cost
function might be independent of the fusion center’s decision
and be only a function of the decisions of peripheral nodes
and we only need to optimize with respect to γi, i = 1, . . . , N .
This can happen in the case of a priori fixed fusion decision
rule.

The main result in [1] is the following theorem, which we
include here without proof:

Theorem 1. (a) Fix some i 6= 0 and suppose that γj has been
fixed for all j 6= i. Then γi minimizes J(γ) if and only if

γi(ri) = argmin
d=0,1

1∑
j=0

Pr(Hj |ri) · ai(Hj , d) w.p. 1 (4)

where

ai(Hj , d) = E[C(γ0(U1, . . . , Ui−1, d, Ui+1, . . . , UN )
, U1, . . . , Ui−1, d, Ui+1, . . . , UN , Hj)|Hj ]

(5)

(b) Suppose that the decision rules for peripheral nodes
have been fixed, then γ0 minimizes J(γ) if and only if

γ0(U1, . . . , UN ) = argmin
d=0,1

1∑
j=0

Pr(Hj |U1, . . . , UN )

× C(d, U1, . . . , UN , Hj) w.p. 1 (6)

This means that with person-by-person optimization (fixing
all the sensors decision rules except one, and try to minimize
J with respect to that sensor decision rule) we will get a
set of likelihood ratio tests whose thresholds depend on each
other. Thus, in order to find the person-by-person optimal
strategy, we need to solve a system of 4N nonlinear equations
in as many unknowns. Therefore, the achieved decision rule is
equivalent to dividing the observations space into two regions
(because we are considering binary hypotheses testing), and
deciding to send ui = d, d = 0 or 1 to the fusion center if the
vector of likelihood belongs to the corresponding region. Each
region is specified by a set of linear equalities and therefore
is a polyhedral. Note that this structure is the same as the
structure of the optimal decision rule for the classical binary
hypotheses testing.

The Neyman-Pearson formulation of the problem has been
studied in [3] and similar results have been derived, that
we do not mention them here. In the next section we will
review the extension of the classical parallel fusion structure,
by incorporating the fading channel layer that is present in
wireless sensor networks.

III. DECISION FUSION UNDER FADING CHANNEL
ASSUMPTION

In this section, we will review [4] and [5] which explore
decision fusion algorithms that take into account channel
fading effects. Here we assume that we have flat fading
channels and the fusion center knows the fading coefficient
(envelope), and hence it is channel-aware. Although it is
always possible to reduce the effects of noise and fading
by increasing SNR in channel aware systems, in wireless



3

sensor networks it is desirable to reduce the communication
power (because WSNs are energy constrained). The problem
formulation is almost similar to the previous section, except
for the fact that the messages sent from the peripheral sensors
to the fusion center pass through channels wirh flat fading and
are corrupted by noise (see Fig. 1). Here, we do not look at the
peripheral sensors decision rules and only modify the fusion
center decision to cope with noise and fading.

Sensor 1Sensor 1 Sensor 2Sensor 2 Sensor NSensor N. . .

Fusion CenterFusion Center

10 , HH

1u 2u

1h 2h Nh

1n 2n
Nn

Nu

2y1y Ny

Fig. 1. Prallel fusion model in the presence of fading and noisy channel

Assume that the kth local sensor makes a binary decision
ui ∈ {+1,−1} with Pfi = Pr(ui = 1|H0), Pdi = Pr(ui =
1|H1), called false alarm and detection probabilities respec-
tively. If ui is transmitted from sensor i through a fading
channel, then the output of the channel (input to the fusion
center) would be:

yi = hiui + ni (7)

where hi is the real valued (positive) fading coefficient
(envelope) of the channel between sensor i and the fusion
center. ni is zero mean Gaussian noise with variance σ2.
In the following, we try to derive a fusion rule based on
yi, i = 1, . . . , N , that can determine which hypothesis is true
with the best achievable performance.

Assuming full knowledge of the fading channels, hi, and
the local sensors performance, Pfi and Pdi, we can write the
likelihood ratio at the fusion center as:

Λ(y) =
f(y|H1)
f(y|H0)

=
N∏
i=1

Pdie
− (yi−hi)

2

2σ2 + (1− Pdi)e−
(yi+hi)

2

2σ2

Pfie
− (yi−hi)2

2σ2 + (1− Pfi)e−
(yi+hi)

2

2σ2

(8)

where y is the vector of received messages from all the
sensors at the fusion center. Now, we try to simplify the above
expression in two special cases: high SNR (i.e., σ2 → 0) and
low SNR (i.e., σ2 →∞).

1) High SNR (σ2 → 0): In this case the authors proposed a
two-stage approximation in [4]. The likelihood ratio described
in (8) considers the channel effects and the sensors specifica-
tions simultaneously. An alternative is to separate this into a

two stage procedure. First, infer about ui using yi, and then
apply the optimum fusion rule based on the achieved value of
ui. Given the model introduced in (7), the maximum likelihood
estimation of ui is:

ũi = sign(yi)

Now, if we rewrite (8), we have:

Λ =
∏

sign(yi)=1

Pdie
2yihi
σ2 + (1− Pdi)

Pfie
2yihi
σ2 + (1− Pfi)

×
∏

sign(yi)=−1

Pdi + (1− Pdi)e−
2yihi
σ2

Pfi + (1− Pfi)e−
2yihi
σ2

Because of the high SNR assumption (σ2 → 0), we have:

lim
σ2→0

Λ =
∏

sign(yi)=1

Pdi
Pfi

∏
sign(yi)=−1

1− Pdi
1− Pfi

In above derivation we used the fact that as σ2 goes to zero,
the exponential terms with a positive power over σ2 will go
to infinity and we can ignore other terms that are added to
them. Taking logarithms from both sides, we will achieve the
following simplified log-likelihood ratio:

Λ1 = lim
σ2→0

log Λ =
∑

sign(yi)=1

log
[
Pdi
Pfi

]
+

∑
sign(yi)=−1

log
[

1− Pdi
1− Pfi

]
Note that Λ1 does not depend on the channel statistics at all
and is only a function of Pdi and Pfi for i = 1, . . . , N .

2) Low SNR (σ2 →∞): The high SNR assumption is not
realistic, because of the power constraint of the wireless sensor
networks. So, in this case we consider the more realistic case
of low SNR. Rewriting (8), we have:

N∏
i=1

Pdi + (1− Pdi)e−
2yihi
σ2

Pfi + (1− Pfi)e−
2yihi
σ2

For σ2 → ∞ we have e−(2yihi)/σ
2 → 1 and thus we can

approximate it by the first-order Taylor series expansion:

e−(2yihi)/σ
2
' 1− 2yihi

σ2

Therefore:

lim
σ2→0

Λ = lim
σ2→0

N∏
i=1

Pdi + (1− Pdi)(1− 2yihi
σ2 )

Pfi + (1− Pfi)(1− 2yihi
σ2 )

= lim
σ2→0

N∏
i=1

1− (1− Pdi) 2yihi
σ2

1− (1− Pfi) 2yihi
σ2

Taking logarithm from both sides:

lim
σ2→0

log Λ = lim
σ2→0

N∑
i=1

log
[
1− (1− Pdi)

2yihi
σ2

]

− lim
σ2→0

N∑
i=1

log
[
1− (1− Pfi)

2yihi
σ2

]
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Using the approximation log(1 + x) ' x for x → 0, and
simplifying, we have:

lim
σ2→0

log Λ =
N∑
i=1

(Pdi − Pfi)
2yihi
σ2

If we assume that Pdi − Pfi is constant for all sensors,
and eliminate it from the expression as well as the constant
term σ2, and also multiplying by a constant term 1/K we
will achieve a likelihood ratio at the fusion center which is
analogous to maximum ratio combiner (MRC):

Λ2 =
1
K

N∑
i=1

hiyi

In fact, Λ2 is the first order approximation of the log-likelihood
ratio based fusion rule and is asymptotically accurate for low
SNR (σ2 → ∞). Note that the achieved expression for Λ2

does not depend on the sensor specifications and is only a
function of the channel statistics.

The validity of the above approximations and performance
evaluation have been studied in [4], which we skip here. The
same authors, also study the same problem for multi-hop wire-
less sensor networks in [5] and found similar approximations
for the fusion rule. The derivations of formulas are similar
to the ones reviewed above and thus we do not repeat them
here. In the setup we reviewed in this section, we assumed
that all the peripheral nodes send their decisions to the fusion
center. In the next section we will review another approach
used in literature for interacting with channel constraints which
is called sensor censoring.

IV. SENSOR CENSORING

Here we briefly review the sensor censoring approach. We
just review the general concepts and do not go into details.
The idea of censoring sensors was introduced by Rago, et
al. in [6]. In this scheme, sensors are assumed to censor their
observation so that each sensor sends to the fusion center only
“informative” observations. How should we define informative
to minimize the probabilty of error was studied in [6] and it
was shown that with conditionally independent observations,
the sensors should send their decisions to fusion center if and
only if their local likelihood ratio do not fall into a certain
single interval. The exact expressions for the intervals for
different frameworks such as Neyman-Pearson and Bayesian
are derived in [6]. The important fact is that these intervals
depend on the available communication rates, so, when the
available rate is low, the intervals that defines the “no-send”
regions are larger, and only a few sensors will transmit to the
fusion center. Also, it was shown, through experiments, that
the performance of censoring scheme is very close to optimal
even with quite severe communication rates.

The direct consequence of censoring is the saving in com-
munication. Also, it will help the sensors save energy by
not sending “uninformative” messages. Fusion of censored
decisions transmitted over fading channels in wireless sensor
networks is studied in [7], [8]. In these works it is assumed
that the local sensors employ a sensor censoring scheme with
known thresholds and the main focus is on developement of

fusion algorithms while the channels have flat fading. Both
cases, one assuming the knowledge of channel fading envelope
and the other the fading statistics, are studied and the optimal
likelihood ratio test is derived under each scenario.

In summary, to save power and also decrease communica-
tion rate, peripheral sensors can employ censoring schemes so
that they do not transmit to fusion center if their likelihood
ratio is in a certain interval [6]. Then, knowing these intervals
and also the information about the channel, the fusion center
can use its modified likelihood ratio test [7], [8] to decide on
the true hypothesis. It is shown that the performance of this
scheme is close to optimal.

V. GOSSIP-BASED ALGORITHM

In this section, we are going to propose a gossip-based
fully decentralized detection algorithm. To the best of our
knowledge, the proposed methods is novel. The algorithms
that we studied until now, were mostly semi-decentralized, in
the sense that all the peripheral sensors transmit a quantized
function of their observations to a central node (fusion center).
So, it is clear that we still have the problems of centralized
systems such as single point of failure, data management
(flooding more data to fusion center than it can process), and
security. Also, in practical wireless sensor networks, because
of the power constraints, nodes are only capable of short-range
communications. Thus, each node can communicate with only
a few other nodes that are close to it.

Our proposed gossip-based algorithm, tries to reach a con-
sensus among all the nodes by only local communications.
First, we will propose our method for the ideal channels
between the nodes (i.e., no fading or noise) and show that it
converges and the solution is exactly the same as the solution
of the centralized scheme, and hence globally optimum. Then,
we will modify it for the case where there is noise and channels
between nodes have flat fading and show by simulation that
our algorithm still converges and find the optimum solution.

Assume that we have a wireless sensor network, with N
sensors, and without any central node. Also, assume that
we have a binary hypotheses testing problem. Sensor Si
can communicates only with a few other nodes that are in
its communication range. We call these nodes the neighbors
of sensor Si and denote them by the set Vi. The notation
introduced in section II still holds. Our proposed algorithm
for fully decentralized detection is briefly as follows:

1- Each sensor receives an observation and based on that,
computes its likelihood ratio. Let us denote this likeli-
hood ratio by Λ(0):

Λ(0)
i =

f(ri|H1)
f(ri|H0)

, i = 1, . . . , N

2- The sensors make initial decisions based on their obser-
vations. Note that they make their decisions under either
Bayesian or Neyman-Pearson criterion. Also, note that,
since we have a binary hypothesis testing, under either
of the frameworks, all the nodes implement a likelihood
ratio test.

3- Gossiping: After calculating the likelihood ratios and
making initial decisions, the nodes perform several
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rounds of gossiping. In each round, the nodes communi-
cate two-by-two and update their likelihood ratios. If the
nodes i and j communicate with each other (or “gossip”)
at iteration k, then, the update procedure is as follows:

Λ(k)
i =

√
Λ(k−1)
i · Λ(k−1)

j (9)

Λ(k)
j =

√
Λ(k−1)
i · Λ(k−1)

j (10)

where Λ(k)
i denotes the value of the likelihood ratio of

sensor Si at iteration k of the algorithm (0 6 k).
4- Based on their new likelihood ratios, the sensors update

their decisions. As mentioned in step 2, all the nodes
implement a likelihood ratio test with fixed thresholds.
In our algorithm, the likelihood ratios are updated and
the thresholds of the tests are remained fixed and also
are the same for all the sensors (λ1/N ).

5- Steps 3 and 4 are repeated until all the sensors decide
on the same hypothesis (denoted as “convergence”).

In the following, first, we will show that the mentioned
algorithm will converge to the same decision as the centralized
scheme in the case where there is no noise or fading. Then
we will modify our algorithm for the case where there exists
noise and channels have flat fading.

A. Analysis of Proposed Algorithm

Having N conditionally independent observations
(r1, . . . , rN ), and assuming a Bayes cost or Neyman-
Pearson performance criterion, the optimum (centralized) test
for the binary hypotheses testing is well known to be:

N∏
i=1

Λ(ri)
H1

≷
H0

λ (11)

where in NP framework, λ can be found based on the
probability of error criterion, and in Bayesian framework it can
be found based on the prior probabilities of the two hypotheses
and the costs. By optimum decision, we mean a decision which
minimizes the probability of the error.

In a fully decentralized sensor network, each node is only
aware of its own likelihood ratio and can perform a test like:

Λi(ri)
H1

≷
H0

λi

In our method we have equal thresholds for all the nodes,
and choose them in a way such that their product is equal to the
appropriate λ in (11). Therefore, λi = λ1/N , i = 1, . . . , N .
These thresholds remain fixed through the algorithm. However,
each node updates its likelihood ratio in each iteration of
the algorithm. The procedure is as follows: in each iteration,
nodes gossip two-by-two with each other and update their
likelihood ratios as described in (9) and (10). Note that
although the individual likelihood ratios change, the product
of the likelihood ratios of all nodes remain fixed through the
algorithm. In other words:

N∏
i=1

Λ(k)
i =

N∏
i=1

Λ(k−1)
i , 1 6 k (12)

It is clear that only Λ(0)
i has the classical definition of the

likelihood ratio for sensor Si, and hence equals to f(yi|H1)
f(yi|H0)

.

However, we still call the updated versions, Λ(k)
i for 1 6 k,

likelihood ratios for ease of notation.
Then, based on the updated versions of likelihood ratios, the

nodes revise their decisions. The algorithm will converge if all
the nodes have the same decisions. Assume that at stage k all
the nodes have the same decisions. Without loss of generality,
assume that they all decide on H1. Thus:

Λ(k)
i > λi = λ1/N , i = 1, . . . , N

Multiplying all the inequalities, we have:

N∏
i=1

Λ(k)
i > λ

⇒
N∏
i=1

Λ(0)
i > λ (using (12))

Which shows that H1 is also the solution of the centralized
test, and hence optimum (minimizes the probability of error).
Thus, if all the nodes “agree” with each other and reach a
consensus decision, then their decision matches the centralized
decision exactly. However, a big question remains; Does this
algorithm converge or not?

Note that, in order to prove that the mentioned algorithm
converges, it is enough to show that

as k →∞ : Λ(k)
i →

 N∏
j=1

Λ(0)
j

1/N

, i = 1, . . . , N

(13)
The reason is that in this case, all the likelihood ratios
become equal. Also, we know that the thresholds are equal
by definition. Therefore, all the nodes perform the same
likelihood ratio test and thus get the same result (convergence).
The type of convergence that we are concerned about in (13),
is convergence in expectation. In the following theorem, we
prove that (13) is true and hence, our proposed algorithm
converges.

Theorem 2. Assume that we have N nodes with initial values
Λ(0)
i , i = 1, . . . , N . Consider the following gossip algorithm:

At each iteration, nodes choose one of their neighbors at
random and gossip with each other. When two nodes gossip
with each other, they update their values according to the
following procedure:

Λ(k)
i =

√
Λ(k−1)
i · Λ(k−1)

j (14)

Λ(k)
j =

√
Λ(k−1)
i · Λ(k−1)

j (15)

where Λ(k)
i denotes the value of the likelihood ratio of sensor

Si at iteration k of the algorithm (0 6 k). This gossip
algorithm converges in expectation and we have:

lim
k→∞

E
[
Λ(k)
i

]
=

 N∏
j=1

Λ(0)
j

1/N

, i = 1, . . . , N (16)
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The proof can be found in Appendix A.
Another important question is: How fast does the algorithm

converge? or How many messages do we need to send
among sensors in order to converge? This can highly affect
the energy consumption of the sensors (the more transmit-
ted messages, the more battery consumption), and also the
delay of the system. Actually there are many fast gossip
algorithms that we can employ. For example, the algorithm
proposed in [9], achieves ε-accuracy with high probability after
O
(
n log log n log kn

ε

)
messages.

B. Considering Channel Constraints

Until now, we did not consider the effects of noise and
fading in our algorithm. Now, we are going to consider these
effects. Since, the nodes are communicating only two-by-two,
we only need to consider the following case: Assume that
nodes i and j communicate with each other at iteration k over
a channel with flat fading and additive white Gaussian noise
(see Fig. 2). Also assume that node i sends its likelihood ratio,
Λ(k)
i , to node j. If we name the message received at sensor j

from sensor i as y(k)
ij , then we can write:

y
(k)
ij = hijΛ

(k)
i + n

where hij is the fading coefficient (envelope) of the channel

Sensor 
i

Sensor 
i

Sensor 
j

Sensor 
j

)(k

i

ijh n
)(k

ijy

Fig. 2. Gossiping with channel constraints (AWGN and flat fading channel)

between sensors i and j, and n is Gaussian noise with zero
mean and variance σ2. Upon receiving y(k)

ij , sensor j tries to
estimate Λ(k)

i . Since hij is known to sensor j (cahnnel aware),
the maximum likelihood of Λ(k)

i is simply:

Λ̃(k)
i =

y
(k)
ij

hij
(17)

So, the algorithm is exactly as before, except for the update
procedure, which now changes to:

Λ(k)
i =

√
Λ(k−1)
i · (y(k−1)

ji /hji) (18)

Λ(k)
j =

√
(y(k−1)
ij /hij) · Λ(k−1)

j (19)

Note that the only difference from the simple case is that
Λ(k−1)
j and Λ(k−1)

i are replaced by their ML estimates for the
other sensor, which is derived as in (17). Proving theoretically
that this algorithm converges to the same decision as the
centralized scheme is more complicated in this case. However,
in the next subsection we will show this by some simulations.

C. Performance Evaluation

For evaluating the performance of the proposed algorithm,
we performed it on random geometric graph with 25 nodes. In
our experiment the two hyotheses have equal prior probabili-
ties. At the begining, each node takes an observation which is
corrupted by noise and computse its log-likelihood ratio. Then
all nodes try to reach a consus by gossiping their likelihood
ratios in several rounds (in our program, we performed 25000
iterations). We considered two measure of performance: proba-
bility of detection, Pr(H1|H1), and probability of false alarm,
Pr(H1|H0). The former shows the probability of detecting the
H1 hypotheses and we want it to be as high as possible. The
latter is the probability of detcting H1 while H0 is true, and
clearly we want it to be as low as possible. We plotted these
two measures for different SNRs. Actually, we computed the
average of these measures over all the nodes and for several
repetitions of the algorithm (5000 times). It is clear from
Fig. 3 and Fig. 4 that as SNR increases, we have the higher
probability of detection and lower probability of false alarm.
And, of course, if the SNR is large enough, the algorithm
works perfectly (Pr(detection) = 1 and Pr(false alarm) = 0).
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Fig. 3. Probability of detection versus SNR. As SNR increases, the
probability of detection approaches 1
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Fig. 4. Probability of false alarm versus SNR. As SNR increases, the
probability of false alarm approaches 0



7

The result is that for large enough SNR (about 10 here),
the algortihm works well and the event of interest is detected
with probability one. Also, the probability of wrong detection
goes to zero as we increase the SNR. So, we showed that even
with channel constraints our proposed algorithm converges to
the same decision as the centralized scheme.

D. Comparison With Other Algorithms

The main difference of our proposed algorithm with the
previous ones is that it is fully decentralized. In other words,
there is no central node (fusion center) in our algorithm, while
in the other ones, all the nodes send their messages to the
fusion center and the final detection process is performed
centrally. Also, after performing the gossip-based algorithms,
all the nodes are aware of the final decision while in the
other algorithms only central node knows about the detected
hypothesis. However, in our algorithm all the nodes should be
aware of the channel fading coefficients, while in the other
ones only the fusion center needs to have such information
about the channel. In case of performance, our algorithm
performs slightly better than the previous ones. For example
the algorithms proposed in [4] achieve same probabilities of
detection as our proposed algorithm, with higher SNRs.

VI. CONCLUSION

In this project, we reviewed the problem of channel aware
decentralized detection in wireless sensor networks. First, we
reviewed the classical framework, where we do not consider
power and channel constraints and showed that with person-
by-person optimization we will get a set of likelihood ratio
tests whose thresholds depend on each other. Then, we re-
viewed some channel aware algorithms that take into account
the constraints of the wireless sensor networks in real world,
such as power constraints, noise, and fading. First, we derived
some approximations for the fusion center likelihood ratio
in the presence of noise and flat fading channels in the
cases of large and low SNR. Then, we briefly reviewed the
sensor censoring approach in which nodes only transmit to
the fusion center if their observations are informative (their
likelihood ratio do not belong to a certain interval). Finally, we
proposed a totally decentralized and channel aware algorithm
for decentralized detection, which is based on gossiping. We
proved the optimality and convergence of the algorithm in the
case where there is no noise or fading. The performance of
the proposed algorithm for the case of AWGN and flat fading
channels have been evaluated through simulations and it was
shown that for large enough SNRs, the algorithm performs
perfectly (Pr(detection)=1 and Pr(false alarm)=0).
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APPENDIX A
PROOF OF THEOREM 2

We use the result of [10] to prove Theorem 2. It was shown
in [10] that:

Lemma 1. Assume that we have N nodes with initial values
x

(0)
i , i = 1, . . . , N . Consider the following gossip algorithm:

At each iteration, nodes choose one of their neighbors at
random and gossip with each other. When two nodes (i and
j) gossip with each other, they update their values according
to the following procedure:

x
(k)
j = x

(k)
i =

x
(k−1)
i + x

(k−1)
j

2
(20)

where x
(k)
i denotes the value of the sensor i at iteration k

of the algorithm (0 6 k). This gossip algorithm converges in
expectation and we have:

lim
k→∞

E
[
x

(k)
i

]
=

[∑N
j=1 x

(0)
j

]
N

, i = 1, . . . , N (21)

The proof of the lemma can be found in [10]. Now, if we do
the following replacement:

x
(k)
i , log(Λ(k)

i ) fori = 1, . . . , N and 0 6 k (22)

then Lemma 1 transforms to Theorem 2, because the update
procedure in Theorem 2:

Λ(k)
i =

√
Λ(k−1)
i · Λ(k−1)

j (23)

is equivalent to

log
(

Λ(k)
i

)
=

log
(

Λ(k−1)
i

)
+ log

(
Λ(k−1)
j

)
2

(24)

which is the update rule of Lemma 1. Also, we have:

log


 N∏
j=1

Λ(0)
j

1/N
 =

∑N
j=1 log

(
Λ(0)
i

)
N

(25)

which shows that Theorem 2 is equivalent to Lemma 1 in the
log domain and thus the proof is complete.
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APPENDIX B
MATLAB CODES

1 % Wireless Project
2 % Gossip-Based Decentralized Detection
3 % Milad Kharratzadeh
4 % April, 2011
5

6 % Initializations
7 n = 25;
8 SNR = logspace(-1,2,200);
9 K=5000;

10 A = RGG(n,0.4); % Adjacency Matrix
11 H = abs(raylrnd(ones(n,n))) .* A;
12 LLR = zeros(n,1); % Local Log-Likelihood Ratio
13 U = zeros(n,1); % Local Sensors Decisions
14 d = sum(A,2)';
15 siz = size(A);
16 edges = find(A == 1);
17 nel = numel(edges);
18 l=1;
19 P_Detection = zeros(200,1);
20 P_FalseAlarm = zeros(200,1);
21

22 % Performing Algorithm
23 for snr=SNR
24 detected = 0;
25 falseAlarm = 0;
26 hyp1 = 0;
27 hyp0 = 0;
28 sigma = 1/sqrt(snr);
29 for i=1:K
30 hyp = rand>0.5;
31 r = hyp*ones(n,1) + sigma*randn(n,1); % Observation at sensors
32 LLR = (2*r-1)/(2*sigmaˆ2); % Calculating local Log-LRs
33 for j=1:25000
34 [rand_i, rand_j] = ind2sub(siz, edges(randi(nel)));
35 temp = LLR(rand_i)+LLR(rand_j);
36 % Updating log-likelihood ratios
37 LLR(rand_i)=(temp+(sigma*randn)/H(rand_j,rand_i))/2;
38 LLR(rand_j)=(temp+(sigma*randn)/H(rand_i,rand_j))/2;
39 end
40 U = (LLR>0); % Making final decisions
41 if hyp==1
42 detected = detected + sum(U==1);
43 hyp1 = hyp1 + 1;
44 else
45 falseAlarm = falseAlarm + sum(U==1);
46 hyp0 = hyp0 + 1;
47 end
48 end
49

50 P_Detection(l) = detected / (hyp1*n);
51 P_FalseAlarm(l) = falseAlarm / (hyp0*n);
52 l = l+1;
53 end
54

55 semilogx(SNR,P_Detection);
56 hold on;
57 semilogx(SNR,P_FalseAlarm);
58 hold off;
59 figure;
60 plot(sort(P_FalseAlarm),sort(P_Detection));
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1 % Producing a random geometric graph and returning its adjacency matrix
2 function A = RGG(n,r)
3

4 A = zeros(n,n);
5 X = rand(n,1);
6 Y = rand(n,1);
7

8 % Plotting the graph:
9

10 % scatter(X,Y,'red','filled');
11 % hold on;
12

13 for i=1:n
14 for j=i:n
15 if (((X(i)-X(j))ˆ2 + (Y(i)-Y(j))ˆ2) 6 rˆ2) && (i6=j)
16 A(i,j) = 1;
17 % line([X(i) X(j)], [Y(i) Y(j)],'Color','k','LineWidth',1.5);
18 % hold on;
19 end
20 end
21 end
22

23 % hold off;
24 A = A + A';


