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Abstract

Wireless sensor networks consist of small nodes which are capable of sensing, computation,

and communication. The initial goal of a sensing system is to detect the events of interest.

In this project, we study decentralized detection in sensor networks. First, we will review

the classical decentralized detection framework, in which a set of spatially distributed sensor

nodes receives information about the state of nature. Because of the channel bandwidth

constraint, each node sends a quantized function of its observations to a central node,

called fusion center. The fusion center then decides on one of the alternative hypotheses.

Designing the local functions of individual sensor nodes and also the decision rule at the

fusion to minimize the probability of error is of interest in this context [1, 2, 3].

The classical framework does not adequately take into account important features of

sensor network architecture and of the wireless channel. Next, we will review some works

that consider these features. The type of channel imposes some restrictions on the messages

from sensors to fusion. Two different types of wireless channel between the sensors and

the fusion center is studied here: multiple access channel [4] and broadcast channel [5].

In multiple access channel the total amount of data sent by all sensors is bounded by the

channel capacity [4], and in broadcast channel, there is no central node and all nodes try

to reach a consensus by successive retesting and rebroadcasting of the updated decision [5].

A common architecture for wireless sensor networks is the tree configuration. Here, we will

review the optimal strategies for sensor nodes (i.e. local functions, which are based on the

messages received from predecessors and own observations) and also the decision rule at

fusion in terms of optimizing the error exponent [6].

In the end, as the novel part of this project we propose a totally decentralized detection

method which is based on gossiping. In this method, we assume that nodes are only capable

of short-range communications. In each round of the algorithm. sensors communicate two-

by-two (locally) and update their likelihood ratio functions. We will prove that the proposed

algorithm converges and its solution is exactly the same as the centralized scheme.
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Chapter 1

Introduction

Wireless Sensor Networks consist of a set of sensors, which are capable of sensing, compu-

tation, and communication and are spatially distributed in order to cooperatively monitor

physical or environmental conditions. The ability to detect events of interest is essential to

the success of emerging sensor network technology. Detection often serves as the initial goal

of a sensing system. For example in applications where we want to estimate attributes such

as position and velocity, the first step is to ascertain the presence of an object. Moreover,

in some applications such as surveillance, the detection of an intruder is the only purpose of

the sensor system. In situations where the peripheral nodes do some preprocessing on their

observation before sending data to a central node (called fusion center), the corresponding

decision making problem is termed decentralized detection.

Assume that there are M hypotheses on the state of the environment and each one of

the sensors observe some relevant information about it. In a centralized scheme, each sensor

transmits all of its observation (without any additional processing) to the fusion center,

which solves a classical hypotheses testing problem and decides on one of the M hypotheses.

However, in a classical decentralized scheme, each sensor will do some preprocessing and
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send a summary of its observation, which is chosen from a finite alphabet, to the fusion

center. Then, the fusion center will decide on one of the M hypotheses, based on the

messages it has received.

The described centralized and decentralized schemes, differ in some aspects. First, it is

clear that the performance of the decentralized scheme is suboptimal in comparison with

the centralized scheme due to loss of information in the nodes local preprocesses. On the

other hand the communication requirements of decentralized scheme is much smaller than

those of centralized one. The reason is that instead of sending raw voluminous observation,

each node sends a summary of its observation, taken from a finite alphabet. So, in brief,

the decentralized detection offers a great reduction in communication requirements, at

the expense of some performance reduction. However, it turns out that the performance

reduction is often negligible [2].

In decentralized scheme, while the fusion center faces a classical hypotheses testing prob-

lem (if we look at the messages received from other nodes as its observations), the problem

is more complex for the peripheral sensors. One may expect that each sensor should decide

independently and make decision only based on its own observation and use its own likeli-

hood ratio test. This is not true in general. When the detectors decide in a way to achieve

a system-wide optimization, they often use different strategies than in cases where the joint

costs of their decisions separates into a cost for each. Even under a conditional indepen-

dence assumption (which means that the observations of different sensors are independent

from each other under the same hypothesis), finding optimal decision-making algorithms

(based on the observation) at the sensor nodes remains, in most cases, a difficult task. This

optimization problem is known to be tractable only under restrictive assumptions regarding

the observation space and the topology of the underlying network [2].

In chapter 2 we will provide a detailed study of the classical decentralized detection
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problem. First, we will review the very basic decentralized detection problem for the binary

hypotheses testing [1], in order to get an insight about the decentralized scheme. Although

this is a very special case, it will help us developing the more general cases, more easily.

Then, we will review the general problem of the decentralized detection under Bayesian

criterion [2]. A precise formulation of the problem is provided and also the optimal solutions

for the case of conditionally independent observations are characterized. Finally, we will

consider the Neyman-Pearson variant of the problem [3]. Again we will formulate the

problem and characterize the optimal strategy. It will be seen that unlike the centralized

detection, where the Bayesian and Neyman-Pearson problems are almost equivalent, the

situation is more complex in decentralized detection.

As we will see, the classical framework does not adequately take into account important

features of sensor network architecture and of the wireless channel. In chapter 3, we will

study two special type of wireless channels between the nodes and the fusion center. First,

we will consider a multiple access channel which imposes a constraint on the total capacity

of the channel [4]. Then, we consider a broadcast channel, where the nodes try to reach

a consensus without having a central node (Parley algorithm) [5]. Another feature that

was not considered in classical framework is the architecture of the network. Here, we will

briefly review the tree architecture for the network [6].

Finally, in chapter 4, which is the novel part of this project, we will propose a gossip-

based method for decentralized detection. As Parley algorithm, there is no central node

(fusion center) here, but the huge difference is that in our algorithm, the nodes communicate

locally rather than through a broadcast channel. In our method, the nodes try to update

their likelihood ratios and also revise their decision in each round of gossiping. We will

show that the proposed method converges and the solution matches the solution of the

centralized scheme. To the best of our knowledge, this is a novel method.
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Chapter 2

Classical Framework of Decentralized

Detection

2.1 Decentralized Binary Hypotheses Testing

In this section we review the seminal work of Tenney and Sandell [1], which is the first

work to consider a decentralized detection system in which, each of the peripheral sensors

send a summary of its observation (using a transmission function) to a fusion center. They

studied the decentralized detection for the case of binary hypotheses. Although this is a

very specific and basic variant of the problem, it provides valuable insights about it that

will help us in exploring the more general cases in the following sections.

For the structure of Fig. 2.1, the problem of decentralized binary hypothesis testing

is stated as follows. The two hypotheses are H1 and H2 with prior probabilities Pr(H1)

and Pr(H2), respectively. Each of these hypotheses induces a different joint probability
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distribution for the observations:

Under H1 : Pr(y1|H1) (2.1)

Under H2 : Pr(y1|H2) (2.2)

where Y1 and Y2 are the observations of each of the two peripheral nodes, and belong to

the observation space (the set of all possible observations). As it is clear from the Fig. 2.1,

we will consider only the case of two peripheral sensors and one fusion center, which does

not have any observation itself here. Also we assume that the activity of fusion center is

fixed a priori, which means that the decision of the fusion center is a deterministic function

of the messages it receives from peripheral sensors.

Fusion 
Center

State of the environment

21, HH

Detector 1 Detector 2

1Y 2Y

1U

0U

2U
Local Decision 1 Local Decision 2

Fig. 2.1 Decentralized binary hypotheses testing

Each of the detectors, based on its observation, will choose one message, Ui, from the
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set {1, 2} and send it to the fusion center. In other words:

ui =

 1, H1 have been detected

2, H2 have been detected

where ui, for i = 1, 2 is the transmitted message from detector i to fusion center. A

randomized decision rule can be defined by the conditional probability distribution function

Pr(ui = 1|yi) and Pr(ui = 2|yi) = 1 − Pr(ui = 1|yi) which depend only the observation yi

for i = 1, 2. Here, we consider Bayesian criterion, and thus the objective is to minimize the

expectation of a cost function. Note that the final decision is made by the fusion center

and the variable that interprets the final decision of the total system is u0 (i.e. we should

define our cost as a function of u0). However, as mentioned before, in this example we

assume the decision rule at fusion center is fixed a perior and thus u0 is a deterministic

function of u1 and u2. Therefore, we can define the cost as a function of only u1 and u2:

C(u1, u2, Hi) : {1, 2} × {1, 2} × {H1, H2} → R (2.3)

with C(u1, u2, Hi) being the cost incurred for detector 1 choosing u1, and detector 2 choosing

u2, while Hi is true. As told before, the objective is to find a decision strategy (in other

words finding Pr(ui = 1|yi) and Pr(ui = 2|yi) for all yi, i = 1, 2 in observation space) such

that it minimizes the expectation of cost function, i.e. E[C(U1, U2, H)].

We know that the optimal Bayesian decision rule for the centralized binary hypotheses

testing problem is a deterministic likelihood ratio test with a threshold based on the prior

probabilities and the cost function. We can derive the solution for the decentralized case,

in a somewhat similar manner. To do so, we focus on one detector at a time and try to

adjust its decision rule to minimize the expectation of cost function. This method is called
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person-by-person minimization. If a strategy is optimal it must also be person-by-person

optimal (i.e. it is a necessary but not sufficient condition). So, let’s begin by expanding

E[C(U1, U2, H)]:

E[C(U1, U2, H)] =
∑

H,u1,u2

∫
y1,y2

Pr(u1, u2, y1, y2, H) · C(u1, u2, H)

=
∑

H,u1,u2

∫
y1,y2

Pr(H)Pr(y1, y2|H)Pr(u1|y1)Pr(u2|y2) · C(u1, u2, H)

In the second step, we used the total probability theorem and also the fact that u1

only depends on y1 and u2 only on y2, and they are independent from each other (i.e.

Pr(u1, u2|y1, y2, H) = Pr(u1|y1, y2, H) + Pr(u2|y1, y2, H) = Pr(u1|y1) + Pr(u2|y2)). Now, if

we sum over u1, we will have:

∑
H,u2

∫
y1,y2

Pr(H)Pr(u2|y2)Pr(y1, y2|H) · [Pr(u1 = 1|y1)C(1, u2, H)

+(1− Pr(u1 = 1|y1))C(2, u2, H)]

As we said before, we focus only on one detector at a time. If we consider detector 1,

the terms that do not contain the variable u1, are characterized as constants and can be

eliminated from the objective function (which is to be minimized). Thus, we have the

following equivalent function to minimize:

∫
y1,y2

Pr(u1 = 1|y1)
∑
H,u2

Pr(H)Pr(u2|y2)Pr(y1, y2|H) · [C(1, u2, H)− C(2, u2, H)] (2.4)
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This can be minimized by the following decision rule:

Pr(u1 = 1|y1) =

 0, if
∑

H,u2
Pr(H)Pr(u2|y2)Pr(y1, y2|H) · [C(1, u2, H)− C(2, u2, H)] > 0

1, else

So, it turns out that we have a deterministic decision rule which is based on the sum. In

brief, the final decision rule of detector 1 is the following threshold test:

∑
H,u2

Pr(H)Pr(u2|y2)Pr(y1, y2|H) · [C(1, u2, H)− C(2, u2, H)]
H2

≷
H1

0

If we expand the sum over H and assume C(2, u2, H1) > C(1, u2, H1), which means that

the error is more costly than the correct detection, then we have:

Pr(H1)Pr(y1|H1)

Pr(H2)Pr(y2|H2)

H2

≷
H1

∑
u2

∫
y2

Pr(y2|y1, H2)Pr(u2|y2)[C(1, u2, H2)− C(1, u2, H2)]∑
u2

∫
y2

Pr(y2|y1, H1)Pr(u2|y2)[C(1, u2, H1)− C(1, u2, H1)]
(2.5)

The left hand side is the likelihood ratio for y1. However, the right hand side is not a simple

threshold constant and depends on Pr(u2|y2) which is the decision rule of the detector 2

and Pr(y2|y1, Hi) which is the conditional density of detector 2 observation. This causes

a kind of difficulty that we have not seen before in the centralized scheme: finding the

optimal strategy requires solving (2.5) and its companion form (for detector 2) through

the coupled equations. Therefore, the optimal solution is NOT a likelihood ratio test in

general. However, matters simplify if we assume that the observations are conditionally

independent, which means that the observations are statistically independent of each other



2 Classical Framework of Decentralized Detection 9

under the same hypothesis:

Pr(y2|y1, H) = Pr(y2|H)

Pr(y1|y2, H) = Pr(y1|H)

This assumption is satisfied in problems of detecting a known signal, when each sensor’s

observation is corrupted by independent noise. However, it is violated in problems of

detecting an unknown signal or when the noises are dependent. So, if the above assumption

is satisfied, the dependence of the right hand side of (2.5) on y1 is removed and the threshold

to which we compare the likelihood ratio becomes only a function of the decision rule of

detector 2 (Pr(u2|y2)). Therefore, under the conditional independence assumption, the

optimal strategy for the decentralized binary hypotheses testing problem has

each detector implementing a likelihood ratio test, using a threshold which is

derived from the decision rule of the other detector.

If we call the thresholds for detectors 1 and 2, t1 and t2 respectively, we have:

t1 =

∫
y2

Pr(y2|H2)[C(1, 2, H2)− C(2, 2, H2)] + Pr(u2 = 1|y2) · C1∫
y2

Pr(y2|H1)[C(2, 2, H1)− C(1, 2, H1)] + Pr(u2 = 1|y2) · C2

, f1(t2)

where

C1 = C(1, 1, H2)− C(2, 1, H2)− C(1, 2, H2) + C(2, 2, H2) (2.6)

C2 = C(2, 1, H1)− C(1, 1, H1)− C(2, 2, H1) + C(1, 2, H1) (2.7)

And similarly t2 = f2(t1). Basically, what these two equations say is that we should solve
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the simultaneous equations to find the thresholds t1 and t2 in the above setting.

As we said before the problem that we considered in this chapter was a very specific

example of the decentralize detection which was studied by Tenney and Sandell [1]. How-

ever, as we will see in the next sections most of the achieved results are valid for the general

decentralized detection problem. In the following two sections we will study Bayesian and

Neyman-Pearson formulation of the decentralized detection problem.

2.2 Bayesian Framework

In this section we study the Bayesian formulation of the decentralized detection problem.

The objective, as the centralized scheme, is the minimization of the expectation of a cost

function. In the following, first, we will propose a formulation of the problem. Then, we

will characterize the optimal strategy for the case of conditionally independent sensor’s

observation. Here, we will review a part of the work of John Tsitsiklis [2]. Also, we will

use some of the contents from [1].

2.2.1 The Main Model and Problem Formulation

In this section and the next one (Neyman-Pearson Framework), we assume that all sensors

send their messages (“summary” of their observations) to the fusion center directly (i.e. Star

topology). We consider the decentralized organization with the following basic parameters:

• M : The number of hypotheses (M > 2)

• N : The number of peripheral sensors (N > 1)

• D: The number of distinct messages that each sensor can send to the fusion center,

the size of the alphabet that each sensor chooses its message from (D > 2)
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So, we have M hypotheses H1, . . . , HM , with prior probabilities Pr(H1), . . . ,Pr(HM),

respectively. There are N+1 sensors S0, S1, . . . , SN . Each sensor Si receives an observation

Yi which is a random variable taking values in a set Yi (which sometimes is called as

observation space). We call sensor S0 the fusion center. It plays an important role in

decentralized detection problem. All the other sensors, S1, . . . , SN (which are also called

peripheral sensors), upon receiving a realization yi of the random variable Yi, evaluates

a message ui = γi(yi) ∈ {1, . . . , D}, and transmits it to the fusion center, S0. We call

the function γi : Yi → {1, . . . , D}, as the decision rule of the sensor i. The fusion center

receives all these messages as well as its own observation (y0), and using its own decision

rule (which is also called fusion rule), γ0 : Y0 × {1, . . . , D}N → {1, . . . ,M}, decide on one

of the M possible hypotheses.

A collection γ = (γ0, γ1, . . . , γN) of decision rules are referred to as a strategy. The

set of all strategies is denoted as Γ. As the centralized case, we also can have randomized

decision rules. In the case where all the nodes use randomization, there are two variants:

• Independent randomization: Each sensor i has a finite set of possible decision

rules {γ(k)
i |k = 1, . . . , Ki} and uses decision rule γ

(k)
i with probability pi,k (we must

have
∑Ki

k=1 pi,k = 1). Moreover, the selection of the decision rule for each sensor

is independent of all other decision rules for other sensors. Let Γ be the set of all

independently randomized strategies.

• Dependent randomization: In this case, there is a finite set of deterministic strate-

gies {γ(k)|k = 1, . . . , K}, and strategy γ(k) = (γ
(k)
0 , γ

(k)
1 , . . . , γ

(k)
N ) is used with prob-

ability pk (we must have
∑K

k=1 pk = 1). Thus, in this case the selections of decision

rules by the different sensors are dependent. Let Γ∗ be the set of all dependently

randomized strategies.
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From the above definitions we have Γ ⊂ Γ ⊂ Γ∗. The reason is that if we put for some

specific k, pi,k = 1 and pi,j = 0, j 6= k, and do the same thing for other sensors, then we

will get a simple strategy. So the simple strategy is a particular case of independently

randomized strategy and we have Γ ⊂ Γ. Next, if we put pk =
∏N

i=0 pi,ki
in a dependently

randomized strategy, we will get an independently randomized strategy. Thus, Γ ⊂ Γ∗.

When we fix a decision rule γi for sensor Si, the message ui which is transmitted to the

fusion center from this sensor is a realization of a random variable Ui defined by Ui = γi(Yi).

Obviously, the distribution of Ui depends on the decision rule and the distribution of the

observation, Yi. Once a strategy is fixed, the decision of the fusion center becomes a

random variable U0 defined by U0 = γ0(Y0, U1, U2, . . . , UN). The same thing is true for the

randomized decision rules.

In the Bayesian formulation, we are given a cost function

C(U0, U1, . . . , UN , H) : {1, . . . .M} × {1, . . . , D}N × {H1, . . . , HM} → R (2.8)

where C(u0, u1, . . . , uN , Hi) is the cost associated with the event that hypothesis Hi is true,

the messages from the peripheral sensors are u1, . . . , uN , and the fusion center decision

is u0. Our objective in Bayesian framework is to find a strategy, γ that minimizes the

expectation of the cost function: J(γ) , E[C(U0, U1, . . . , UN , H)]. Thus:

J(γ) =
M∑
i=1

Pr(Hi) · E[C(γ0(Y0, γ1(Y1), . . . , γN(YN)), γ1(Y1), . . . , γN(YN), Hi)|Hi]

As in the centralized case we do not consider the randomized strategies for Bayesian frame-

work. The reason, briefly, is that the minimum of the linear combinations of some variables

cannot be less than the minimum of the variables. So, in the following we only consider
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deterministic strategies.

Remark 1. Note that the cost function defined above is a function of the fusion decision

as well as the peripheral nodes messages. However, for different purposes we can define

different cost functions that only depend on some of decisions. For example, if C only

depends on U0, the performance of the system is judged on the basis of the fusion center’s

decision. The minimum probability of error criterion for the final decision lies in this type

of cost functions. As another case, when D = M , we may wish to interpret each sensor’s

message as a local decision, based on the true hypothesis. Then, with the suitable choice of

C, we can penalize incorrect decisions by the fusion center as well as the peripheral sensors.

As an extreme case, the cost function might be independent of the fusion center’s decision

and be only a function of the decisions of peripheral nodes and we only need to optimize

with respect to γi, i = 1, . . . , N . This can happen in the case of a priori fixed fusion decision

rule (as we saw in section 2.1).

Remark 2. When M = D, it may seem right that the decision of the peripheral

nodes should interpret the true hypothesis. Although we can enforce this by choosing an

appropriate cost function (as discussed in previous remark), this is not true in general. For

instance, when we want to minimize the fusion’s probability of error, the optimal sensor

messages are very poor when viewed as local decisions.

2.2.2 Finding The Optimum Solution

As we saw in section 2.1, if we assume that the observations are conditionally independent,

then we can find the optimal solution by doing likelihood ratio tests. Also in this section,

we assume that this condition holds. Moreover, as in section 2.1, we perform a person-by-

person optimization on the peripheral sensors to find the optimal solutions. This means

that at each step, we fix some i 6= 0 and suppose that γj has been fixed for all j 6= i. Then
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we try to find the γi that minimizes the expectation of cost function. As we said in section

2.1, if a strategy is optimal, then it must also be person-by-person optimal. Therefore, the

equations that we arrive in this section are necessary conditions for optimality and must

be satisfied by any optimal threshold strategy.

First, we will provide a theorem, without including the proof here. The detailed proof

can be found in Appendix A.

Theorem 1. (a) Fix some i 6= 0 and suppose that γj has been fixed for all j 6= i. Then γi

minimizes J(γ) if and only if

γi(Yi) = argmin
d=1,...,D

M∑
j=1

Pr(Hj|Yi) · ai(Hj, d) with probability 1 (2.9)

where

ai(Hj, d) = E[C(γ0(Y0, U1, . . . , Ui−1, d, Ui+1, . . . , UN), U1, . . . , Ui−1, d, Ui+1, . . . , UN , Hj)|Hj]

(2.10)

(b) Suppose that the decision rules for peripheral nodes have been fixed, then γ0 mini-

mizes J(γ) if and only if

γ0(Y0, U1, . . . , UN) = argmin
d=1,...,D

M∑
j=1

Pr(Hj|Y0, U1, . . . , UN) · C(d, U1, . . . , UN , Hj) with probability 1

(2.11)

As we said before, the optimal strategy must be person-by-person optimal and thus if

γ is an optimal strategy, then equations (2.9)-(2.11) hold. However, these equations do not

lead to an optimal strategy. The reason is that the right hand side of (2.10) depends on
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the random variables Uk, k 6= i (whose distribution depends on the coefficients ak(Hj, d)).

As it can be seen, the situation is very similar to the binary case we considered in section

2.1. At there, we had two likelihood ratio tests whose threshold depend on each other

and in order to find the thresholds, we should solve coupled equations. Here, situation is

somewhat similar; for any fixed choice of γ0, we need to solve a system of N ×M × D

nonlinear equations in as many unknowns.

Remark 1. If we want to minimize the probability of error (i.e. C(u0, u1, . . . , uN , Hj)

equals 0 when u0 = j and equals 1 when u0 6= j), then (2.11) simplifies to

γ0(Y0, U1, . . . , UN) = argmax
d=1,...,D

Pr(Hd|Y0, U1, . . . , UN) with probability 1 (2.12)

which is the classical maximum a posteriori probability (MAP) rule for hypotheses test-

ing by the fusion center who has access to the observation Y0 and the sensors messages

U1, . . . , UN .

Using Bayes rule for i 6= 0 we have:

Pr(Hj|Yi) =
f(Yi|Hj)Pr(Hj)

f(Yi)
(2.13)

replacing that in equations (2.9) and (2.10) and removing the constant term f(Yi), which

does not depend on j:

γi(Yi) = argmin
d=1,...,D

M∑
j=1

Pr(Yi|Hj)Pr(Hj)ai(Hj, d)

= argmin
d=1,...,D

M∑
j=1

Pr(Yi|Hj)bi(Hj, d) with probability 1 (2.14)
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where

bi(Hj, d) = Pr(Hj)ai(Hj, d) (2.15)

Also, for the fusion center, equation (2.10), we have:

γ0(Y0, U1, . . . , UN) = argmin
d=1,...,D

M∑
j=1

f(Y0|Hj)
N∏
i=1

Pr(γi(Yi) = ui|Hj)Pr(Hj)C(d, U1, . . . , UN , Hj)

= argmin
d=1,...,D

M∑
j=1

f(Y0|Hj)b0(Hj, d, U1, . . . , UN) w.p.1 (2.16)

where

b0(Hj, d, U1, . . . , UN) = Pr(Hj)C(d, U1, . . . , UN , Hj)
N∏
i=1

Pr(γi(Yi) = ui|Hj) (2.17)

Remark 2. (The shape of the decision regions at the peripheral sensors)

Consider the M -dimensional space of all likelihood vectors of sensor Si, i 6= 0. By the

likelihood vector, we mean a vector whose j’th component is f(Yi|Hj), which from (2.14)

we understand that it is the sufficient statistic for sensor Si. The decision rule in (2.14)

is equivalent to dividing this M -dimensional space into D regions, and deciding to send

ui = d to the fusion center if the vector of likelihood belongs to the d’th region. Each

region is specified by a set of linear equalities and therefore is a polyhedral. Note that this

structure is the same as the structure of the optimal decision rule for the classical M -ary

hypotheses testing.

Remark 3. (The shape of the decision regions at the fusion center) Similar

to the previous remark, we can argue that the decision regions for the fusion center are

M polyhedral regions in the M -dimensional space of all likelihood vectors of S0. These
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M regions are defined by a set of linear inequalities. However, the coefficients of these

linear inequalities, b0(Hj, d, U1, . . . , UN), depend on the vector of sent messages from the

peripheral sensors, i.e. the realizations of (U1, . . . , UN). There are DN realizations of these

vectors, thus in the case that the fusion center doesn’t have any observation of its own (no

Y0) the fusion rule is simply a deterministic function from {1, . . . , D}N → {1, . . . ,M}.

2.3 Neyman-Pearson Framework

In this section we study the procedure for finding Neyman-Pearson optimum distributed

detection. Throughout this section we do not have the simplifier assumption of condition-

ally independent observations. Also, we only consider the binary hypotheses testing, since

the results for more general cases are extremely complicated. In this section we mainly

focus on the work of Yan and Blum [3]. However, we may point out to some results from

other papers as well.

2.3.1 Problem Definition

The problem setting is almost the same as what was mentioned in section 2.2.1. However,

we have only two hypotheses (H1 andH2) here (thusM = 2), and also each sensor’s message

can be selected from an alphabet of size two (thus D = 2). Still we denote the observations

by Y1, . . . , YN , and we assume that the fusion center does not have any observation. We let

γ0(u) denote the probability that we decide on U0 = 1 for a given set of sensors decisions

u = (u1, . . . , uN). We also let γk(yk) denote the probability that we decide on Uk = 1 for a

given observation yk.

In the Neyman-Pearson framework, we want to find a γ that maximizes the probability

of detection which is defined as Pd(γ) = Pr(U0 = 2|H2) subject to the constraint Pf (γ) =
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Pr(U0 = 2|H1) 6 α where 0 6 α 6 1. Pf is called the probability of false alarm. It

was shown in [2] that the form of the optimal distributed detection strategy under NP

criterion is complicated, especially when the observations are not conditionally independent.

However, the optimality of the monotone threshold strategies under certain assumptions

was established there [2]. In the following, we will provide theorems giving conditions on

the optimum strategy in the mentioned setting.

2.3.2 Finding The Optimum Strategy

To begin, let’s define Djk, where j = 1, 2 and k = 1, . . . , N as following:

Djk = f(yk|Hj)
∑
ũk

[Pr(U0 = 2|Ũk = ũk, Uk = 2)− Pr(U0 = 2|Ũk = ũk, Uk = 1)]

×Pr(Ũk = ũk|Yk = yk, Hj) (2.18)

where

Ũk = (U1, . . . , Uk−1, Uk+1, . . . , UN)

and

Pr(U0 = 2|Ũk = ũk, Uk = uk) = Pr(U0 = 2|U = u)

describes the decision rule at the fusion center. The sum in above, is over all possible

values of ũk. Now, we provide the following theorem without including the proof here. The

detailed proof can be found in [3]. This problem is also studied in [2].

Theorem 2. Given a fixed decision rule for fusion center and all the peripheral sensors but

sensor k and also a set of observation distributions under H1 and H2 for all the peripheral

sensors except the sensor k (i.e. f(yk|Hj), j = 1, 2) such that D2k(Yk)
D1k(Yk)

and f(yk|Hj), j = 1, 2
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have no point masses, we have:

1) A γk of the form

γk(yk) =

 2 if D2k(yk) > λkD1k(yk)

1 if D2k(yk) < λkD1k(yk)

will satisfy the Neyman-Pearson criterion for the given fusion rule and the given set of

sensor’s rules and also the conditional observation distributions. The event D2k(yk) =

λkD1k(yk) which occurs with zero probability can be assigned to any hypotheses.

2) Any rule that satisfies the Neyman-Pearson criterion for the given fusion rule and

the given set of sensor’s rules and also the conditional observation distributions must

be of this form except possibly on a set having zero probability under H1 and H2.

This theorem gives the conditions for person-by-person optimality. This means that

no better rule can be found by changing only one sensor at at time. The reason is that

in above theorem we assumed that all the other decision rules are fixed and solved the

optimization problem only over one sensor, so that is the mos optimal thing that we can

achieve. What will happen if we change two sensors at a time? In the next theorem we

consider this situation and show that by changing two sensors at a time, we can put more

restrictions on the conditions provided by Theorem 2 such that λ1 = λ2 = . . . = λN > 0

will produce an optimum solution.

Theorem 3. Under the same assumptions as Theorem 2 and if the pdf of D2k(Yk)/D1k(Yk)

under Hj, j = 1, 2 is positive for 0 < D2k(Yk)/D1k(Yk) < ∞, the optimal strategy have a

set of sensor rules γ1, . . . , γN that have the conditions described in Theorem 2 as well as

the new condition: λ1 = λ2 = . . . = λN = λ. Thus, only a set of sensor rules γ1, . . . , γN of
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the form

γk(yk) =

 2 if D2k(yk) > λD1k(yk)

1 if D2k(yk) < λD1k(yk)

will satisfy the Neyman-Pearson criterion for a given fusion decision rule. The event

D2k(yk) = λD1k(yk) which occurs with zero probability can be assigned to any hypotheses.

The proof is complex and contains massive integral calculations. So, we do not include

it here, but a rigorous proof can be found in [3].

In the above results, we did not assume anything about the dependency of the condi-

tional observations. However, it is shown in [2] that under the assumption that observations

are conditionally independent, if there exists an optimal strategy, then there also exists a

monotone threshold strategy that is optimal.

As we can see, although in the centralized detection, the Bayesian and Neyman-Pearson

problems are almost equivalent (with the suitable choice of costs of course), the situation

is somewhat more complex in the decentralized detection scheme.
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Chapter 3

Architecture and Channel

Considerations of Wireless Sensor

Networks

The classical framework does not adequately take into account important features of sensor

network architecture and of the wireless channel. In this chapter, we will review some works

that consider these features [4, 5, 6]. First we will review the situations where we have some

restrictions on the wireless channel between the peripheral sensors and the fusion center.

The main paper that we review here is the work of J.F. Chamberland and V. Veeravalli [4],

who consider the scenario where the sensor network is constrained by the capacity of the

wireless channel over which the sensors and the fusion center communicate. Also, we will

review the scenario where we have a broadcast channel (and no central node) and all the

nodes try to reach a consensus by successive retesting and rebroadcasting of the updated

decision [5].

A common architecture for wireless sensor networks is the tree configuration. Here,
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we will briefly the results of [6] which reviewed the optimal strategies for sensor nodes

(i.e. local functions, which are based on the messages received from predecessors and own

observations) and also the decision rule at fusion in terms of optimizing the error exponent.

3.1 Wireless Channel Considerations

3.1.1 Multiple Access Channel

In previous chapter, we studied the case where each of the N sensors chooses its message

from the set {1, . . . , D}. Therefore, the quantity of information that is sent through the

channel to the fusion center does not exceed Ndlog2De. However in real-world wireless

sensor networks the multiple access channel available to the sensors is limited. In these

cases, we should take into account this new constraint in the design problem. Here, we

assume that the sensor Si can send its message from a set of size Di, and thus we need to

have:
N∑
i=1

dlog2(Di)e 6 R (3.1)

where R is the capacity of the channel. In general, the admissible rate of a practical

system with a simple encoding scheme may depend on bandwidth, power, noise density,

and maximum tolerable bit error rate at the output of the decoder. However, we disregard

the specific values of these parameters. Also, we neglect communication errors and assume

that we can transmit reliably at a maximum rate of R bits per unit time. We call a strategy

admissible if it satisfies (3.1). The setting of the problem is illustrated in the Fig. 3.1. Also,

we assume that the observations are conditionally independent.

Here, we have slightly different notations with respect to the previous chapter. Besides

the fact that each sensor has its own size of alphabet ({D1, . . . , DN}), we also assume that



3 Architecture and Channel Considerations of Wireless Sensor Networks 23

State of the environment

H

Detector 1 Detector NDetector i

Multiple Access 
Channel

Multiple Access 
Channel

Fusion CenterFusion Center

Fig. 3.1 A wireless sensor network where sensors transmit their messages to
the fusion center through a multiple access channel

sensors take observations over time with each sensor receiving a sequence of observations

({Yi,t : t = 1, 2, . . . , T}). In the asymptotic regime where the observation interval goes to

infinity (T →∞), we can define the error exponent measure as follows:

C(γ) = − lim
T→∞

1

T
logP (T )

e (γ) (3.2)

where P
(T )
e (γ) is the probability of error at the fusion center when a maximum a pos-

teriori detector is used. Note that because for any reasonable transmission strategy, the

associated probability of error at the fusion center goes to zero exponentially fast as grows

unbounded [4], the error exponent is a suitable way to compare transmission schemes.

However, since C is a monotonic decreasing function of P
(T )
e (γ), comparing C or P

(T )
e (γ)

to compare strategies is exactly the same (except for the change of inequality direction).
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The error exponent is also known as the Chernoff information.

For a multiple access channel that is able to carry R bits of information per unit time,

we can pose the design problem formally as finding an admissible strategy that maximizes

the error exponent defined in (3.2).

As we saw in chapter 2, using MAP detection in fusion center minimizes the probability

of error. So we use MAP detection as fusion rule and try to evaluate the error exponent

for an admissible strategy γ using Chernoff’s theorem.

Theorem 4. (Chernoff) Suppose γ is an admissible strategy. The best achievable expo-

nent in the probability of error at the fusion center is given by:

C(γ) = − min
06s61

log
[∑
u∈Υ

(Pr(u|H1))s(Pr(u|H2))1−s
]

(3.3)

where

Υ = {1, . . . , D1} × . . .× {1, . . . , DN}

The proof of this theorem can be found in information theory books (see e.g., [7]). Using

Chernoff’s theorem, the design problem is now changed to finding an admissible strategy

that maximizes the Chernoff information defined in (3.3).

Now we provide two propositions from [4] (without proofs) that derive a set of conditions

that simplify the design problem greatly.

Proposition 1. For strategy γ, the contribution CSi
(γ) of sensor Si to the Chernoff infor-

mation is upper bounded by the Chernoff information contained in one observation Y :

CSi
(γ) 6 C∗ , − min

06s61
log
[ ∫
Y

(Pr(y|H1))s(Pr(y|H2))1−sdy
]

(3.4)

In words, this proposition means that the contribution of a single sensor to the total
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Chernoff information cannot exceed the information contained in each observation. Using

this proposition, we will find a sufficient condition for which having R binary sensors is

optimal. To do so, define C1(γi) to be the Chernoff information corresponding to a single

sensor with decision rule γi:

C1(γi) = − min
06s61

log
[ Di∑
u=1

(Pr(γi(y) = u|H1))s(Pr(γi(y) = u|H2))1−s
]

(3.5)

Proposition 2. Assume that γ̃b is a binary strategy for one of the peripheral sensors (i.e.

based on its observation, the sensor transmits one of its two possible messages to the fusion

center). If the condition

C1(γ̃b) >
C∗

2
(3.6)

holds, then having R identical sensors, each sending one bit of information (i.e. binary

decision rule), is optimal.

In summary, when there is a limit, R, on the capacity of the multiple access channel

between peripheral sensors and the fusion center, then under the condition (3.6), the opti-

mal strategy consists of R identical sensors each utilizing binary decision rules (same as the

likelihood ratio decision rules introduced in chapter 2). Two special cases of Gaussian and

Exponential observations has been studied in [4], and it was shown that having identical

binary sensors is optimal in the asymptotic regime where the observation interval goes to

infinity. In other words, the gain offered by having more sensors outperforms the benefits

of getting detailed information from each sensor whenever the number of observations per

sensor is large. However, it was also shown through counterexamples that choosing binary

decision rules is not always the optimum strategy. Moreover, having identical binary sen-

sors may not be optimal when observations are dependent across sensors. The reason is
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that when the observations are dependent under the same hypothesis across sensors having

fewer sensors sending multiple bits may result in better performance.

3.1.2 Broadcast Channel

Until now, we have focused on detection systems with “parallel” or “star” topology, which

means that each of the peripheral sensors transmit its message directly to the fusion center.

More over, although we called the detection decentralized, in all the schemes we saw, there

is a central node that receives all the messages from sensors and then decides on the true

hypothesis. In this section we explore an alternative approach, which by using feedback

(of all sensor decisions to all sensors) and successive retesting and rebroadcasting (which

is called parley operation), tries to reach a common decision or consensus among nodes.

In this setting (see Fig. 3.2 ) there is no central node and the fully connected sensors

communicate through a broadcast channel. Here, we review the work of P.F.Swaszek and

P.Willett [5]. The algorithm they use to reach a consensus is as follows:

1- Each sensor receives an observation and based on that, computes its likelihood ratio

observation.

2- The sensors make initial decisions based on their observations and broadcast their

decisions to all the other sensors.

3- Based on the original observation and also the decisions of all other sensors, each

sensor revises its previous decision, and sends it to all other nodes again.

4- Step 3, which is called parleying is repeated until a consensus is reached. A consensus

here means that all sensors agree.
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State of the environment
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Detector 1 Detector NDetector i

Broadcast 
Channel

Fig. 3.2 Fully-connecetd, yet decentralized detection network

It is clear that we like a consensus to be both “fast” and “correct”. It is mentioned

in [5] that experience has shown that a general optimization of both is infeasible. So, they

proposed two algorithms that each tries to optimize one of them; a greedy approach which

convergence is quite fast but the correctness is sacrificed and the N -th root approach which

is delayed somewhat but the decision is the best possible, given data. We will review them

briefly below.

Greedy Approach

We assume that we have a binary hypotheses testing problem (H1 and H2). Also, we

assume that the observations are conditionally independent. Let us denote the likelihood

ratio for sensor i as:

Λ(yi) =
f(yi|H2)

f(yi|H1)
(3.7)

Also, denote the decision of the ith sensor at stage m as ui,m ∈ {1, 2}. Note that at stage

m + 1, the ith sensor uses the decisions of all other sensors up to stage m and its own
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observation. Thus, if we assume the optimality criterion to be the probability of error, the

optimal Bayesian decision of the node i at stage m is:

Λ(yi)
H2

≷
H1

Pr(H1) · Pr(Ui,m|H1)

Pr(H2) · Pr(Ui,m|H2)
(3.8)

where Ui,m = {uk,n : k 6= i, n = 1, . . . ,m − 1} denotes the set of all decisions of sensors

(except sensor i) until stage m− 1. The proof is not provided in [5], but we include it here.

For the Bayesian test with uniform costs we have:

Pr(H2|yi,Ui,m)
H2

≷
H1

Pr(H2|yi,Ui,m) (3.9)

⇒ Pr(H2) · Pr(yi,Ui,m|H2)
H2

≷
H1

Pr(H1) · Pr(yi,Ui,m|H1) (3.10)

⇒ Pr(H2) · Pr(yi|H2)Pr(Ui,m|H2)
H2

≷
H1

Pr(H2) · Pr(yi|H1)Pr(Ui,m|H1) (3.11)

⇒ Λ(yi) =
f(yi|H2)

f(yi|H1)

H2

≷
H1

Pr(H1) · Pr(Ui,m|H1)

Pr(H2) · Pr(Ui,m|H2)
(3.12)

where in deriving (3.11) we used the fact that the decisions of other sensors are independent

from the observation yi of i-th sensor.

So, in each stage, the nodes update their thresholds, using (3.8), which is the locally

optimal decision (but not globally). Through a couple of propositions, it is shown in [5]

that such an algorithm will reach a consensus with probability one. Also through some

simulations, it is shown that although the convergence is quite fast, the correctness is

sacrificed.



3 Architecture and Channel Considerations of Wireless Sensor Networks 29

The N-th Root Approach

In the previous method, the decisions of sensors were locally optimal. This was the reason

of the probable convergence to the wrong hypothesis. However, in this pert, we explore an

algorithm which is globally optimal and its solution is exactly the same as the centralized

scheme. The cost that we pay to achieve this precision is the delay of the algorithm in

converging to the final solution.

We know that assuming either a Bayes or NP performance criterion the optimum cen-

tralized test for binary hypotheses binary testing is:

N∏
i=1

Λ(yi)
H2

≷
H1

λ (3.13)

Now, assuming that the i-th sensor performs a test like

Λ(yi)
H2

≷
H1

λi,m (3.14)

at stage m, global convergence means either Λ(yi) >
∏N

i=1 λi,m or Λ(yi) <
∏N

i=1 λi,m. In

the previous part, the thresholds were posterior likelihood ratios. However, here, we need

to choose thresholds such that
∏N

i=1 λi,m converges to λ. If this condition holds, then we

can make sure that if a consensus decision is reached, then it would match the centralized

decision exactly. It was shown in [5] that for the following initial values and update rules

of the thresholds, a consensus will be reached with probability one:

Initial Values : λi,1 = λ1/n (3.15)

Update rule : λi,m = λi,m−1 ·
Pr(Ui,m|H1)

Pr(Ui,m|H2)
(3.16)
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As we said before, this approach will find the same solution as the centralized scheme,

and thus has better performance with respect to greedy algorithm. However, the consensus

does not happen as fast as the greedy algorithm.

3.2 Tree Network Architecture

In all previous parts (except the broadcast channel section), we assumed that the network’s

architecture is star, that every nodes transmit directly to the fusion center. In this section

we consider the problem of decentralized detection in a network consisting of a large number

of nodes arranged as a tree of bounded height (the number of hops needed to reach the

fusion center from a node). Tree is one of the most common architectures for wireless sensor

networks. We briefly only review the results of [6] here.

In the tree configuration, we have a directed graph, with the fusion center as the root.

First, the leaves send their messages (which are computed based on nodes’ observations) to

their ancestors. From then, based on its observation and also the received messages of all

its predecessors, a node compute its message and sends it to its ancestor and so on. The

same procedure goes on until the fusion center receives the messages of all its predecessors.

Then, it decides about the true hypothesis. It is shown in [6] that under Neyman-Pearson

formulation and certain assumptions (like independent observations, etc.), the network

can achieve the same performance as if all nodes were transmitting directly to the fusion

center. Also, they show that the probability of false alarm decays exponentially fast with

the number of nodes.

The tree configuration is also studied in [8] where a numerical algorithm is developed

for determining the optimal decision rule at each node under Bayesian formulation.
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Chapter 4

Gossip-Based Decentralized

Detection

In this chapter, we are going to propose a gossip-based fully decentralized detection algo-

rithm. To the best of our knowledge, the proposed methods is novel. The algorithms that

we studied until now, were mostly semi-decentralized, in the sense that all the peripheral

sensors transmit a quantized function of their observations to a central node (fusion cen-

ter). So, it is clear that we still have the problems of centralized systems such as single

point of failure, data management (flooding more data to fusion center than it can pro-

cess), and security. The only truly decentralized algorithm we reviewed here is the one

studied in section 3.1.2 which utilizes a broadcast channel to reach a consensus among all

sensors, without using any centralized processing. However, the assumption that all the

nodes can communicate with each other through a broadcast channel is not realistic. In

practical wireless sensor networks, because of the power constraints, nodes are only capable

of short-range communications. Thus, each node can communicate with only a few other

nodes that are close to it.
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Our proposed gossip-based algorithm, tries to reach a consensus among all the nodes

by only local communications. We will propose our method in the first section and show in

the following sections that it converges and the solution is exactly the same as the solution

of the centralized scheme, and hence globally optimum.

4.1 Gossip-Based Algortihm

Assume that we have a wireless sensor nodes, with N sensors, and without any central

node. Also, assume that we have a binary hypotheses testing problem. Sensor Si can

communicates only with a few other nodes that are in its communication range. We call

these nodes the neighbors of sensor Si and denote them by the set Vi. The notation

introduced in section 2.2.1 still holds. Our proposed algorithm for fully decentralized

detection is briefly as follows. Full details can be found in the next section.

1- Each sensor receives an observation and based on that, computes its likelihood ratio.

Let us denote this likelihood ratio by Λ(0):

Λ
(0)
i =

f(yi|H2)

f(yi|H1)
, i = 1, . . . , N (4.1)

2- The sensors make initial decisions based on their observations. Note that they make

their decisions under either Bayesian or Neyman-Pearson criterion. Note that, since

we have a binary hypothesis testing, under either of the frameworks, all the nodes

implement a likelihood ratio test.

3- Gossiping: After calculating the likelihood ratios and making initial decisions, the

nodes perform several rounds of gossiping. In each round, the nodes communicate

two-by-two and update their likelihood ratios. If the nodes i and j communicate with
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each other (or “gossip”) at iteration k, then, the update procedure is as follows:

Λ
(k)
i =

√
Λ

(k−1)
i · Λ(k−1)

j (4.2)

Λ
(k)
j =

√
Λ

(k−1)
i · Λ(k−1)

j (4.3)

where Λ
(k)
i denotes the value of the likelihood ratio of sensor Si at iteration k of the

algorithm (0 6 k).

4- Based on their new likelihood ratios, the sensors update their decisions. As mentioned

in step 2, all the nodes implement a likelihood ratio test with fixed thresholds. Unlike

the work of [5], in our algorithm, the likelihood ratios are updated and the thresholds

of the test are fixed and the same for all the sensors (λ1/N). More details are provided

in section 4.2.

5- Steps 3 and 4 are repeated until all the sensors decide on the same hypothesis (denoted

as “convergence”).

In next section we will show that the mentioned algorithm will converge to the same

decision as the centralized scheme.

4.2 Analysis of Proposed Algorithm

Having N conditionally independent observations (Y1, . . . , YN), and assuming a Bayes cost

or Neyman-Pearson performance criterion, the optimum (centralized) test for the binary

hypotheses testing is well known to be:

N∏
i=1

Λ(yi)
H2

≷
H1

λ (4.4)
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where in NP framework, λ can be found based on the probability of error criterion, and in

Bayesian framework it can be found based on the prior probabilities of the two hypotheses

and the costs. By optimum decision, we mean a decision which minimizes the probability

of the error.

In a fully decentralized sensor network, each node is only aware of its own likelihood

ratio and can perform a test like:

Λi(yi)
H2

≷
H1

λi (4.5)

In our method we have equal thresholds for all the nodes, and choose them in a way

such that their product is equal to the appropriate λ in (4.4). Therefore, λi = λ1/N , i =

1, . . . , N . These thresholds remain fixed through the algorithm. However, each node up-

dates its likelihood ratio in each iteration of the algorithm. The procedure is as follows: in

each iteration, nodes gossip two-by-two with each other and update their likelihood ratios

as described in (4.2) and (4.3). Note that although the individual likelihood ratios change,

the product of the likelihood ratios of all nodes remain fixed through the algorithm. In

other words:
N∏
i=1

Λ
(k)
i =

N∏
i=1

Λ
(k−1)
i , 1 6 k (4.6)

It is clear that only Λ
(0)
i has the classical definition of the likelihood ratio for sensor Si,

and hence equals to f(yi|H2)
f(yi|H1)

. However, we still call the updated versions, Λ
(k)
i for 1 6 k,

likelihood ratios for ease of notation.

Then, based on the updated versions of likelihood ratios, the nodes revise their decisions.

The algorithm will converge if all the nodes have the same decisions. Assume that at stage

k all the nodes have the same decisions. Without loss of generality, assume that they all

decide on H2. Thus:

Λ
(k)
i > λi = λ1/N , i = 1, . . . , N (4.7)
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Multiplying all the inequalities, we have:

N∏
i=1

Λ
(k)
i > λ

⇒
N∏
i=1

Λ
(0)
i > λ (using (4.6))

Which shows that H2 is also the solution of the centralized test, and hence optimum

(minimizes the probability of error). Thus, if all the nodes “agree” with each other and

reach a consensus decision, then their decision matches the centralized decision exactly.

However, a big question remains; Does this algorithm converge or not?

Note that, in order to prove that the mentioned algorithm converges, it is enough to

show that

as k →∞ : Λ
(k)
i →

[
N∏
j=1

Λ
(0)
j

]1/N

, i = 1, . . . , N (4.8)

The reason is that in this case, all the likelihood ratios become equal. Also, we know that

the thresholds are equal by definition. Therefore, all the nodes perform the same likelihood

ratio test and thus get the same result (convergence). The type of convergence that we

are concerned about in (4.8), is convergence in expectation. In the following theorem, we

prove that (4.8) is true and hence, our proposed algorithm converges.

Theorem 5. Assume that we have N nodes with initial values Λ
(0)
i , i = 1, . . . , N . Consider

the following gossip algorithm: At each iteration, nodes choose one of their neighbors at

random and gossip with each other. When two nodes gossip with each other, they update

their values according to the following procedure:

Λ
(k)
i =

√
Λ

(k−1)
i · Λ(k−1)

j (4.9)

Λ
(k)
j =

√
Λ

(k−1)
i · Λ(k−1)

j (4.10)
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where Λ
(k)
i denotes the value of the likelihood ratio of sensor Si at iteration k of the algorithm

(0 6 k). This gossip algorithm converges in expectation and we have:

lim
k→∞

E
[
Λ

(k)
i

]
=

[
N∏
j=1

Λ
(0)
j

]1/N

, i = 1, . . . , N (4.11)

The proof can be found in Appendix B.

Another important question is: How fast does the algorithm converge? or How many

messages do we need to send among sensors in order to converge? This can highly affect

the energy consumption of the sensors (the more transmitted messages, the more battery

consumption), and also the delay of the system. Actually there are many fast gossip

algorithms that we can employ. For example, the algorithm proposed in [9], achieves ε-

accuracy with high probability after O
(
n log log n log kn

ε

)
messages.

Discussion

Although the idea of gossiping for decentralized failure detection [10], threshold detec-

tion [11], and successive retesting and rebroadcasting [5] have been studied before, our

proposed algorithm is hugely different from them in the following aspects:

• As mentioned before, the likelihood ratios are updated in our algorithm in each

iteration, while other algorithms mainly try to update their thresholds.

• Unlike [5] we do not assume that all the nodes can communicate with each other

through a broadcast channel, and only consider local communications among nodes

(more realistic in the sense of power constraints).

• Our algorithm reaches a consensus decision for sure, and its decision matches the

centralized decision exactly, and hence optimum in the sense of probability of error.
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Appendix A

Proof of Theorem 1

This section is devoted to the proof of Theorem 1. The proof is taken from [2].

Lemma A.1. Let Z be a random variable taking values in Z. Also assume that condi-

tioned on any hypothesis, Z is independent of X. Let F : {1, . . . , D}×Z×{H1, . . . , HM} →

R be a given cost function. Let δ∗ be an element of ∆. Then, δ∗ minimizes E[F (δ(x), Z,H)]

over all δ ∈ ∆ if and only if

δ∗(X) = argmin
d=1,...,D

M∑
j=1

a(Hj, d)Pr(Hj|X), with probability 1

where

a(Hj, d) = E[F (d, Z,Hj)|Hj] ∀j, d

Proof. The minimization of E[F (δ(x), Z,H)] over all δ ∈ ∆ is equivalent to finding a

δ(X) that minimizes E[F (d, Z,H)|X], over all d ∈ {1, . . . , D}, with probability 1. Using
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the properties of conditional expectations, we have:

E[F (d, Z,H)|X] = E[E[F (d, Z,H)|H,X]|X]

= E[E[F (d, Z,H)|H]|X] (independence of X and Z)

=
M∑
j=1

E[F (d, Z,Hj)|Hj]Pr(Hj|X)

which is exactly what we wanted to achieve.

Using the above lemma, the proof is straight forward. To prove part (a) of theorem 1,

notice that we are concerned with the minimization of

E[C(γ0(Y0, U1, . . . , Ui−1, γi(Yi), Ui+1, . . . , UN), U1, . . . , Ui−1, γi(Yi), Ui+1, . . . , UN , Hj)]

with respect to γi. This is of the form considered in Lemma A.1, provided that we identify

X with Yi, Z with (Y0, U1, . . . , Ui−1, Ui+1, . . . , UN), and F (d, Z,Hj) with

C(γ0(Y0, U1, . . . , Ui−1, d, Ui+1, . . . , UN), U1, . . . , Ui−1, d, Ui+1, . . . , UN , Hj). The result then

follows from Lemma 1.

To prove part (b), note that:

min
γ0

J(Y0, γ1, . . . , γN) = E

[
min

d=1,...,M
E[C(d, U1, . . . , UN , H)|Y0, U1, . . . , UN ]

]
= E

[
min

d=1,...,M

M∑
j=1

Pr(Hj|Y0, U1, . . . , UN)C(d, U1, . . . , UN , Hj)

]

Q.E.D.
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Appendix B

Proof of Theorem 5

We use the result of [12] to prove Theorem 5. It was shown in [12] that:

Lemma B.1. Assume that we have N nodes with initial values x
(0)
i , i = 1, . . . , N .

Consider the following gossip algorithm: At each iteration, nodes choose one of their

neighbors at random and gossip with each other. When two nodes (i and j) gossip with

each other, they update their values according to the following procedure:

x
(k)
i =

x
(k−1)
i + x

(k−1)
j

2
(B.1)

x
(k)
j =

x
(k−1)
i + x

(k−1)
j

2
(B.2)

where x
(k)
i denotes the value of the sensor i at iteration k of the algorithm (0 6 k). This

gossip algorithm converges in expectation and we have:

lim
k→∞

E
[
x

(k)
i

]
=

[∑N
j=1 x

(0)
j

]
N

, i = 1, . . . , N (B.3)
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The proof of the lemma can be found in [12]. Now, if we do the following replacement:

x
(k)
i , log(Λ

(k)
i ) fori = 1, . . . , N and 0 6 k (B.4)

then Lemma B.1 transforms to Theorem 5, because the update procedure in Theorem 5:

Λ
(k)
i =

√
Λ

(k−1)
i · Λ(k−1)

j (B.5)

is equivalent to

log
(

Λ
(k)
i

)
=

log
(

Λ
(k−1)
i

)
+ log

(
Λ

(k−1)
j

)
2

(B.6)

which is the update rule of Lemma B.1. Also, we have:

log

[ N∏
j=1

Λ
(0)
j

]1/N
 =

∑N
j=1 log

(
Λ

(0)
i

)
N

(B.7)

which shows that Theorem 5 is equivalent to Lemma B.1 in the log domain and thus the

proof is complete.

Q.E.D.
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