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Abstract

Improving disease outcome prediction can greatly aid in the strategic deployment
of secondary prevention approaches. We develop two methods to predict the evo-
lution of diseases by taking into account personal attributes of the subjects and their
relationships with medical examination results. Our approaches build upon a re-
cent formulation of this problem as a graph-based geometric matrix completion
task. The primary innovation is the introduction of multiple graphs, each relying
on a different combination of subject attributes. Via statistical significance tests,
we determine the relevant graph(s) for each medically-derived feature. In the first
approach, we then employ a multiple-graph recurrent graph convolutional neural
network architecture to predict the disease outcomes. In the second approach, we
use a multiple-graph graph auto-encoder architecture to predict the disease out-
comes. We demonstrate the efficacy of the two techniques by addressing the task
of predicting the development of Alzheimer’s disease for patients exhibiting mild
cognitive impairment, showing that the incorporation of multiple graphs improves
predictive capability. Moreover, in the second approach, the use of a graph auto-
encoder also helps in increasing predictive capability.
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Résumé

Améliorer la prédiction de maladies est certainement très bénéfique pour le
développement d’approches de prévention secondaire. Nous proposons dans cette
thèse deux méthodes pour prédire l’évolution de maladies en prenant en compte
certaines caractéristiques personnelles des sujets et leur relation avec les résultats
des examen médicaux. Nos approches sont fondées sur la récente formulation de ce
problème comme étant une méthode géométrique de complétion de matrices basée
sur un graphe. La principale innovation proposée est l’introduction de plusieurs
graphes, chacun étant basé sur une combinaison différente de caractéristiques des
patients. Par le biais de tests statistiques, nous trouvons pour chaque élément des
examen médicaux le(s) graphe(s) au(x)quel(s) il est associé. Dans une première ap-
proche, nous employons une architecture basée sur des réseaux de neurones con-
volutifs sur plusieurs graphes pour prédire des maladies. Dans une seconde ap-
proche, nous utilisons un auto-encodeur construit sur plusieurs graphes pour la
même tâche de prédiction de maladies. Nous testons ces deux méthodes pour la
tâche de prédiction du développement de la maladie d’Alzheimer pour des patients
atteints d’une déficience cognitive légère et nous montrons que l’incorporation de
plusieurs graphes aide à augmenter la capacité de prédiction des deux algorithmes.
De plus, dans la deuxième approche, l’utilisation d’un auto-encodeur construit sur
plusieurs graphes aide aussi à augmenter la capacité de prédiction de maladies.



v

Acknowledgements

I wish to express my sincere thanks and gratitude to my supervisor Professor Mark
Coates for having accepted me within his team, for his support, his continuous
follow-up and his very helpful advice, scientifically speaking but also for the writ-
ing of my thesis. He transmitted me critical knowledge that have been essential in
my work as a research student and will also be very helpful in my future work.

I would also like to thank Professor Milica Popovic for her technical and moral
support during all my Master and in particular during the first year of my Master
when I was following the breast cancer detection project.

I would like to thank Florence Robert-Regol (Master’s student) and Soumya-
sundar Pal (PhD candidate) for the numerous discussions that we had on many
interesting topics such as those on graph convolutional neural networks or other
discussions related to graph signal processing and machine learning techniques
for graph-structured data. I would also like to thank them for their help while I
was having issues with my work, both theoretically and during the implementa-
tion step. I would also like to thank Laure Abecassis for her feedback when I was
writing my thesis.

I would like to thank all the members of the Computer Networks Lab for pro-
viding an inviting and enriching environment. I thank them for their kindness and
motivation throughout this journey at McGill University.

Lastly, I would like to thank the administration of the Electrical and Computer
Engineering department for the guidance they provided during all my stay at McGill
University.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Organization and Contributions . . . . . . . . . . . . . . . . . 3

1.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Material 5
2.1 Statistical methods for longitudinal data analysis . . . . . . . . . . . . 5

2.1.1 Generalized Linear Models . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Extensions of GLMs to longitudinal data . . . . . . . . . . . . 6

Marginal models . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Transition (Markov) models . . . . . . . . . . . . . . . . . . . . 7
Mixed-effects models . . . . . . . . . . . . . . . . . . . . . . . . 8
Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Statistical inference methods . . . . . . . . . . . . . . . . . . . 9
Partial likelihood methods . . . . . . . . . . . . . . . . . . . . . 9
Full likelihood methods . . . . . . . . . . . . . . . . . . . . . . 10
Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . 11
Recent developments for inference methods . . . . . . . . . . 11

2.2 Matrix completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Examples of architecture to solve a matrix completion task . . 14

Separable Recurrent Graph Convolutional Neural Network . 14
Graph Convolutional Matrix Completion . . . . . . . . . . . . 15

2.3 Graph Convolutional Neural Networks . . . . . . . . . . . . . . . . . 16
2.3.1 Spectral approaches . . . . . . . . . . . . . . . . . . . . . . . . 17

Spectral Graph Convolution . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Spatial approaches . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Medical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



viii

2.4.1 Structural MRI measures . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Positron Emission Tomography (PET) . . . . . . . . . . . . . . 24
2.4.3 Cerebrospinal Fluid (CSF) . . . . . . . . . . . . . . . . . . . . . 26

3 Literature review 29
3.1 Statistical methods for the study of Alzheimer’s disease . . . . . . . . 29

3.1.1 Mixed-effects models . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Marginal models with GEEs . . . . . . . . . . . . . . . . . . . . 31

3.2 Machine learning methods for the prediciton of conversion from MCI
to AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Using raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Using handcrafted features . . . . . . . . . . . . . . . . . . . . 32

3.3 Graph-based methods for the prediction of conversion from MCI to
AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Comparison of these methods . . . . . . . . . . . . . . . . . . . . . . . 34

4 Multiple-Graph Recurrent Graph Convolutional Neural Network Archi-
tectures for predicting disease outcomes 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 Multiple-Graph Recurrent Graph Convolutional Neural Net-
work (MG-RGCNN) . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 Application to Alzheimer’s disease . . . . . . . . . . . . . . . 41
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Graph construction . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Optimization of the hyperparameters . . . . . . . . . . . . . . 48

For the sRGCNN . . . . . . . . . . . . . . . . . . . . . . . . . . 49
For the MG-RGCNN . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.3 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Multiple-Graph Graph Auto-Encoder architectures for predicting disease
outcomes 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 Multiple-Graph Graph Auto-Encoder (MG-GAE) . . . . . . . 57
5.3.2 Application to Alzheimer’s disease . . . . . . . . . . . . . . . 61



ix

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.1 Optimization of the hyperparameters . . . . . . . . . . . . . . 62
5.4.2 Results of the experiments . . . . . . . . . . . . . . . . . . . . . 63
5.4.3 Vizualization of the embeddings . . . . . . . . . . . . . . . . . 65

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusion 69

A Datasets for the prediction of Alzheimer’s disease 71
A.1 TADPOLE dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.1.1 Preprocessing of the TADPOLE dataset . . . . . . . . . . . . . 71
A.2 Synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.2.1 Creation of the synthetic dataset . . . . . . . . . . . . . . . . . 73
A.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

B Vizualization of the embeddings on the TADPOLE dataset. 75

C Vizualization of the embeddings on the synthetic dataset. 79

Bibliography 83





xi

List of Figures

2.1 Parcellation of a slice of a brain MRI into GM, WM and CSF. Repro-
duced from [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 a) A coronal T1-weighted brain MRI. b) Brain structures segmented
by FreeSurfer. Reproduced from Mahmoudi et al. [70] . . . . . . . . . . . 23

2.3 Different ROIs of the brain labeled with FreeSurfer. Reproduced from [72] 24
2.4 AV45 and AV1451 PET scans. Reproduced from [81] . . . . . . . . . . . 25
2.5 CSF fluid. Reproduced from [82] . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Process to decide the feature dependence. . . . . . . . . . . . . . . . 40
4.2 MG-RGCNN architecture for the application of prediction of conver-

sion from MCI to AD. The initial matrix Z is divided into 4 subsets
Zage, Zsex, Zage&sex and Zns respectively associated with each graph
Gage, Gsex, Gage&sex and Gns. The highlighted columns are the columns
of features that are associated with the attribute(s) that the graph is
built on and that are kept in Zi. . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Relationships of age and sex (Men and Women) with six different
features in the case of Alzheimer’s disease. The age-related features
are the left caudal anterior cingulate cortical thickness standard devi-
ation (top) and the hypointensities volume (bottom); the sex-related
features are intracranial volume (top) and the left caudate volume
(bottom); the age & sex-related features are the raw volume value for
the right pars orbitalis (top) and the cortical thickness average of the
left pars orbitalis (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Brain regions studied in Fig. 4.3 . . . . . . . . . . . . . . . . . . . . . . 46
4.5 3D view of brain regions studied in Table 4.1. Reproduced from [113]. . 48
4.6 Violin plots of the distribution of the AUC over the 100 different

train/validation/test initializations for linear SVM, sRGCNN, MG-
RGCNN, Parisot et al. and random forest. . . . . . . . . . . . . . . . . 52

5.1 Graph auto-encoder process for subject i and feature j. . . . . . . . . 58



xii

5.2 Three bipartite graphs corresponding to different attributes of the
subjects. The three colors represent three different bipartite graphs
that act between different groups of subjects and features. Group 1
is for example a group of subjects that have an age between 70 to 75.
Subjects 1 and 2 have an age between 70 to 75 and feature 1, 2, j + 1
and n are age-related features. M(2, 1) is missing hence the missing
edge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Depiction of the architecture. M is the input and the grey elements
are missing values. M̃ is the output. GAE is the Graph Auto-encoder. 60

5.4 Violin plots of the distribution of the AUC over the 100 different
train/validation/test initializations for linear SVM, sRGCNN, MG-
GAE, the GCNN-based algorithm designed by Parisot et al. and ran-
dom forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Scatter plots of the two first components of PCA for the sex-related
embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Scatter plots of the two first components of PCA for the age-related
embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 Scatter plots of the two first components of PCA for the age & sex-
related embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.1 Histograms of the number of men and women in each age group. . . 72

B.1 Scatter plots of the two first components of PCA for the age-related
embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.2 Scatter plots of the two first components of PCA for the age & sex-
related embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.1 Scatter plots of the two first components of PCA for the sex-related
embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.2 Scatter plots of the two first components of PCA for the age-related
embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.3 Scatter plots of the two first components of PCA for the age & sex-
related embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



xiii

List of Tables

2.1 Different measures of the different modalities in the TADPOLE dataset. 22

4.1 Results of the study of feature dependencies with age and sex. . . . . 47
4.2 Results of the optimization of the hyperparameters for the sRGCNN

architecture. The AUC reported is the one on the validation set. . . . 49
4.3 Results of the optimization of the hyperparameters for the MG-RGCNN

architecture. The AUC reported is the one on the validation set. . . . 50
4.4 Mean test AUC in the different cases presented for the TADPOLE

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Wilcoxon scores for the TADPOLE dataset. 1: sRGCNN, 2: MG-

RGCNN GCN similarity, 3: MG-RGCNN GCNN similarity, 4: ran-
dom forest, 5: linear SVM, 6: multi-layer perceptron, 7: the architec-
ture from Parisot et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Table of fixed hyperparameters to run each different algorithm. . . . 53

5.1 List of the 23 support matrices . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Results of the optimization of the hyperparameters for the synthetic

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Results of the optimization of the hyperparameters for the TADPOLE

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Mean test AUC in the different cases presented for the synthetic dataset. 63
5.5 Mean test AUC in the different cases presented for the TADPOLE

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Table of fixed hyperparameters to run each different algorithm. . . . 64

A.1 Characteristic of the subjects for the TADPOLE dataset. . . . . . . . . 72
A.2 Table of parameters for the synthetic dataset. . . . . . . . . . . . . . . 74





1

1 Introduction

Preventing a disease with early intervention rather than waiting for a diagnosis
and then performing a treatment after is the modern approach to healthcare. In
some areas like cardiovascular disease or neurosurgery, computer-based tools are
already being used by doctors to improve prediction. Improving disease outcome
prediction can greatly aid in the strategic deployment of secondary prevention ap-
proaches. Secondary prevention tries to halt or slow the progress of a disease for
people that are already sick but only on the early stages of the disease.

1.1 Motivation

Prediction of disease outcomes can be challenging for a doctor as the reasons for a
disease may not be well-known and trying to see an evolution might mean regular
check-ups which are expensive, in terms of both time and monetary cost. Tradi-
tionally, a risk calculator is used to assess the possibility of disease development.
It is based on fundamental information (demographics or medical conditions for
example). Risk calculators are created based on statistical analysis of clinical data.
However, these risk calculators do not perform well and have a low accuracy [1],
[2]. An example of such a calculator is given in the Framingham study [1] where
a risk calculator is developed for long-term cardiovascular disease. The accuracy
of the prediction for hospitalization is only 56% [2]. These models with a low ac-
curacy are not helpful for disease outcome prediction. In recent years, there have
been intensive efforts to develop and apply machine learning methods to predict
disease outcomes. Compared to traditional approaches, machine learning methods
use a large number of variables which help them in improving results. In order to
develop such models, data is required to train the model. In the case of cardiovas-
cular disease, Dai et al. [3] achieve an accuracy of 82% for the same false alarm of
30% on the task from the Framingham study with a machine learning algorithm
and with more medical factors, improving by 26% the results obtained with a tradi-
tional approach. Moreover, another study from the Francis Crick Institute [4] also
demonstrates that a machine learning model performs better than models designed
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by medical experts at predicting risk of death in patients with heart disease. Ma-
chine learning helps in increasing the accuracy of these models but also allows us
to identify new important variables for the prediction that doctors had not con-
sidered. Machine learning techniques were also applied to neurosurgical outcome
prediction [5]. In [5], Senders et al. review thirty studies that used machine learn-
ing algorithms for an outcome prediction task after neurosurgery. Some algorithms
achieved an accuracy 15% higher than the one obtained with logistic regression [6]–
[9]. Some other studies reviewed in [5] show that machine learning methods out-
perform established prognostic indices [10], [11] and clinical experts [12], [13].

We focus on the prediction of Alzheimer’s disease but the work presented here
can be applied to other diseases. Alzheimer’s disease (AD) is an irreversible disease
which destroys brain cells and according to Alzheimer’s Disease International [14],
someone develops dementia in the world every three seconds. The number of peo-
ple living with dementia in 2015 is estimated to be 46.8 million and is expected
to double every 20 years, reaching 75 million in 2030. Several tools exist to deter-
mine if a person with memory problems has possible AD. For example, questions
about overall health can be asked to a family member, memory, neuropsychological
or standard medical tests can be conducted or brain scans can be performed [15].
Tests should be conducted every 6 to 12 months for people with memory problems.
However, the diagnosis is uncertain. Indeed, AD can only be definitively diag-
nosed after death by linking clinical measures with an examination of brain tissues
in an autopsy. Early and accurate diagnosis is important as an early treatment in
the disease process may help improve the quality of life of patients for some time
even though no cure is available for AD. Several medications for memory decline,
changes in language, thinking ability and motor skills exist.

Mild Cognitive Impairment (MCI) is a clinical diagnosis that represents a poten-
tial intermediate stage between normal stage and dementia. The tests to diagnose
MCI are similar to those used for AD [16]. Approximately 15 to 20% of people
that are 65 or older have MCI. Patients with MCI are in a stage where the disease
could evolve to AD or not. Predicting the conversion from MCI to AD is very im-
portant as knowing the probable progression of the disease early can greatly aid
in the strategic deployment of secondary prevention approaches. Thus, applying
machine learning models to the prediction of conversion from MCI to AD may help
to potentially detect patterns that are not obvious to a doctor. The goal of our work
is to develop methods to predict the evolution of a patient from MCI to AD based
on multi-modal data from an array of medical examinations and scans.
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1.2 Thesis Organization and Contributions

Below we describe the organization of the thesis and summarize the main technical
contributions.

• Chapter 2 - Background
We present the background material required for this thesis. We start with a
review of statistical methods for longitudinal data based on generalized lin-
ear models. Then, we describe the matrix completion problem, on which both
of the developed approaches are based, and Graph Convolution Neural Net-
works, an architecture used in both approaches. Lastly, we give medical back-
ground to better understand the used dataset for the prediction of conversion
from MCI to AD.

• Chapter 3 - Literature review
We first describe statistical methods used for the study of Alzheimer’s disease.
Then, we develop the machine learning and graph-based methods applied to
the task of prediction of conversion from MCI to AD. Finally, we provide a
short comparison of the different type of methods for the disease outcome
prediction task.

• Chapter 4 - Multiple-Graph Recurrent Graph Convolutional Neural Network Archi-
tectures for predicting disease outcomes
We present the first architecture that we developed for predicting disease out-
comes. We pose the problem as a matrix completion problem and solve it
with a recurrent graph convolutional neural network, using multiple graphs
in order to take into account subject-specific information.

• Chapter 5 - Multiple-Graph Graph Auto-Encoder architectures for predicting disease
outcomes
We present the second architecture developed for predicting disease outcomes.
Here, we also pose the problem as a matrix completion problem but solve it
with a graph auto-encoder strategy.

• Chapter 6 - Conclusion
We provide a summary of the main contributions of the thesis and discuss the
outcomes and observed results.

1.2.1 Contributions

• Chapter 4 - Multiple-Graph Recurrent Graph Convolutional Neural Network Archi-
tectures for predicting disease outcomes
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Prof. Mark Coates provided guidance with the research plan and experimen-
tal procedure. I designed the architecture and introduced a novel technique
to take into account multiple graphs. I conducted the experiments to test the
architecture developed.

• Chapter 5 - Multiple-Graph Graph Auto-Encoder architectures for predicting disease
outcomes
Prof. Mark Coates provided guidance with the research plan and experimen-
tal procedure. I designed the architecture and introduced significant changes
to the auto-encoder method to adapt it to our problem. I conducted the exper-
iments to test the architecture developed.

1.2.2 Publications

• Chapter 4 - Multiple-Graph Recurrent Graph Convolutional Neural Network Archi-
tectures for predicting disease outcomes
J. Valenchon and M. Coates, "Multiple-Graph Recurrent Graph Convolutional
Neural Network Architectures for predicting disease outcomes", to appear
in Proc. 2019 IEEE Int. Conf. Acoustics, Speech and Signal Process. (ICASSP),
Brighton, UK, May 2019.
This paper relates to the work described in Chapter 4.
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2 Background Material

This chapter provides a summary of background material relevant to this thesis,
drawing on literature from the statistical and machine learning fields as well as the
medical domain. Although the data analysis techniques presented in this thesis
derive from a machine learning perspective, it is important to discuss statistical
methods.

Section 2.1 presents an overview of statistical techniques for performing longi-
tudinal data analysis, with a focus on the generalized linear model. We focus on
longitudinal data because of the nature of the prediction task. In Chapter 4 and 5,
we formulate the disease outcome prediction task as a matrix completion task. With
this in mind, Section 2.2 describes the matrix completion problem, focusing on ge-
ometric approaches. Section 2.3 provides background material on graph convolu-
tional neural networks. Section 2.4 introduces background material on the different
imaging modalities used to generate the dataset we analyze to attempt to predict
the onset of Alzheimer’s disease.

2.1 Statistical methods for longitudinal data analysis

In developing methods for analyzing longitudinal data and predicting disease out-
comes, we can consider statistical approaches [17]. One-way analysis of variance
(ANOVA) and multivariate ANOVA (MANOVA) can be used to compare group
means. For example, one can assess whether there is a significant difference in the
means of a particular risk factor for the group that does not progress to a disease
versus the group that does. These techniques have limitations, however. In particu-
lar, they struggle in the face of missing or irregularly-timed data, usually requiring
undesirable data imputation. More importantly, the ANOVA/MANOVA models
do not permit incorporation of time-varying predictors, which usually play an es-
sential role in capturing disease dynamics.

Extensions of Generalized Linear Models provide a more flexible framework. In
the subsequent sections we review the definition of a generalized linear model and
then describe extensions that have been introduced for longitudinal data analysis.
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2.1.1 Generalized Linear Models

A generalized linear model (GLM) is a regression model for independent responses
that can be either discrete or continuous. Let Yi ∈ R be the ith response and xi ∈ Rp

the p× 1 vector of explanatory variables (covariates) for the ith response. The index
i ranges from 1 to K. The goal is to describe the dependence of the mean response
µi = E(Yi) ∈ R on the covariates. A GLM is described by Eqs. (2.1) and (2.2). In
these expressions, g : R −→ R is a known link function and β ∈ Rp is the model
parameter to be inferred. The known variance function v : R −→ R describes how
the variance var : R −→ R depends on the mean, and φ ∈ R is a constant dispersion
parameter.

g(µi) = xT
i β. (2.1)

var(Yi) = v(µ)φ. (2.2)

The link function g : R −→ R and the variance function v : R −→ R can be any func-
tion such as the identity, logit or log functions. Many methods have been developed
to infer β [18].

2.1.2 Extensions of GLMs to longitudinal data

GLMs cannot be applied directly to longitudinal data because the responses are cor-
related, thus violating one of the core model assumptions. There are three promi-
nent extensions of GLMs that allow application to longitudinal data analysis [19].
These include marginal models, transition (Markov) models and mixed-effects mod-
els. The difference between these three approaches lies in how correlation is mod-
elled.

In marginal models, regression and within-subject correlation are modeled sep-
arately. In transition models and in mixed-effects models, they are modeled jointly.
In order to estimate the parameters for a marginal or a transition model, the Gener-
alized Estimating Equation (GEE), a partial likelihood method, is commonly used.
This approach involves fewer nuisance parameters than a full likelihood method.
A full likelihood approach is normally adopted for mixed-effects models.

Below we briefly review the three different models for statistical longitudinal
data analysis. More detail is provided for mixed-effects models because, among
statistical methods, the mixed-effects model most flexibly accommodates the chal-
lenges of neurodegenerative diseases and associated longitudinal data [17]. It is
preferred by the US Food and Drug Administration (FDA) for observational and
clinical studies.
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The summary provided here is based on material in [19]. In this subsection,
longitudinal data is characterized by an ni × 1 vector of repeated responses for the
i-th subject Yi. The index i ranges from 1 to K and the vector can be expressed as
Yi = (Yi1, Yi2, . . . , Yini)

T ∈ Rni . At time t, one observes the response Yit ∈ R and a
p× 1 vector of covariates xit ∈ Rp.

Marginal models

A marginal model assumes that the marginal expectation of Yit, denoted µit =

E(Yit), is related to xit by g(µit) = xT
itβ where g : R −→ R is a known link func-

tion and β ∈ Rp the model parameter to be inferred and that the marginal variance
is linked to the marginal expectation by var(Yit) = v(µit)φ where v : R −→ R

is a known function and φ ∈ R a constant dispersion parameter as in the GLM
model. Compared to the standard GLM, a key change is in the model of the covari-
ance matrix because Yis and Yit are correlated. The covariance is parametrized as
cov(Yis, Yit) = c(µis, µit, α) where c : R3 −→ R is considered to be a known function
and α ∈ R an additional parameter.

An interpretation at the population level is given by marginal regression coeffi-
cients. β ∈ Rp describes the effects of the covariates on the marginal expectation of
the Y variables.

Transition (Markov) models

Compared to marginal models, transition models try to address both the regression
objective and the within-subject correlation simultaneously. The hypotheses are not
specified on the marginal expectation and covariance but instead on the conditional
expectation µc

it = E(Yit|Yit−1, . . . , Yi1) and the conditional variance var(Yit)
c =

var(Yit|Yit−1, . . . , Yi1). The conditional expectation is modeled as

g(µc
it) = xT

itβ +
v

∑
j=1

αj f j(Yit−1, . . . , Yi1), (2.3)

where g : R −→ R and { f j : Rt−1 −→ R, j = 1, . . . , v} are known functions and β ∈ Rp

and α = (α1, . . . , αv)T ∈ Rv are the parameters to be inferred. The assumption on
the conditional variance of Yit is var(Yit)

c = v(µc
it)φ where v : R −→ R is a known

function and φ ∈ R a constant dispersion parameter as in the GLM model.
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Mixed-effects models

Compared to transition models where the regression coefficients are interpretable
only at a population level, mixed-effects models attempt to interpret the coefficients
at both population and individual levels. This is done by introducing random ef-
fects at the subject level bi ∈ Rq (i = 1, . . . , K) in addition to fixed effects at the
population level β ∈ Rp. In general, the covariate vector zit ∈ Rq for random ef-
fects bi is chosen to be a subset of the covariate vector xit ∈ Rp for fixed effects
β.

Gibbons et al. [20], Laird et al. [21] and Davidian [22] present a variety of lin-
ear and nonlinear mixed-effects regression models and discuss their application to
longitudinal data analysis. One of the simplest models is the linear mixed-effects
model from [23] with Eq. (2.4) where εi ∈ Rni is an error term; ε1, . . . , εK, b1, . . . , bK

are independent.

Yit = βTxit + bT
i zit + εit, εi =


εi1
...

εini

 ∼ Nni(0, Σi), bi ∼ Nq(0, D). (2.4)

In order to move to a matrix formulation of the linear mixed-effects model, let
us denote Yi = (Yi1, Yi2, . . . , Yini)

T ∈ Rni , Xi = (xT
i1, . . . , xT

ini
)T ∈ Rni×p and Zi =

(zT
i1, . . . , zT

ini
)T ∈ Rni×q. Eq. (2.4) directly reads as Eq. (2.5).

Yi = Xiβ + Zibi + εi, εi ∼ Nni(0, Σi), bi ∼ Nq(0, D). (2.5)

A matrix formulation of the linear mixed-effects model for Y = (Y1, Y2, . . . , YK)
T ∈

Rn where n = ∑K
i=1 ni is given in Eq. (2.6) where X = (X1, X2, . . . , XK)

T ∈ Rn×p,
Z = diag(Z1, Z2, . . . , ZK) ∈ Rn×Kq, b = (b1, . . . , bK)

T ∈ RKq, ε = (ε1, . . . , εK) ∈ Rn,
D̃ = diag(D, . . . , D) ∈ RKq×Kq, R = diag(Σ1, . . . , ΣK) ∈ Rn×n and Om×n is a m× n
matrix only filled with 0.

Y = Xβ + Zb + ε,

(
b
ε

)
∼ NKq+n(

(
0
0

)
,

(
D̃ OKq×n

On×Kq R

)
). (2.6)

Davidian presents a Bayesian formulation of both the linear and non-linear mixed-
effects models [22]. The Bayesian formulation incorporates a prior on the distribu-
tion of β in the formN (β∗, H) and D−1 ∼Wishart. β∗, H and the parameters of the
Wishart distribution are assumed to be known.
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Semiparametric and non-parametric forms of the mixed-effects model are de-
scribed in Davidian et al. [24] and Quintana et al.[25]. The nonlinear mixed-effects
model is generalized to a semiparametric model by allowing f to depend on a com-
pletely unspecified function of time and on the elements of βi. The extension to
multivariate responses is also developed in Davidian et al. [24].

For both linear and nonlinear models, the mixed-effects model can be extended
to more than two levels. For example, instead of only having a population and a
subject level, we can also have a clinic level. This extension is described in Gibbons
et al. [20] and Davidian [22].

Model comparison

Of the three models outlined above, the marginal model and mixed-effects model
are most commonly used for analysis of disease longitudinal data [17]. Both models
allow either time-invariant or time-varying predictors and handle irregularly timed
and missing data without the need for explicit imputation. Both provide mech-
anisms for assessing the regression relationship between covariates and repeated
responses. However, the marginal model does not allow one to choose the correla-
tion structure of the repeated responses. Furthermore, hypothesis testing cannot be
performed on correlation parameters. Mixed-effects models use random-effects to
describe subject-specific trends over time which provides greater flexibility in mod-
elling the correlation structure of the repeated response. The mixed-effects models
are more complex and they rely on correct specification of the mean and correlation
structure of the repeated responses for valid hypothesis testing conclusions.

2.1.3 Statistical inference methods

We would like to infer the parameters β ∈ Rp from the marginal model, β ∈ Rp

and α ∈ Rv from the transition model and β ∈ Rp and bi ∈ Rq (i = 1, . . . , K) from
the mixed-effects models. In this section, we describe two of the most common
methods for statistical inference — full and partial likelihood methods. We also
briefly discuss the Bayesian inference method and recent developments to reduce
the computational complexity of inference for linear mixed-effects models.

Partial likelihood methods

The full likelihood method involves many nuisance parameters. For the marginal
and the transition model, partial likelihood methods are attractive alternatives. A
common strategy is to construct a generalized estimating equation (GEE) and use
it to estimate the parameters. A GEE relies on the specification of the first two
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moments rather than the full likelihood. Parameter estimates are consistent with
GEE as the number of subjects goes to infinity even if the covariance structure of
Yi is incorrectly specified. The equation to estimate β is Sβ(β, α) = 0. Here Sβ

is the quasi-score function defined in Eq. (2.7). The equations to estimate α are
Sβ(β, α) = 0 and Sα(β, α) = 0, with Sα defined in Eq. (2.8).

Sβ(β, α) =
K

∑
i=1

(
∂µi

∂β
)Tcov−1(Yi)(Yi − µi), µi = (µi1, . . . µini)

T. (2.7)

Sα(β, α) =
K

∑
i=1

(
∂ηi

∂α
)T(wi − ηi), (2.8)

wi = (ri1ri2, ri1ri3, . . . , rini−1rini , r2
i1, . . . , r2

ini
), (2.9)

rij = Yij − µij, (2.10)

ηi = E[wi; β, α]. (2.11)

Moreover, models with GEE are more restrictive in their assumptions regarding
missing data than full-likelihood models.

Full likelihood methods

Full likelihood methods are more computationally expensive than partial likelihood
methods. On one hand, a partial likelihood method rewrites the likelihood as the
product of one term that depends on β and one that depends on α so that the pa-
rameters β and α are inferred with two different formulas. On the other hand, a full
likelihood method only uses one formula to find the parameters. Full likelihood
methods are used to infer parameters of mixed-effects models. Two inference meth-
ods are commonly used, one based on maximum likelihood (ML) and the other one
on restricted maximum likelihood (ReML).

In the case of linear mixed-effects models for longitudinal data, the matrix form
of the problem reads as Eq. (2.6), as described earlier in the linear mixed-effects
part. When D and R are known, the standard estimators for β and b are the general-
ized least squares estimators β̂ = (XTV−1X)−1XTV−1Y and b̂ = D̃ZTV−1(Y− Xβ̂)

where V = R+ZD̃ZT. When D and R are not known, the ML estimators for β and b
are obtained by maximizing the log-likelihood corresponding to the marginal den-
sity of y for β and D. The variable part of the log-likelihood is stated in Eq. (2.12).
The ML estimators for the variance components are biased and the ReML method
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adds a term in the log-likelihood to correct that bias (Eq. (2.13)).

lML(β, D|Y) = −1
2

log |V| − 1
2
(Y− Xβ)TV−1(Y− Xβ). (2.12)

lReML(β̂, D|Y) = −1
2

log |XTV−1X|+ lML(β̂, D|Y). (2.13)

The goal is to maximize Eq. (2.12) or Eq. (2.13) in order to obtain estimates for
β and D. Two commonly employed methods are the Newton-Raphson (NR) algo-
rithm [26]–[28] and the Expectation-Maximization (EM) algorithm [27]–[29]. The
NR algorithm is an algorithm to find the value x such that f (x) = 0. Here, as we
are trying to maximize the log-likelihood, the equation to solve for the ML method
to find an estimate of β is ∂lML(β,D|Y)

∂β = 0. We have the same equations for the ReML
method and for the other parameters we are trying to estimate. The NR algorithm
is an iterative algorithm that updates the estimate of the parameter x at each step
via the equation xk+1 = xk −

f (xk)
f ′(xk)

.
Lindstrom et al. [27] present an efficient and computationally simple way to

implement the NR algorithm and the EM algorithm with matrix decompositions for
linear mixed-effects models. The two algorithms are also described by Gumedze et
al. [28]. A likelihood method for nonlinear mixed-effects model is described by Wu
et al. [29]. An EM algorithm is used for the likelihood estimation.

Bayesian inference

Davidian [22] describes the Bayesian inference method. It is based on employ-
ing sampling methods to approximate the posterior distribution of the parameters
given the data. The Gibbs sampler is used to address the computational difficul-
ties involved in the necessary high-dimensional integration for linear and nonlin-
ear mixed-effects models. Bayesian inference for nonlinear mixed-effects models is
described by Lachos et al. [30].

Recent developments for inference methods

For linear mixed-effects models, Gao et al. [31] present an approach based on the
method of moments that is more effective for problems with two random effects
and one fixed effect than a likelihood or Bayes approach. The usual methods scale
badly to large datasets, with a cost that grows superlinearly in the sample size. The
method proposed in Gao et al. [31] has a cost that scales linearly in the problem
size and it achieves similar estimation accuracy. Tan et al. [32] present the com-
putational complexity of the different inference algorithms, focusing on the case of
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high-dimensional linear mixed-effects models (where the number of covariates p
and the sample size n are related as p� n). For this setting, EM and NR algorithms
are too computationally expensive because of the matrix inversions. For the ReML
algorithm, the computational complexity is O(n2p). Using a method of moments
approach it can be reduced to O(n(p + q)4), with q being the number of random
effects [33], but the resultant method has no convergence guarantee. The algorithm
proposed by Tan et al. [32] is scalable with sublinear computational complexity in p
and is guaranteed to converge. The computational cost is O(

n2(k+log p) log k
ε2 ), where

k is the rank of the covariance matrix and ε is the target approximation error.

2.2 Matrix completion

The goal of matrix completion is to recover a matrix M of shape m × n where we
only know p entries and p� mn. Formulated as such, the problem is impossible to
solve without additional information. However, in many cases, M is known to be
structured and the low-rank or the approximately low-rank approximation can be
made. This approximation is employed when the matrix entries only depend upon
a small number of factors. For example, in the case of recommender systems, the
preferences of a user are primarily related to few factors (age, passion for example)
so the approximately low-rank assumption can be made.

The low-rank matrix completion problem is given by Eq. (2.14) where X is the
matrix to complete and Ω is the set of known entries mij in matrix M.

min
X

rank(X) s.t. xij = mij, ∀(i, j) ∈ Ω. (2.14)

The low-rank matrix completion problem, when described as a rank minimiza-
tion problem as in Eq. (2.14), is NP-hard. Exact solutions given by all known algo-
rithms require time doubly exponential in the dimension of the matrix, in theory
and in practice.

An alternative to rank minimization is given by Candès and Recht [34]. They re-
place the rank operator by the nuclear norm. The nuclear norm is a convex function
defined as the sum of the singular values of the matrix. Under some assumptions
given in [34], Eq. (2.15) has a unique low-rank matrix solution and for most prob-
lems, Eq. (2.15) is equivalent to Eq. (2.14).

min
X

||X||∗ s.t. xij = mij, ∀(i, j) ∈ Ω. (2.15)
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If we want the problem to be more robust to noise, the equality constraint of
Eq. (2.15) is replaced by a penalty in the objective function. Eq. (2.16) highlights the
new form of the problem where ◦ is the element-wise Hadamard product, ||.||F is
the Frobenius norm, ||A||F =

√
∑m

i=1 ∑n
j=1 |aij|2 for an m× n matrix A and µ controls

the balance between fidelity to known values and minimization of the rank.

min
X

||X||∗ +
µ

2
||Ω ◦ (X−M)||2F. (2.16)

For semidefinite matrices, the nuclear norm is equivalent to the trace, so Eq. (2.15)
can be rewritten as Eq. (2.17).

min
X

trace(X) s.t. xij = mij, ∀(i, j) ∈ Ω. (2.17)

Eq. (2.17) can be extended to all kinds of matrices by:

min
X,W1,W2

trace(W1) + trace(W2) s.t. xij = mij, ∀(i, j) ∈ Ω, (2.18)[
W1 X
X∗ W2

]
≥ 0. (2.19)

Another alternative to rank minimization is geometric matrix completion. In
this approach, graphs are used to encode relationships between rows and columns.
All graphs are assumed to be given as inputs. This translates to the addition of
regularization terms in the objective function. This approach was introduced by
Kalofolias et al. [35]. Let us assume that the rows and columns of M are given on
vertices of graphs. The rows are characterized by the graph Gr and the columns
by the graph Gc. Gr = (Vr, Er, Ar) and Gc = (Vc, Ec, Ac) are undirected weighted
graphs where Vr = {1, . . . , m} and Vc = {1, . . . , n} are the vertices and Er and Ec

the edges weighted with non-negative values represented by adjacency matrices Ar

(size m×m) and Ac (size n× n). In order to take into account the graph structures
in the matrix completion task, two smoothness terms are added to the objective
function, one per graph.

min
X

µ

2
||X||∗ + ||Ω ◦ (X−M)||2F +

µr

2
||X||2Gr

+
µc

2
||X||2Gc

. (2.20)

We denote by ||X||G = trace(XT∆X) the Dirichlet norm with respect to a graph
G represented by adjacency matrix A, degree matrix D with Dii = ∑j Aij and graph
Laplacian ∆ = I −D−1/2AD−1/2, for identity matrix I. µ, µr and µc control the bal-
ance between fidelity to known values and smoothness with respect to the graphs.
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It is also possible to only take into account the graphs and remove the nuclear
norm term as tested for recommender systems by Kalofolias et al. [35] and theoret-
ically written by Monti et al. [36]. In that case, the alternative to rank minimization
is given by Eq. (2.21).

min
X

µ

2
||Ω ◦ (X−M)||2F + ||X||2Gr

+ ||X||2Gc
. (2.21)

All the alternatives to rank minimization given previously by Eqs. (2.15), (2.16),
(2.17), (2.19), (2.20) and (2.21) are convex optimization problems so a unique robust
solution exists. A solution for this problem is to use the factorized form of X =

WHT where W and H are respectively m× r and n× r matrices with r � min(m, n).
By construction, rank(X) ≤ r and this goes with the low-rank assumption. This
approach is described in Monti et al. [36] and Ramlatchan et al. [37].

2.2.1 Examples of architecture to solve a matrix completion task

We review here two architectures developed to solve the matrix completion task
for recommender systems. The first one is developed by Monti et al. [36] and the
second one by Van Den Berg et al. [38].

Separable Recurrent Graph Convolutional Neural Network

One solution to solve the minimization problem described in Eq. (2.21) is given in
Monti et al. [36] where Monti et al. proposed a method named separable Recurrent
Graph Convolutional Neural Network (sRGCNN). This method combines a graph
convolutional neural network (GCNN) and a recurrent neural network (RNN) to
construct a graph diffusion process to identify a solution of the geometric matrix
completion problem. Background material concerning GCNNs is provided in Sec-
tion 2.3 and the GCNN used by Monti et al. is the one from Defferrard et al. [39]
with the Chebyshev decomposition. The second part of the architecture involves
an RNN and more specifically an LSTM. This part of the architecture helps for the
diffusion process and computes an update of the matrix to complete. RNNs are net-
works with loops in them so information can persist. LSTMs are capable of learning
long-term dependencies, something RNNs are not able to do in practice. The archi-
tecture is described by the formulas given in Eqs. (2.22), (2.23), (2.24) and (2.25).
W f , Wi, Wo and Wc are weight matrices updated with backpropagation. b f , bi, bo and
bc are bias vectors updated with backpropagation. xt is the input, ht is the ouput
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and ht−1 is the output at the previous time step. σ and tanh are non linearities. [a, b]
represents the concatenation of a and b.

ft = σ(W f [ht−1, xt] + b f ), it = σ(Wi[ht−1, xt] + bi), ot = σ(Wo[ht−1, xt] + bo),
(2.22)

C̃t = tanh(Wc[ht−1, xt] + bc), (2.23)

Ct = ft ◦ Ct−1 + it ◦ C̃t, (2.24)

ht = ot ◦ tanh(Ct). (2.25)

The matrix completion procedure in Monti et al. [36] involves initialization of a
matrix X0 and then iterative training of (i) a graph CNN to perform an embedding
of Xt; and (ii) a recurrent neural network that processes the embedding to calculate
an update δX̃ to obtain Xt = Xt−1 + δXt−1. The parameters of the graph CNN and
the RNN are trained to minimize a loss function of the form Eq. (2.21).

Graph Convolutional Matrix Completion

Another solution for a matrix completion task is developed by Van den Berg et
al. [38] for recommender systems. The Graph Convolutional Matrix Completion
(GC-MC) approach does not use graphs as a regularizer, which is different from all
the previously introduced approaches. The goal is to complete a matrix M (size
m × n) composed of ratings of n items from m users belonging to a discrete set
R = {1, . . . , R}, R being the maximal rating value. Each row of the matrix is a
different user and each column a different item. A missing value is encoded by
0. Instead of using only one graph where each node represents a user, a bipartite
graph between the users and the items is used. The rating value for one item given
by one user is used on the bipartite graph edge between this item and this user. The
architecture used to complete the matrix M is a graph auto-encoder. The problem
is reinterpreted as a link prediction task. R adjacency matrices Mr of size m × n
are created, one for each rating. Mr contains 1 for its element where the original
rating is r. The encoder is a function [U, V] = f (M, M1, ...MR) and the decoder is
M̃ = g(U, V). The goal is to minimize the reconstruction error between M and M̃.
The root-mean square error or the cross entropy can be used for the loss function.

The structure used for the encoder in Van den Berg et al. [38] is a graph convolu-
tional encoder. It uses a message passing algorithm to construct an embedding for
each user and for each item. A different embedding is derived for each rating level.
Let us consider item j and user i. The message passing step for the message from
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item j to user i is Eq. (2.26). cij is a normalization constant (|Ni| or
√
|Ni||Nj|, Ni

being the set of neighbors of node i). Wr is an edge-type specific parameter matrix
and xj is the initial feature vector of node j. The formula is the same for the message
passing step from user to item. After obtaining all the messages for user i, the mes-
sages are summed in order to obtain a first user embedding hi (Eq. (2.27)) that leads
to the final user embedding ui (Eq. (2.28)) where W is a weight matrix updated by
backpropagation. accum is an accumulation operation (concatenation of vectors or
sum). σ is an element-wise activation function such as ReLU. The same procedure
is repeated for the item embedding vj.

µj−→i,r =
1
cij

Wrxj, (2.26)

hi = σ[accum( ∑
j∈Ni,1

µj−→i,1, ..., ∑
j∈Ni,R

µj−→i,R)], (2.27)

ui = σ(Whi). (2.28)

A bilinear decoder is used when we have the user and item embeddings. The de-
coder treats each rating class as separate. The formulas for the decoder are Eqs. (2.29)
and (2.30) where Qr (r ∈ R) are weight matrices, each one specific to one rating r,
updated by backpropagation.

p(M̃ij = r) =
exp(uT

i Qrvj)

∑s∈R exp(uT
i Qsvj)

, (2.29)

M̃ij = g(ui, vj) = Ep(M̃ij=r)[r] = ∑
r∈R

rp(M̃ij = r). (2.30)

2.3 Graph Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have proven to provide significant im-
provements in solving machine learning problems where the underlying structure
of the data can be represented by a low-dimensional regular grid such as images [40],
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speech [41] or video [42]. However, many datasets without this underlying struc-
ture exist and CNNs cannot be applied to non-Euclidean or high-dimensional irreg-
ular domains represented by graphs. Recently, novel techniques for applying con-
volutional neural networks to graph-structured data have emerged. Spectral and
spatial approaches have been proposed for applying CNNs to graph-based data.

2.3.1 Spectral approaches

Spectral graph theory proposes mathematical tools to study graphs [43], [44]. The
first model developed by Bruna et al. [45] generalizes convolutions to graphs by
creating spectral filters based on the graph Laplacian. This approach is also used by
Henaff et al. [46] and extended to large-scale classification problems. Defferrard et
al. [39] also use the same approach but propose spectral filters that are strictly local-
ized in K hops from the central vertex. Moreover, a reduction of the computational
complexity is obtained by using the Chebyshev decomposition. A simplification is
proposed by Kipf and Welling [47] with their Graph Convolutional Network (GCN)
where the convolution is defined by only taking the first-order approximation (only
one hop) of the localized spectral filters defined in Defferrard et al. [39]. Another
generalization of convolution to the spectral domain is done by Levie et al. [48] with
Cayley polynomials. The spectral filters computed with this architecture focus on
narrow-band frequencies. However, all these spectral graph CNNs are designed
for undirected graphs. Monti et al. [49] introduce MotifNet, an extension of graph
CNNs to directed graphs by using local graph motifs.

Many tasks are being solved with the spectral formulation of graph CNNs.
Sukhbaatar et al. [50] use one of the simplest formulations of a graph CNN to learn
the communication between multiple agents to solve multiple tasks like traffic con-
trol. Marcheggiani et al. [51] extend the GCN from Kipf and Welling [47] for syn-
tactic tasks by adding gates that allow the model to decide which edges are more
relevant to the task in question. This architecture is created for semantic role label-
ing (finding the structure of a sentence). Both of these architectures [50], [51] are
used by Bresson et al. [52] to create a Gated Graph CNN suitable for a graph of
arbitrary size. Anirudh et al. [53] perform classification of Autism Spectrum Disor-
der by using a bootstrapped version of Kipf and Welling’s [47] graph CNNs where
the nodes are functions of imaging features and the graph is build from the non-
imaging features. They use a randomized ensemble of population graphs which
are used to create features from graph CNNs and then a consensus strategy is used
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for classification.

Spectral Graph Convolution

Most of the spectral approaches are based on the graph Fourier transform so we
review the theory behind the generalization of CNNs to data on graphs [36], [39],
[46]–[48], [53]. The graph analogue of the Fourier domain is the spectral decompo-
sition of the discrete graph Laplacian.

We would like to process signals defined on an undirected weighted graph
G = (V, E, A) where V = {1, . . . , n} are the vertices and E the edges with weights
represented by adjacency matrix A ∈ Rn×n. Using the adjacency matrix A, we
calculated a diagonal degree matrix D with entries Dii = ∑j Aij and a graph Lapla-
cian ∆ = I − D−1/2AD−1/2, for identity matrix I. The graph Laplacian ∆ is a real
symmetric positive semidefinite matrix so by the spectral theorem, there exists a
complete set of orthonormal eigenvectors {ul}n−1

l=0 , the graph Fourier modes, asso-
ciated to real nonnegative eigenvalues {λl}n−1

l=0 , the frequencies of the graph. By
defining U = [u1, . . . , un−1] ∈ Rn×n and Λ = diag([λ0, . . . , λn−1]) ∈ Rn×n, we have
∆ = UΛUT. A graph Fourier transform of x ∈ Rn is defined as x̂ = UTx ∈ Rn.

The convolution operator of graph ∗G is not defined in the vertex domain be-
cause there is no meaningful translation operator in this domain. It is defined in
the Fourier domain as x ∗G y = U((UTx) ◦ (UTy)). A signal x is filtered by gθ

as y = gθ(∆)x = gθ(UΛUT)x = Ugθ(Λ)UTx. A non-parametric filter would be
defined as gθ(Λ) = diag(θ) where θ ∈ Rn is a vector of Fourier coefficients. How-
ever, non-parametric filters are not localized in space and the learning complexity
is in O(n), the dimensionality of the data. These issues can be overcome by using
a polynomial filter gθ(Λ) = ∑K−1

k=0 θkΛk where θ ∈ RK is a vector of polynomial co-
efficients. In that case, spectral filters represented by a Kth order polynomial of the
Laplacian are K-localized and the learning complexity is O(K), similarly to CNNs.
However, even with polynomial filters, evaluating the expression Ugθ(Λ)UTx still
takes O(n2) operations. Defferrard et al. [39] propose to decrease the number of
operations by parametrizing gθ(Λ) as a polynomial function that can be computed
recursively from Λ. A traditional approach in graph signal processing to approx-
imate kernels is the Chebyshev expansion [54]. The Chebyshev polynomial of de-
gree j is defined as Tj(λ) = 2λTj−1(λ)− Tj−2(λ) with T1(λ) = λ and T0(λ) = 1. A
filter can be parametrized as Eq. (2.31) where Λ̂ = 2λ−1

n Λ− I is a diagonal matrix
of scaled eigenvalues that lie in the interval [-1,1]. Thus, with this filter, the signal
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x is filtered by gθ as y = gθ(∆)x = ∑K−1
k=0 θkTk(∆̂)x where ∆̂ = 2λ−1

n ∆ − I is the
rescaled Laplacian such that its eigenvalues are in the interval [-1,1]. By denoting
xk = Tk(∆̂)x, we have the following recurrence relation xk = 2∆̂xk−1 − xk−2 with
x0 = x and x1 = ∆̂x. The number of operations is now O(K|E|), compared to O(n2)

previously.

gθ(Λ) =
K−1

∑
k=0

θkTk(Λ̂). (2.31)

Collecting the feature vectors from all nodes in the graph as the rows of a matrix
X, the layers of a graph CNN [39], [47] are of the form:

H(1) = σ(ÃGXW(0)), (2.32)

H(l+1) = σ(ÃGH(l)W(l)). (2.33)

Here W(l) are the weights of the neural network at layer l, H(l) are the output
features from layer l − 1, and σ is a non-linear activation function. The matrix
ÃG is an operator derived from the observed graph and determines how the out-
put features are mixed across the graph at each layer. In Kipf et al. [47], Ã =

D−1/2(I + A)D−1/2; in Defferrard et al. [39], Ã ≈ [T0(∆) . . . TK−1(∆)] is a learnable
operator constructed from a Chebyshev expansion of a K-th order polynomial of
the graph Laplacian and here ÃGH(l)W(l) = (ÃT H(l))TW(l) ≈ ∑K−1

k Tk(∆)H(l)W(l)
k

where W(l) = [W(l)
0 . . . W(l)

K−1]
T are the weights of the neural network at layer l.

2.3.2 Spatial approaches

Spatial approaches generalize convolution by using the graph’s spatial structure.
For a node, a spatial convolution is defined as an inner product between the model’s
parameters and the values associated to spatially close neighbors of this node. How-
ever, in the case of graph-structured data, there is no definition of the spatially close
neighbors.

In the same paper where Bruna et al. [45] present a spectral approach of graph
CNNs, they also propose a spatial generalization of CNNs to graph-structured data
by using multi-scale clustering to define the network architecture. The layers of the
network are defined via hierarchical clustering of the node set. The convolution is
defined per cluster and the architecture does not use weight sharing.

Another generalization of convolution to graph-based data with a spatial ap-
proach is presented by Atwood et al. [55] with their diffusion convolution neural
networks (DCNNs). They build a latent representation by scanning a diffusion pro-
cess across each node. DCNNs can perform node, graph or edge classification. For
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the entity that is being classified, the first step is to build a diffusion-convolutional
representation by performing random walks on the graph to select spatially close
neighbors. The diffusion-convolutional representation is an H × F real matrix de-
fined by H hops of graph diffusion over F features. The graph diffusion process
is defined by the transition matrix Pt that gives the probability of jumping from
node i to node j in one hop. Pk

t gives the probability of jumping from node i to
node j in k hops. The first step is to perform P∗t Xt, the multiplication of the H
power of Pt (P∗t = [Pt, . . . , PH

t ]T) by the feature matrix Xt. In order to classify one
node, the diffusion-convolutional representation is defined by the rows of this ma-
trix P∗t Xt associated with the node to classify. In the case of graph classification,
the diffusion-convolutional representation is the mean over the nodes of the matrix
P∗t Xt. The diffusion-convolutional representation is associated to an H × F weight
matrix. The convolution is realized by doing an inner product between the weight
matrix and the diffusion-convolutional representation. This approach is computa-
tionally expensive.

To overcome the computational expense of the model of Atwood et al. [55],
Hechtlinger et al. [56] propose another generalization of CNNs that is computa-
tionally efficient and effective. Similarly to the convolution proposed by Atwood
et al. [55], the convolution is also created with random walks on a graph to select
the top p closest neighbors for every node. Instead of using the transition matrix,
they use another matrix Q(K)

ij built from the transition matrix that represents the
expected number of visits from node i to node j in K hops. The Kth closest neighbor
of node i is chosen to be the one that has the largest value in the ith row of Q(K). For
each node, the convolution is defined as the inner product between the weights and
the node’s values of the selected p closest neighbors. The novelty of this convolu-
tion is in the handling of different graph structures as its input. This is due to the
fact that the neighbors are selected based on their relative position to the node.

In the definition of spatial convolution done by Atwood et al. [55] and Hechtlinger
et al. [56], the size of the convolution is fixed. To overcome that issue, Monti et
al. [57] propose a mixture model CNN that uses a parametric model to find the clos-
est neighbors. Simonovsky et al. [58] propose a spatial approach to handle graphs
of varying size and connectivity. Instead of using diffusion, filter weights are con-
ditioned on edge labels and they are dynamically generated for each input sam-
ple. Such et al. [59] propose a new architecture where the filters are polynomial
functions of the graph adjacency matrix and they introduce vertex filters to learn
features from both edges and vertices. This architecture can be used for both ho-
mogeneous and heterogeneous data and for datasets with multiple graphs. Niepert
et al. [60] extend CNNs to arbitrary graphs by extracting locally connected regions
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from graphs.

However, recent architectures such as [39], [45], [47], [60], [61] do not scale to
large graphs or have only been applied in transductive settings where it is required
to know the entire graph for training. To overcome these issues, Hamilton et al. [62]
propose an extension of GCNs [47] to an inductive setting where it is possible to
generate node embeddings for unseen data and to generalize node embeddings
across graphs with the same form of features. To do so, Hamilton et al. propose an
approach that first uniformly samples a fixed-size neighborhood and then learns
several functions that aggregate node feature information such as node degrees by
taking into account the node’s local neighborhood. Moreover, they also propose
a framework to generalize GCNs to use trainable aggregation functions instead of
basic convolutions. Based on the same observation that the GCN from Kipf and
Welling [47] needs to know the topology and features of the test data during train-
ing, Chen et al. [63] interpret GCNs [47] as integral transforms of embedding func-
tions under probability measures. This view of graph convolution allows them to
use samples of vertices to compute the loss and the gradient and to reduce compu-
tational expense.

Spatial approaches of graph CNNs are also used in numerous applications. One
use of spatial convolution is given in Duvenaud et al. [61] for the extraction of
molecular fingerprints from molecules with layers which are local filters applied
to all nodes and their neighbors. Verma et al. [64] use a spatial formulation of graph
CNNs where they map local graph patches and filter weights using the features in
the previous network layers for 3D shape analysis. Simonovsky et al. [58] use graph
CNNs for point cloud classification. A data-efficient GCN algorithm is developed
in Ying et al. [65] where they created a network that can process a graph 10, 000×
larger than those encountered in typical applications of GCNs. The convolutions
are performed by sampling a node’s neighborhood and dynamically constructing a
computation graph from this neighborhood. The sampling is done by using short
random walks. Moreover, random walk similarity measures are used to weight the
importance of node features.

2.4 Medical background

A dataset on Alzheimer’s disease (AD) was created by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) with subjects from North America [66]. It is a
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publicly available dataset. This initiative was launched to develop clinical, imag-
ing, genetic and biochemical biomarkers for the early detection and tracking of
Alzheimer’s disease. ADNI started in 2004 under the leadership of Dr. Michael W.
Weiner. It was funded as a private-public partnership with $27 million contributed
by 20 companies and two foundations through the Foundation for the National In-
stitutes of Health and $40 million from the National Institute on Aging. The initial
five-year study (ADNI-1) was extended by two years in 2009 by a Grand Opportu-
nities grant (ADNI-GO), and in 2011 and 2016 by further competitive renewals of
the ADNI-1 grant (ADNI-2, and ADNI-3, respectively).

The TADPOLE dataset, based on the ADNI dataset, is composed of the follow-
ing modalities: Magnetic Resonance Imaging (MRI), Positron Emission Tomogra-
phy (PET), diffusion tensor imaging (DTI) and the cerebrospinal fluid (CSF). Data
derived from genetic tests or cognitive test are not included. DTI information is not
included as too many values are missing. The information provided here is based
on the TADPOLE website [67]. All the images modalities (MRI and PET) are al-
ready preprocessed into Regions Of Interest (ROIs) and the measures done on each
modality are given in Table 2.1. We will describe in this Section the different medical
modalities used in the dataset.

Modality Measures
MRI volume, cortical thickness and surface area.

FDG-PET average measure of cell metabolism.
AV45-PET average measure of amyloid-beta load in the brain.

AV1451-PET average measure of tau load in the brain.
CSF amyloid and tau levels in the CSF.

TABLE 2.1: Different measures of the different modalities in the TAD-
POLE dataset.

2.4.1 Structural MRI measures

MRI is a 4D modality that allows us to analyze the anatomy and the physiological
processes of the brain. Atrophy is an important characteristic to measure using a
structural MRI as it can highlight the evolution of AD. Atrophy measures the loss
of volume in one region that is caused by the death of neurons in the brain. It
can be measured by estimating the quantity of gray matter (GM) and white matter
(WM) of the brain. The GM is the brain tissue that consists of nerve cells and the
WM defines the fibres connecting the different GM. The brain splits into GM, WM
and CSF. Fig. 2.1 shows this splitting for one slice of MRI. Quantification of atrophy



2.4. Medical background 23

with MRI is a very important biomarker as it is widely available and non-invasive.
According to Jack et al. [68], atrophy indicates the progression of MCI to AD for a
person because it becomes abnormal in close temporal proximity to the onset of the
cognitive impairment.

FIGURE 2.1: Parcellation of a slice of a brain MRI into GM, WM and
CSF. Reproduced from [69]

FIGURE 2.2: a) A coronal T1-weighted brain MRI.
b) Brain structures segmented by FreeSurfer.

Reproduced from Mahmoudi et al. [70]

In the TADPOLE dataset, markers of atrophy are measured in three different
ways for each Region Of Interest (ROI): volume, cortical thickness and surface area.
Here, a ROI is a 3D sub-region of the brain. The brain is subdivided into 130 regions.
A total of 346 values of volume, cortical thickness and surface area are available.
The preprocessing and segmentation of the MRI is performed using the FreeSurfer
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software [71]. The parcellation step is illustrated in Fig. 2.2, where we can only see
the subdivision for one slice of the MRI. Fig. 2.3 provides an indication of how the
brain is partitioned into ROIs, although this figure shows only a small fraction of
the 130 regions.

FIGURE 2.3: Different ROIs of the brain labeled with FreeSurfer.
Reproduced from [72]

Two different pipelines can be used in order to derive the atrophy measures
from the MRIs: a cross-sectional pipeline and a longitudinal pipeline. The cross-
sectional pipeline only uses the data from one visit and each visit is considered as
independent. The longitudinal pipeline used the information from all the visits of
a subject. The longitudinal measures are more robust, but more values are missing
in the TADPOLE dataset.

2.4.2 Positron Emission Tomography (PET)

The PET modality allows to observe metabolic processes in the entire body and in
particular, for the study of Alzheimer’s disease, in the brain. A radioactive tracer is
injected into the region that is under study. Gamma rays are emitted by the tracer
and then are detected by the PET system. The tracer is introduced in the body
of a molecule to spread throughout the brain. Usually, the molecule with the tracer
binds to abnormal proteins (amyloid-beta and tau). We would like to know if some-
one has these abnormal proteins as their presence may be related to Alzheimer’s
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disease [73]–[78]. A three-dimensional image illustrating the concentration of the
tracer is constructed by computer analysis.

There are three different types of PET scans, depending on the cellular and
molecular processes that are being measured:

• Fluorodeoxyglucose (FDG) PET: FDG is an analogue of glucose. FDG PET high-
lights neurodegeneration and can be used to measure cell metabolism. FDG
PET images are used in the diagnosis of dementia [79], [80]. FDG PET repre-
sents 90% of the PET scans in standard medical care.

• AV45 PET: Levels of abnormal proteins such as amyloid-beta can be measured
through AV45 PET. Proteins like amyloid-beta need to be properly folded in
order to execute their biological function. Accumulation of amyloid-beta in
the brain is present for patients with AD [73]. Misfolded amyloid-beta is
thought to eventually lead to neurodegeneration and cognitive decline [74]–
[76].

• AV1451 PET. Levels of abnormal tau proteins can be measured through AV1451
PET. Tau proteins can be abnormally hyperphosphorylated and can accumu-
late in the neuron’s transport system and cause it to degenerate, leading to the
neuron’s death [77], [78].

An example of PET scans can be seen in Fig. 2.4 where we can observe that the
concentration of the proteins depends on age but also on the state of the patient (if
the patient has AD or not).

FIGURE 2.4: AV45 and AV1451 PET scans. Reproduced from [81]

PET measures are important because they provide information about molecular
processes in the brain. These processes are usually the first to become abnormal
for someone that can convert to AD. Thus they are important early markers of the
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disease. These PET measures might be indicative of whether a healthy control will
eventually progress to MCI or not. As was the case for the MRI measures, PET
measures are derived for each ROI in the TADPOLE dataset.

PET scans are non-invasive but patients are exposed to ionizing radiation while
doing a PET scan, limiting the number of scans possible to take in a specific time
interval. PET scans also have a much lower spatial resolution compared to MRI
scans. Moreover, the PET scanner is extremely expensive. For AV1451 PET, another
disadvantage is its novelty: it is still under research, and few subjects in the TAD-
POLE dataset have undergone an AV1451 PET scan. In our analysis, the FDG-PET
and the AV1451 PET measures are removed from the dataset because there are too
many missing values. We only process the measures derived from AV45 PET scans.

2.4.3 Cerebrospinal Fluid (CSF)

The CSF is a liquid that goes around the brain and spinal cord. It acts as a cushion or
buffer for the brain and spinal cord, providing basic mechanical and immunological
protection to the brain inside the skull. CSF picks up needed supplies from the
blood and gets rid of waste products from brain cells. Bacteria and viruses that
can attack the brain can be present in the CSF. By taking a sample of the CSF, the
doctor can diagnose some illnesses. A sample of the CSF can be taken from patients
invasively, by inserting a needle in the spinal cord.

FIGURE 2.5: CSF fluid. Reproduced from [82]

Measures of CSF are very important for dementia research. In the CSF, the con-
centration of abnormal proteins such as amyloid-beta and tau is a strong indicator of
Alzheimer’s disease [83]–[85]. Abnormal levels of concentrations of these proteins
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are some of the earliest signs of Alzheimer’s disease and can indicate abnormalities
many years before symptom onset.

However, the CSF measures have some limitations. One of the key limitations
is that the lumbar puncture is highly invasive and thus not performed in many
studies, although a substantial fraction of the ADNI subjects did agree to undergo
the procedure. The CSF measures are also not specific to any particular part of the
brain and only provide global concentration measures. In the TADPOLE dataset,
we have the concentration of three different proteins in the CSF: amyloid-beta, tau
and phosphorylated tau.





29

3 Literature review

Predicting the conversion from MCI to AD is very important as knowing the prob-
able progression of the disease early can greatly aid in the strategic deployment of
secondary prevention approaches. In recent years there have been intensive efforts
to develop and apply machine learning methods to predict disease outcomes. The
learning algorithms can potentially detect patterns that are not obvious to a doctor.

Many algorithms have been applied to data collected for the study of progres-
sion of Alzheimer’s disease (AD) since helping cure Alzheimer’s disease is of world-
wide concern. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset is
a publicly available dataset with data collected for the early detection and track-
ing of AD. We first look into statistical methods that were used for the study of
Alzheimer’s disease in Section 3.1. Then, we focus on machine learning techniques
in Section 3.2 and graph-based methods in Section 3.3 that were used for the impor-
tant task of prediction of conversion from MCI to AD. Finally, we do a short com-
parison of the different type of methods for the disease outcome prediction task in
Section 3.4.

3.1 Statistical methods for the study of Alzheimer’s dis-

ease

Statistical methods for longitudinal datasets are often used to analyze data but less
often for classification. Mixed-effects and marginal models have been applied to
the study of progression of Alzheimer’s disease. We focus on mixed-effects models
as they have demonstrated superior performance.

3.1.1 Mixed-effects models

Mixed-effects models have been mainly used to analyze the ADNI data and assess
temporal progression of some measurements [86]–[90]. Most studies try to find
predictors of the disease. They extract information from different medical measure-
ments (e.g., MRI, PET, CSF) and try to fit a linear mixed-effects model to analyze



30 Chapter 3. Literature review

the evolution of the information with time as a covariate.

Schiratti et al. [89] analyze the temporal progression of the ADAS13 scores (the
13th item of the Alzheimer’s Disease Assessment Scale) for MCI subjects who pro-
gressed to AD. This study does not highlight the difference between MCI converters
and non converters.

Group differences and parameter evolution are studied by Bernal-Rusiel et al. [86]
and Li et al. [88]. Bernal-Rusiel et al. [86] assess group differences between tra-
jectories of two biomarkers (Mean thickness within the entorhinal cortex averaged
across hemispheres (ECT) and the total hippocampas volume (HV)). Six fixed-effects
are used: time-from-baseline, age, sex and several medical characteristics of the sub-
ject (such as the carriage of the APOEε4 allele). Li et al. [88] predict the long-term
trends of seven outcomes which are modalities of the ADNI dataset known to be re-
lated to AD such as CSF tau, CSF amyloid-beta or the MRI volume of hippocampus.
They do not try to predict conversion from MCI to AD but they do examine how
different biomarkers and parameters evolve with age for healthy and Alzheimer’s
subjects. The fixed-effect covariates used to explain the difference between the AD
subjects and the healthy ones are age, carriage of the APOEε4 allele, sex and educa-
tion.

Contrary to all of the studies described above, Ziegler et al. [87] and Bernal-
Rusiel et al. [90] use images and not biomarkers as outcomes. Ziegler et al. [87]
use MRI voxels as outcomes to detect group differences. A voxel-wise linear mixed
model is used on the gray matter density at a single voxel. Bernal-Rusiel et al. [90]
propose a spatial extension of the linear mixed-effects model to study cortical thick-
ness maps. This model is proven to perform better than the voxel-wise linear mixed
model. Instead of employing a voxel or vertex-wise approach, the image is split into
Regions Of Interest (ROIs) and the temporal covariance structure is assumed to be
shared for all the voxels of each ROI. The different voxels are linked by a simple
parametric covariance structure. The goal is to find which cortical regions are dif-
ferent between AD and healthy subjects. The fixed-effects from [86] are used in [90].

Several methods have been used to estimate the parameters of the model by
computing the likelihood. Bernal-Rusiel et al. [86] either use the EM algorithm
or Newton-Raphson based procedures, Ziegler et al. [87] the EM algorithm, Li et
al. [88] a Markov Chain Monte Carlo method and Schiratti et al. [89] the Monte
Carlo Markov Chain Stochastic Approximation EM.
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3.1.2 Marginal models with GEEs

Li et al. [91] and Zhang et al. [92] use a marginal model on MRIs for prediction and
region selection. Zhang et al. [92] choose to use a GEE approach because it only
requires the first two marginal moments and a working correlation structure for the
scalar response variable. By contrast, a mixed-effects model requires specification
of a distribution for the parameters, which is a difficult task for a tensor covariate.

3.2 Machine learning methods for the prediciton of con-

version from MCI to AD

Machine learning techniques have been widely used for the task of prediction of
conversion from MCI to AD [93]–[98]. The input is only formed with data from sub-
jects when they were diagnosed with MCI. We call this baseline data. The feature
extraction step is one of the main differences between the state-of-the-art methods:
most of the methods use Regions Of Interest (ROIs) which are known to be linked
to AD to reduce the dimension of the data. These methods are handcrafted as the
features extracted from the MRIs are based on theoretical knowledge about the re-
gions. Another group of methods use automatic procedures to learn useful features
from the raw data. We split the methods into two groups: those which process raw
data and those which use handcrafted features.

3.2.1 Using raw data

All of the methods that process raw data use Convolutional Neural Networks (CNNs).
Korolev et al. [93] use known architectures (VGG [99] and ResNet [100]) and adapt
them to 3D images for the input. MRIs are used as the input. An accuracy of only
56% is obtained for VoxCNN (the extension of VGG [99] to 3D images) and 52% for
ResNet (extension of ResNet [100] to 3D images). Arco et al. [94] use the searchlight
approach [101] to extract the features from the gray matter (GM) and white mat-
ter (WM) maps of the MRI. They add two cognitive scores from the ADNI dataset
to the features to perform classification with an SVM. They use data from one or
two sessions when possible. The accuracy is respectively 84.3% and 82.05% for a
prediction six and twelve months ahead. Choi et al. [95] use a deep convolutional
neural network, trained with data for the classification task of AD vs healthy con-
trols (HC) in order to predict the conversion from MCI to AD. The two modalities
used are FDG and AV-45 PET. Both images are used as inputs of the 3D CNN which
then becomes a 4D CNN. Data augmentation (left-right flipped) is used to augment
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the training set. An accuracy of 84.2% is obtained for a prediction within 3 years.

3.2.2 Using handcrafted features

Two different methods are proposed with handcrafted features, one based on an
auto-encoder and the other one based on a neural network. Suk et al. [97] first per-
form a handcrafted feature selection by taking the patch-based volume from the
GM tissues for the 93 Regions Of Interest (ROIs) which are known to be linked to
AD. For each of these regions, the mean intensity from the PET images is also taken
as a feature. Then, a stacked auto-encoder is used for feature extraction, followed
by sparse regression for feature selection and a multi-kernel SVM for classification.
The accuracy is 83.3% for an eighteen-month ahead prediction. Lu et al. [98] use
the same handcrafted features as [97] for MRI and FDG-PET images. Then, a mul-
timodal and multiscale deep neural network is used for classification. An accuracy
of 82.4% was obtained in identifying the individuals with MCI who will convert to
AD at 3 years prior to conversion and a combined accuracy of 86.4% was obtained
for conversion within 1 to 3 years.

3.3 Graph-based methods for the prediction of conver-

sion from MCI to AD

Only recently have graph-based learning methods started to appear for disease out-
come prediction. Previously, state-of-the-art approaches employed more traditional
classification approaches including random forests, support vector machines [94],
[102] and convolutional neural networks [95]. Parisot et al. [103] were the first to
propose a graph-based learning algorithm for disease outcome prediction [103].
Then, Vivar et al. [96] proposed another graph-based method.

Parisot et al. [103] employed a graph convolutional neural network on MRI data
preprocessed in 138 regions of interest where volumes are taken as features. They
used 3rd order Chebyshev polynomials in the graph convolutional layer. The system
is composed of 5 convolutional layers followed by a ReLU activation layer and then
a fully-connected output layer. This output layer is followed by a softmax layer for
the classification. The cross-entropy loss is used. They used longitudinal data but
two samples from the same person are used as different examples, they are just
linked by the adjacency matrix.
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Age and sex are used as links for the graph. The formula for the adjacency ma-
trix A for subjects v and w is given in Eq. (3.1) with M = {Mh} the set of H non
imaging measures (here, age and sex). Sim is a similarity measure between subject
v and w. Here, Sim = λ with λ > 1 if two samples are from the same subject,
otherwise it is equals to 1. For categorical data (such as sex), ρ = δ, δ being the
Kronecker delta. For quantitative data (such as the age), ρ(Mh(v), Mh(w)) = 1 if
|Mh(v)−Mh(w)| < θ and ρ(Mh(v), Mh(w)) = 0 otherwise. λ and θ are hyperpa-
rameters. In [103], Parisot et al. took λ = 10 and θ = 2. The reported averaged
accuracy is 77% and the Area Under the receiver operating characteristic Curve
(AUC) is 85%.

A(v, w) = Sim(v, w)
H

∑
h=1

ρ(Mh(v), Mh(w)). (3.1)

Vivar et al. [96] also propose a graph-based method to predict MCI to AD con-
version. Multimodal data composed of numeral values already extracted from MRI,
PET, CSF and DTI from the TADPOLE challenge, described in Appendix A, is used.
They propose to solve the multi-modal disease classification as a geometric matrix
completion problem.

Vivar et al. [96] use the algorithm from [36] to do matrix completion. This built
on the work of Thung et al. [104] who used the low-rank matrix completion ap-
proach developed in Goldberg et al. [105] for jointly performing imputation of miss-
ing values and transductive classification.

The initial approach used by Monti et al. [36] is described in Section 2.2. The goal
is to complete the matrix M composed of the concatenation of the m× n matrix of
features X and of the m× 1 vector of labels Y. Each row of M represents one of the
m subjects. The first step is a single value decomposition of the matrix M into W
(size m× r) and H (size n× r), r being the rank chosen for the decomposition.

A graph on the subjects is used on the rows of W. W is updated with the
sRGCNN algorithm described in Algorithm 1. The GCNN layer is the one by Def-
ferrard et al. [39] described in Section 2.3. H has no graph and is only updated by
backpropagation.

The loss function is described in Eq. (3.2) where γa, γb, γc, γd and γe are hyperpa-
rameters. Ωa is the indicator matrix of the known feature values, the concatenation
of a m × n matrix filled with 1 when the feature is available in M and 0 other-
wise and a m× 1 vector of 0. The classification term is a binary cross-entropy term
lΩb(Z, M) = −(y log(p) + (1− y) log(1− p)), where Ωb is the indicator matrix of
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known outcomes, the concatenation of a m× n matrix filled with 0 and a m× 1 vec-
tor of 1, p is the classification output vector and y the label vector. ||.||F is the Frobe-
nius norm, ||A||F =

√
∑m

i=1 ∑n
j=1 |aij|2 for an m× n matrix A and the Dirichlet norm

with respect to a graph Gi with adjacency matrix Ai, degree matrix Di and graph
Laplacian ∆i = I − D−1/2

i AiD−1/2
i , for identity matrix I is ||X||Gi = trace(XT∆iX).

The first four terms are related to the matrix completion problem, the first term be-
ing a constraint on the graph structure on W, the second and third being constraints
on the matrix and the fourth being for the matrix completion problem. The last term
is for the classification.

The graph is built with data from the patients (age and sex). Vivar et al. [96] used
the graph from [103] for the TADPOLE dataset but removed the similarity measure.
The formula for the adjacency matrix A becomes Eq. (3.3). [96] reports an accuracy
of 87% and an AUC of 95%.

l(θ) =
γa

2
||W||2Gr

+
γb
2
||W||2F +

γc

2
||H||2F +

γd
2
||Ωa ◦ (M−WHT)||2F +γe(lΩb(M, X)).

(3.2)

A(v, w) =
H

∑
h=1

ρ(Mh(v), Mh(w)). (3.3)

Algorithm 1 sRGCNN algorithm modified by Vivar et al. [96]
1: procedure SRGCNN(W, H, A)
2: Initialization
3: Initialize weights (Glorot [106]) and biases (zero)
4: for k in number iterations do
5: Ŵ = GCNN(W, A)
6: δW = LSTM(Ŵ)
7: W = W + δW
8: M = WHT

9: Compute loss function (3.2)
10: Backpropagation Update weights, biases and H

3.4 Comparison of these methods

As a conclusion of this section, we compare the different types of techniques in the
case of prediction of conversion from MCI to AD. The main reason for retaining
a statistical approach is for its ease of understanding and interpreting parameters.
However, mixed-effects models are computationally expensive and do not work
if there are too many effects. We also need to know the covariance structure and
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the distribution of the parameters. The strengths of a mixed-effects model are its
handling of imbalanced longitudinal data with missing data-points and imperfect
timing. Using a mixed-effects model for our problem would mean using a non-
linear model as we want to perform classification. A logistic mixed-effects model
could be tried because of the task we want to achieve and it might be more powerful
than a linear model as the outcome is categorical. The outcome is the classification
decision and the covariates biomarkers or voxels. This implies many effects if we
want to take into account all the voxels. No paper using a statistical approach [86]–
[92] used voxels of MRIs as covariates. In all of the models which were described
before, the number of effects is small (always fewer than ten). Mixed-effects models
have not been used previously for the prediction of conversion from MCI to AD.

Compared to statistical methods, machine learning methods have been widely
used in order to predict the conversion from MCI to AD. One of the strengths of
machine learning is its handling of high-dimensional data. However, it is harder to
interpret a machine learning model than a statistical one. The results achieved are
promising, especially those reported by Vivar et al [96] (although we have struggled
to reproduce these results in our experiments). Using a graph to link the subjects is
one of the main strengths of the approach used in Vivar et al. [96] compared to other
state-of-the-art methods. Only a few graph-based learning methods [96], [103] have
been used for the task of prediction of the conversion from MCI to AD.
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4 Multiple-Graph Recurrent Graph
Convolutional Neural Network
Architectures for predicting disease
outcomes

4.1 Introduction

Extracting the most information from medical datasets can greatly aid in the strate-
gic deployment of secondary prevention approaches. Machine learning algorithms
can potentially discover patterns that are not obvious to a doctor. The prediction
accuracy can be improved by using as much information as possible, including, for
example, the age and sex of a subject. These types of subject attributes can impact
both the medically-derived features and the disease outcome that is the prediction
target. For example, women are more likely to develop Alzheimer’s disease (AD)
than men [107], [108]. The MRI-derived brain volumes of cortical subregions are
potential predictors, and larger values are observed for men [109], [110].

Recently, prediction techniques have been developed based on graph convolu-
tional neural networks (CNNs) and graph-based geometric matrix completion [96],
[103]. These methods connect subjects by constructing a single graph based on at-
tributes such as age and sex. Graph-based learning approaches such as those devel-
oped in Defferard et al. [39], Kipf et al. [47] and Monti et al. [36] are then employed
to process the medical features for each subject and perform the prediction. The
geometric matrix completion approach also eliminates the need for imputation of
missing features. In both [103] and [96], a single graph is used for all features. In
contrast, we develop an architecture that processes multiple graphs; our algorithm
associates different features to different graphs by fitting a general linear model
(GLM) and assessing the significance of each regression coefficient. Since it builds
on the algorithm in Monti et al. [36], our work is related to graph-based matrix
completion techniques described in Section 2.2 and graph convolutional neural net-
works described in Section 2.3. Most of the graph-based algorithms employ a single
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graph. Kipf et al. discuss the possibility of using multiple graph [47]; Such et al. and
Monti et al. explicitly use multiple graphs [36], [59]. Although multiple graphs are
employed, each graph is used to process all features at each node. As a result, the
graph neural network must learn an embedding from a higher dimensional feature
space using many variables that are unlikely to be related to the graph used for
processing.

In general, it is not the case that every feature is dependent on each of the at-
tributes used to construct the graph. For example, for Alzheimer’s disease predic-
tion, intracranial volume is dependent on sex but does not vary significantly with
age (see Figure 4.3). The major innovation in this chapter is the use of multiple at-
tribute graphs for graph CNN matrix completion. Via a general linear model and
statistical significance tests, we identify an appropriate association of specific fea-
tures to each graph. Our approach is the first to employ multiple feature-specific
adjacency matrices for learning using convolutional graph neural networks.

Section 4.2 provides a formal statement of the problem. Section 4.3 provides our
approach and algorithm and Section 4.4 presents the results of the application of
our approach to the prediction of Alzheimer’s disease development.

4.2 Problem statement

We consider the following prediction task for disease outcomes. Let X ∈ Rm×n be
the feature matrix, m being the number of subjects and n the number of features.
The features are assumed to be derived from medical examinations. X may have
missing values. Let Y ∈ {0, 1}m×1 be a vector denoting the disease outcomes for
the m subjects. Some of these are unknown and these are the focus of the prediction
task.

Let Gi = {Vi, Ei, Ai} be a graph on the subjects with edges derived by a similarity
metric from a subject attribute si. The attribute can be categorical, or real- or integer-
valued. Vi denotes the vertices, Vi = {1, ..., m}, Ei the edges, Ei ⊆ Vi × Vi, and
Ai ∈ {0, 1}m×m the adjacency matrix. We assume that there are P such graphs de-
rived from different combinations of subject attributes and thus capturing different
relationships between subjects. Taking into account the features X and the relation-
ships formed by the similarities of the attributes si and captured by Gi, i = 1, . . . , P,
our task is to predict the unknown disease outcomes in Y and impute the missing
values in the matrix X.
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4.3 Methodology

In the task of disease outcome prediction, most of the datasets have missing val-
ues and inaccurate measurements. Formulating the task as matrix completion as
in Goldberg et al. [105] allows us to jointly perform transductive classification and
imputation of missing values. To do this, we form a matrix Z = [X, Y] and apply
a matrix completion algorithm. The initial matrix M contains all the information
from the dataset.

We commonly have knowledge of attributes that can be used to identify relation-
ships or similarities between subjects. Attributes such as age and sex often impact
the probability of a disease outcome and the likelihood of a feature derived from
a medical examination. In trying to recover a matrix with missing values and un-
known disease outcomes, it is reasonable to assume that there is smoothness with
respect to a graph that connects individuals who share similar attributes (close in
age, same sex). Once such a graph has been constructed, geometric graph comple-
tion can be performed; Vivar et al. [96] use the algorithm from [36] to do so.

The problem with the approach outlined above is that in general it is not the
case that every medically-derived feature is dependent on all of the attributes used
to construct the graph. For example, for prediction of progression to Alzheimer’s
disease, Vivar et al. [96] construct a weighted adjacency matrix that includes an edge
between people of the same sex and those of similar age. Many of the features in
the matrix have no dependency on age; requiring such features to be smooth with
respect to age imposes an undesirable penalty in the optimization and results in
incorrect information diffusion throughout the graph. With regard to imputation,
if one is estimating a missing value that is sex-dependent, but not age-dependent,
it is better to use all of the values from subjects with the same sex and not bias the
imputation by processing values from the other sex.

In our proposed approach we construct multiple graphs based on the available
attributes and associate a feature with one or more of these graphs by fitting a gen-
eral linear model (GLM) with the attributes as the independent variables and the
features as the dependent variables. We then assess the significance of the regres-
sion coefficients. The features with a statistically significant non-zero value for at-
tribute ai are included in a subset Zi of Z that is associated with each graph Gi. The
GLM is fit using ordinary least squares and we assess significance of coefficients us-
ing multiple ANOVA and post-hoc t-tests. In this procedure, controlling the Type I
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FIGURE 4.1: Process to decide the feature dependence.

error is not as significant a concern as is usually the case in regression procedures.
Erroneous association of a feature with a specific attribute graph leads to an addi-
tional smoothness penalty that should not be included, but in most cases this has
a minor effect on the overall inference procedure. Improvement in prediction out-
comes is achieved by ensuring that the majority of features with no dependence on
an attribute are excluded from the subset.

4.3.1 Multiple-Graph Recurrent Graph Convolutional Neural Net-

work (MG-RGCNN)

We develop an architecture based on the Recurrent Graph Convolutional Neural
Network (RGCNN) from [36]. We adapt it to take into account the multiple graphs
and the prediction task. The GCNN layer as described in Section 2.2 computes fea-
tures from the initial matrix Z using multiple graph convolutional neural networks
based on the graphs Gi. Each graph Gi is associated to some subject’s attribute(s)
and each subset Zi of Z is composed of the features that depend on the same sub-
ject’s attribute(s). Each node of each Gi is a subject and is represented by the row of
Zi corresponding to that subject. If the graph is associated to a categorical attribute
(such as sex), two people are connected if they have the same attribute. If the graph
is associated to a quantitative attribute (such as age), two people are connected if
they have a close value in the attribute, chosen by a threshold depending on the
application. The P different GCNN outputs are concatenated and provided to the
recurrent neural network. The algorithm is described in Algorithm 2.

The parameters of the multiple graph CNNs and the RNN are trained using a
loss function that has a Dirichlet norm penalty for each graph. The Dirichlet norm
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with respect to a graph Gi with adjacency matrix Ai, degree matrix Di and graph
Laplacian ∆i = I − D−1/2

i AiD−1/2
i , for identity matrix I is ||X||Gi = trace(XT∆iX).

It would also be possible to consider a weighted sum of Dirichlet norms, where each
weight is dependent on the number of features associated with the subset. As we
are addressing a classification problem in addition to imputation of missing entries,
we also add a binary cross-entropy term lΩb(Z, M) = −(y log(p) + (1− y) log(1−
p)), where Ωb is the indicator matrix of known outcomes, the concatenation of a
m × n matrix filled with 0 and a m × 1 vector of 1, p is the classification output
vector and y the label vector. Ωa is the indicator matrix of the known feature val-
ues, the concatenation of a m× n matrix filled with 1 when the feature is available
in M and 0 otherwise and a m × 1 vector of 0, and ||.||F is the Frobenius norm,
||A||F =

√
∑m

i=1 ∑n
j=1 |aij|2 for an m × n matrix A. We added an l2 regularization

term to avoid overfitting. (W1, . . . , Wq) represents the q weight matrices used in
the architecture. µi, µ and γl2 are parameters controlling the balance between the
different loss terms.

l(θ) =
P

∑
i=1

µi

2
||Zi||2Gi

+
1
2
||Ωa ◦ (Z−M)||2F + µlΩb(Z, M) + γl2

q

∑
i=1

Wi. (4.1)

Algorithm 2 RGCNN with P graphs (MG-RGCNN)
1: procedure MG-RGCNN(M = [X, Y], {Ai}, {Zi} )
2: Initialization
3: Z = [X, Ytrain]
4: Initialize weights (Glorot [106]) and biases (zero)
5: for k in number iterations do
6: for i in 1, ..., P do
7: vi = GCNN(Zi, Ai)

8: vtot = concatenation([vi], i = 1, . . . , P)
9: δZ = LSTM(vtot)

10: Z = Z + δZ
11: Compute loss function (4.1)
12: Backpropagation Update weights and biases

4.3.2 Application to Alzheimer’s disease

We apply the proposed MG-RGCNN to the prediction of conversion from Mild
Cognitive Impairment (MCI) to Alzheimer’s disease (AD). MCI is a clinical diagno-
sis that represents a potential intermediate stage between normal stage and demen-
tia. Patients with MCI are in a stage where the disease could evolve to AD or not.
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FIGURE 4.2: MG-RGCNN architecture for the application of prediction
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graph Gage, Gsex, Gage&sex and Gns. The highlighted columns are the
columns of features that are associated with the attribute(s) that the

graph is built on and that are kept in Zi.

Predicting the conversion from MCI to AD is very important as knowing the prob-
able progression of the disease early can greatly aid in the strategic deployment of
secondary prevention approaches. The architecture is described in Fig. 4.2. We built
4 graphs: Gage for age-related features, Gsex for sex-related features, Gage&sex for age
and sex-related features and Gns for features that are neither related to age or sex.
Each node of each graph represents a subject. At each node of each graph, we have
the subject’s values of the features that are related to the subject’s characteristic(s)
associated to the graph.

These four graphs lead to four adjacency matrices Aage, Asex, Aage&sex and Ans,
Ans being the identity. The age adjacency matrix Aage is constructed by including
an edge between subject r and s if |age(s)− age(r)| < 2. The sex adjacency matrix
Asex includes an edge if sex(s) = sex(r). The age and sex adjacency matrix Aage&sex

adds an edge when both conditions are satisfied.
We tried both the simplified graph CNN from [47] (MG-RGCNN GCN) and the

graph CNN from [39] (MG-RGCNN GCNN). The GCN from Kipf and Welling [47]
has a reduced computational cost compared to the GCNN from Deferrard et al. [39].
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The loss function reads as Eq. (4.2) where each Zi is a subset of Z associated with
graph Gi. µage, µsex, µage&sex, µns, µ and γl2 are parameters to control the trade-off
between the different loss terms.

l(θ) =
µage

2
||Zage||2Gage

+
µsex

2
||Zsex||2Gsex

+
µage&sex

2
||Zage&sex||2Gage&sex

+
µns

2
||Zns||2Gns

+ ||Ωa ∗ (Z−M)||2F

+ µlΩb(Z, M) + γl2

q

∑
i=1

Wi. (4.2)

In order to compare the one graph and the multiple graph architecture, we also
apply the sRGCNN defined in Section 3.3 by Vivar et al. [96] to our dataset. In that
case, we use the graph from Parisot et al. defined in Section 3.3. The loss function
is defined as Eq. (4.3) where γ, γW , γH, γe and γl2 are parameters to control the
trade-off between the different loss terms. Gr is the graph on the rows of W.

l(θ) = γ||W||2Gr
+ γW ||W||2F + γH||H||2F + ||Ωa ◦ (M−WHT)||2F+

γe(lΩb(M, Z)) + γl2

q

∑
i=1

Wi. (4.3)

Based on the procedure adopted by Parisot et al. [103] for the ABIDE dataset,
we added a similarity metric on the graphs. Indeed, Parisot et al. do not use it
on the ADNI dataset because they are already using a similarity measure for the
longitudinal aspect of their dataset. The similarity metric takes into account feature
values to put a larger weight on the edge between two people that have similar
values. We use a correlation distance between the features of two subjects u ∈ Rn

and v ∈ Rn defined as Eq. (4.4) where v is the mean value of v and x.y is the dot
product of x and y. For the MG-RGCNN GCN, we tried the graphs with (MG-
RGCNN GCN similarity) and without (MG-RGCNN GCN) the similarity metric.

dist(u, v) = 1− (u− u).(v− v)
||(u− u)||2||(v− v)||2

. (4.4)

4.4 Results

We apply the proposed MG-RGCNNs to the TADPOLE dataset [111], a dataset for
the prediction of conversion from Mild Cognitive Impairment (MCI) to Alzheimer’s
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disease (AD). The TADPOLE dataset and the preprocessing steps used are described
in Appendix A.

MCI is an intermediate stage between the normal stage and dementia. Patients
with MCI are in a stage where the disease could evolve to AD (MCI converters,
MCIc) or not (MCI non converters, MCInc). In forming predictions, we use the
baseline data acquired from the first examination of a subject. We include subjects
that were diagnosed as MCI in their baseline scan and that have converted to AD
48 months later (MCIc) or that have remained stable for the course of the study
(MCInc).

We excluded features where more than 50% of the values were missing. After
the preprocessing steps described in Appendix A, we have 779 subjects, 296 MCIc
and 483 MCInc, and 563 features. For the included subjects, 21% of feature values
are missing.

We added the label (disease outcome = MCIc or MCInc) column as the last col-
umn of the matrix. Each column of M is normalized so that the values lie between
-1 and 1, by scaling based on the minimum and maximum observed values in the
column. Some of the elements of M may be missing. We set these to a value of zero.

4.4.1 Graph construction

AD and MRI-derived brain volume features are known to be related to age and
sex [107]–[110], so these attributes are used to construct the graphs, as in Parisot et
al. [103] and Vivar et al. [96].

We conducted the GLM analysis using the three variables age, sex, and age&sex,
employing a significance threshold for the p-values of 0.05. The process is high-
lighted in Fig. 4.1 with the example of an age-related feature.

As expected, different features have different relationships with age and sex,
as illustrated by the examples in Fig. 4.3. The analysis leads to 452 age-related
features, 188 sex-related features, 123 age&sex-related features, and 89 features with
no relationship to age or sex.

Usually, we would apply a correction to account for the fact that we are perform-
ing multiple hypothesis tests. Here our main goal is to exclude features for which
there is no strong evidence of a relationship; spurious inclusion of some variables
is less of a concern.
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FIGURE 4.3: Relationships of age and sex (Men and Women) with six
different features in the case of Alzheimer’s disease. The age-related
features are the left caudal anterior cingulate cortical thickness stan-
dard deviation (top) and the hypointensities volume (bottom); the sex-
related features are intracranial volume (top) and the left caudate vol-
ume (bottom); the age & sex-related features are the raw volume value
for the right pars orbitalis (top) and the cortical thickness average of

the left pars orbitalis (bottom).
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Anatomical subregions of cerebral cortex.
Reproduced from [112]

3D view of subcortical segmentations. Repro-
duced from [113]

Hypointensities. Reproduced from [114]

FIGURE 4.4: Brain regions studied in Fig. 4.3

Li et al. [113] and Taki et al. [115] describe models also based on GLMs to mea-
sure the age and sex dependence in regions of the brain for healthy subjects. The
volume values of subcortical regions such as thalamus, caudate or hippocampus
are used to measure the dependence of these regions.
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The results from Li et al. [113] are with a dataset with healthy subjects from 19 to
70. The same brain volumes are measured in the TADPOLE dataset in two different
modalities, one in the UCSF FreeSurfer dataset, via MRI, and the other in the UC
Berkeley dataset, via AV45-PET.

We compare in Table 4.1 the dependencies of five volumes of interest that are
highlighted in Fig. 4.5. The dependencies are very different because the age range
of the subjects is different. In our study, we only have subjects from 54 to 92 years
old whereas Li et al. have subjects from 17 to 70 years old. When looking at the
plots of the volume values as a function of age in Li et al. [113], we can see that the
dependence changes when we only take the values when the age is greater than 54.
For example, caudate becomes only sex dependent and thalamus only age depen-
dent. Putamen, amygdala and hippocampus remain with the same dependence.

Brain regions Our results Li et al. [113]
Hippocampus Age Age & sex

Amygdala Age Sex
Caudate Sex Age, sex
Putamen Age, sex Age, sex

Thalamus Age Age, sex

TABLE 4.1: Results of the study of feature dependencies with age and
sex.
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FIGURE 4.5: 3D view of brain regions studied in Table 4.1. Reproduced
from [113].

Thus the GLM results of feature dependence with age and sex prove that differ-
ent features have different relationships with age and sex. This justifies our focus
on an architecture taking into account the feature differences by using a multiple-
graph architecture.

4.4.2 Optimization of the hyperparameters

We develop a Python and Tensorflow implementation of the algorithm, building on
the matrix completion code provided by Monti et al. [36]. We split the data between
a training (60%), validation (20%) and test set (20%). We put the same percentage
of MCIc and MCInc in each set.

Optimization is realized with RBFOpt [116]. In order to ensure that classification
performance generalizes, we optimize the hyperparameters over a validation set
that is different from the test set. We want to maximize the validation AUC. We
take the best validation AUC over 1000 iterations as the value of the function we
want to optimize.
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For the sRGCNN

We first have to optimize the hyperparameters of the sRGCNN. The hyperparame-
ters are:

• the weight parameters in front of the loss terms in the loss function (Eq. (4.3)):
γ, γW , γH, γe and γl2,

• the number of hidden units h,

• the learning rate l,

• the number of Chebyshev polynomials used for the GCNN c.

Trying to optimize 8 hyperparameters at the same time is extremely computa-
tionally expensive. To reduce the overhead, we assume that we should optimize
the 5 parameters of the loss function together as they are closely related but we can
optimize the other parameters individually as they are not closely related. We first
optimize the parameters of the loss function and proceed to optimize the other three
parameters. Depending on the number of values to optimize and on the bounds,
we run the optimization for I different tries of values for the hyperparameters.

Hyperparameter Bounds Fixed I Identified AUC
to optimize parameters value

Loss h = 36 γl2, γ, γH, γW ,
coefficients 1-100 l=0.00089 200 γe=17, 100, 76.8

c=18 68, 68, 70
Number of γl2, γ, γH, γW , γe=

hidden 1-50 17, 100, 68, 68, 70
units h l=0.00089 50 h=17 77.1

c=18
Learning 5× 10−3- γl2, γ, γH, γW , γe=

rate l 5× 10−5 17, 100, 68, 68, 70
h=17 100 l=0.0003 81.2
c=18

Number of γl2, γ, γH, γW , γe=
Chebyshev 1-50 17, 100, 68, 68, 70

polynomials c h=17 50 c=18 81.2
l=0.0003

TABLE 4.2: Results of the optimization of the hyperparameters for the
sRGCNN architecture. The AUC reported is the one on the validation

set.
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For the MG-RGCNN

As the loss function is different for the MG-RGCNN, we cannot use the values
found for the sRGCNN. Indeed, we now have one coefficient for each graph norm
as highlighted by Eq. (4.2). We used the simplified version with the GCN layers, the
MG-RGCNN GCN, in order to reduce the computational complexity.

The hyperparameters are:

• 6 parameters in front of the loss terms in the loss function (Eq. (4.2)): µage, µsex,
µage&sex, µns, µ and γl2,

• nb of hidden units h,

• learning rate l.

As for the sRGCNN, we first optimize the 6 parameters of the loss function and
proceed to optimize individually the number of hidden layers and the learning rate.
Depending on the number of values to optimize and on the bounds, we run the
optimization for I different tries of values for the hyperparameters.

Hyperparameter Bounds Fixed I Identified AUC
to optimize parameters value

Loss h=36 γl2, µage, µsex,
coefficients 1-100 l=0.001 500 µage&sex, 73.2

µns, µ=1,
84, 100, 29, 82, 84

Number of γl2, µage, µsex,
hidden 1-100 µage&sex, 100 h=51 75.4
units h µns, µ

l=1, 84, 100,
29, 82, 84, 0.001

Learning 5× 10−3- γl2, µage, µsex,
rate l 5× 10−5 µage&sex, 100 l=0.0008 77.2

µns, µ,
h=184, 100,

29, 82, 84, 51

TABLE 4.3: Results of the optimization of the hyperparameters for the
MG-RGCNN architecture. The AUC reported is the one on the valida-

tion set.
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4.4.3 Experiment results

In this section, we fix the parameters to the values found in the optimization step.
We train the architecture on the training set and we compute the test AUC at the
iteration where the AUC is maximal on the validation set. We do that for different
initializations of the splitting of the train, validation and test sets. We do an average
over all the different initializations. We test the different architectures on the TAD-
POLE dataset.

A Random Forest (RF), a linear SVM and a Multi-Layer Perceptron (MLP) were
tested on the dataset to see the performance of these standard methods compared
to the methods that we propose here. As we had missing values, we decided to fill
them with the mean value of the corresponding missing feature. Then we apply the
algorithm. For the RF, the number of estimators is a hyperparameter so as previ-
ously done for the sRGCNN, we optimize the validation AUC in order to find the
best value for the number of estimators. We identified a value of 80. For the MLP,
we put one hidden layer and optimize the validation AUC in order to find the best
number of hidden units. We identified a value of 50 hidden units.

We also replicated the architecture from Parisot et al. [103]. As it is not an ar-
chitecture that deals with missing values, we had to fill the missing values and
performed it the same way we did it for the standard methods. As the dataset is
different than the one used in their paper, we optimized the hyperparameters (num-
ber of hidden layers L, number of hidden units per hidden layer h, l2 regularization
parameter γ, learning rate lr, dropout rate d) with RBFOpt during 500 runs of the
algorithm with different values for the hyperparameters. We found L = 3, h = 76,
γ = 10−6, lr = 5× 10−4 and d = 0.832. We did 200 iterations for one run to train the
architecture as mentioned in the paper. We used the graph construction variables
from the paper which are the same as the one used in the sRGCNN from Vivar et
al. [96].

The results on the TADPOLE dataset are given in Table 4.4. As the results are
close and can overlap, we computed the Wilcoxon signed-rank test (Table 4.5). This
test compares the different test AUC values obtained for the same initialization to
determine if the performance difference is statistically significant over the 100 dif-
ferent initialization. We conducted the test to compare the results of sRGCNN (1),
MG-RGCNN GCN similarity (2), MG-RGCNN GCNN similarity (3), random forest
(4), linear SVM (5), multi-layer perceptron (6) and the architecture from Parisot et
al. (7).
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Algorithm - Corresponding number Mean AUC ± std
sRGCNN [96] - (1) 0.7191± 0.0556
MG-RGCNN GCN 0.693± 0.040
MG-RGCNN GCN similarity - (2) 0.698± 0.041
MG-RGCNN GCNN similarity - (3) 0.739± 0.044
Random Forest - (4) 0.771± 0.031
Linear SVM - (5) 0.690± 0.027
Multi-Layer Perceptron - (6) 0.736± 0.037
Parisot et al [103] - (7) 0.767± 0.036

TABLE 4.4: Mean test AUC in the different cases presented for the
TADPOLE dataset.
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FIGURE 4.6: Violin plots of the distribution of the AUC over
the 100 different train/validation/test initializations for linear SVM,

sRGCNN, MG-RGCNN, Parisot et al. and random forest.

Using the GCNN layer from Defferard et al. [39] as done in the sRGCNN from
Vivar et al. [96] helps in improving the AUC values from almost 4% compared to
the architecture using the GCN layer from Kipf and Welling [47]. We can also see
that the simplified version with the GCN layer is performing worse than the ver-
sion with the GCNN as the p-value for the Wilcoxon test is 2.61× 10−11. The only
difference is that it is more computationally expensive and takes four time more
time to run the architecture with the GCNN rather than the one with the GCN.

There is an improvement of 2% on the mean AUC compared to Vivar et al. [96]
with the MG-RGCNN GCNN similarity. With the Wilcoxon test results, we can see
that the MG-RGCNN GCNN similarity outperforms the sRGCNN as the p-value for
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the Wilcoxon test is 4.11× 10−3. The random forest and the architecture of Parisot et
al. [103] outperform all the other algorithms. For both these architectures, the matrix
completion task is not being performed. These algorithms are only performing the
classification task. The missing values are imputed by a mean of the known values
for this feature. This outperformance could be due to the fact that the dataset is not
large and there are only 21% of missing values which is not enough to interfere with
the classification results.

1 2 3 4 5 6 7
1 6× 10−5 4× 10−3 5× 10−15 2× 10−8 2× 10−2 2× 10−14

2 6× 10−5 3× 10−11 6× 10−18 1× 10−1 1× 10−11 8× 10−18

3 4× 10−3 3× 10−11 3× 10−11 1× 10−13 3× 10−1 1× 10−8

4 5× 10−15 6× 10−18 3× 10−11 6× 10−18 3× 10−14 2× 10−1

5 2× 10−8 1× 10−1 1× 10−13 6× 10−18 7× 10−16 6× 10−18

6 1× 10−2 1× 10−11 3× 10−1 3× 10−14 7× 10−16 5× 10−14

7 7× 10−14 8× 10−18 1× 10−8 2× 10−1 6× 10−18 5× 10−14

TABLE 4.5: Wilcoxon scores for the TADPOLE dataset. 1: sRGCNN,
2: MG-RGCNN GCN similarity, 3: MG-RGCNN GCNN similarity, 4:
random forest, 5: linear SVM, 6: multi-layer perceptron, 7: the archi-

tecture from Parisot et al.

Parameter Value
Split train/validation/test 0.6/0.2/0.2
Number of iterations 1000
Number of different train/validation/test initialization 100

TABLE 4.6: Table of fixed hyperparameters to run each different algo-
rithm.

4.5 Conclusion

We introduce a multiple-graph architecture based on a graph-based geometric ma-
trix completion method to predict disease outcomes for datasets with missing val-
ues. We use a statistical significance test to determine the subsets of the features that
are relevant to each of the graphs. This leads to an improvement of 2% on the mean
AUC compared to Vivar et al. [96]. The MG-RGCNN algorithm helps in performing
better classification as it takes into account more accurately the feature dependen-
cies with age and sex and allows to better recover the missing values. However,
it is being outperformed by the random forest and the GCNN-based algorithm de-
signed by Parisot et al. [103], architectures where the missing values are imputed by
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a mean of the known values for this feature. This could be due to the fact that the
dataset is not large and there are only 21% of missing values which is not enough
to interfere with the classification results. Moreover, the AUC on the training set
is close to 1 which is probably indicative of overfitting. The architecture is perhaps
too powerful for the provided data. One way to alleviate this might be to introduce
perturbances in the data.

The obtained results are considerably lower than those reported by Vivar et
al. [96]. This may be due to the preprocessing of the dataset as it is not explained
in much detail in the paper. It can also be due to the fact that there is an unfor-
tunate overlap in the training and test data in the train/test split specified in the
TADPOLE challenge overlap. Some entities are present in both training and test
sets which biased the results. In the split that we used, there is no overlap of the
training, validation and test set. We are not using the train/test split specified in the
TADPOLE challenge.
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5 Multiple-Graph Graph
Auto-Encoder architectures for
predicting disease outcomes

5.1 Introduction

Based on the model developed by Vivar et al. [96] where using an architecture first
developed for matrix completion to do classification resulted in promising results,
we decided to look for architectures used for matrix completion that had better re-
sults on the matrix completion task than those obtained by Monti et al. [36]. This
leads us to focus on the Graph Convolutional Matrix Completion (GC-MC) devel-
oped by Van den Berg et al. [38] that achieved better results than the sRGCNN from
Monti et al. on the task of recommender systems. Instead of computing the embed-
dings for the users and the items based on the rating values available, we compute
the embeddings based on personal information about the subjects and on the rela-
tionships of this information with the features. We add the labels as one column of
the matrix to complete and add a cross-entropy term for the labels in the loss func-
tion. The major contribution is on the transition from an architecture for categorical
data to one for continuous data. Our approach is the first one to use a graph auto-
encoder for bipartite graphs for disease outcome prediction.

Section 5.2 provides a formal statement of the problem. Section 5.3 provides our
approach and algorithm. Section 5.4 presents the results of the application of our
approach to the prediction of Alzheimer’s disease development.

5.2 Problem statement

We consider the following prediction task for disease outcomes. Let X ∈ Rm×n be
the feature matrix, m being the number of subjects and n the number of features.
The features are assumed to be derived from medical examinations. X may have
missing values. Let Y ∈ {0, 1}m×1 be a vector denoting the disease outcomes for
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the m subjects. Some of these are unknown and these are the focus of the prediction
task.

Let Gi = {Ui, Vi, Ei} be a bipartite graph on the subjects and the features with
edges derived by a similarity metric from a subject attribute si. The attribute can be
categorical, or real- or integer-valued. Ui and Vi denote the vertices, Ui = {1, ..., m}
is a subset of the subjects, Vi = {1, ..., n} is a subset of the features and Ei are the
edges. We assume that there are P such graphs derived from different combinations
of subject attributes and thus capturing different relationships between subjects and
features. Taking into account the features X and the relationships formed by the
similarities of the attributes si and captured by Gi, i = 1, . . . , P, our task is to predict
the unknown disease outcomes in Y and impute the missing values in the matrix
X.

5.3 Methodology

In the task of disease outcome prediction, most of the datasets have missing val-
ues and inaccurate measurements. Formulating the task as matrix completion as
in [105] allows us to jointly perform transductive classification and imputation of
missing values. To do this, we form a matrix Z = [X, Y] and apply a matrix comple-
tion algorithm. The initial matrix M contains all the information from the dataset.

We commonly have knowledge of attributes that can be used to identify relation-
ships or similarities between subjects. Attributes such as age and sex often impact
the probability of a disease outcome and the likelihood of a feature derived from
a medical examination. In trying to recover a matrix with missing values and un-
known disease outcomes, it is reasonable to interpret every element of the matrix
as an edge weight. The edge exists in one of multiple bipartite graphs. The graph
it is located in depends on the attributes of the subject and the feature. Our task
is to infer the weight. If there is an edge in a graph between a specific subject and
a certain feature (e.g hippocampus volume) then the weight associated with that
edge is the subject’s value for that feature.

After building the bipartite graphs, we have to infer the edge weights. In or-
der to do so, we build embeddings for each feature and each subject based on the
known edges. We do so for each one of the graphs. It is reasonable to assume that
we can compute an embedding for a certain feature from all the known edges from
this feature. Subjects that are related to the same feature in one graph are supposed
to be similar and thus should have similar values. In the same way, we compute
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embeddings for the subjects. Subjects that are similar should have a similar em-
bedding. On the one hand, when reconstructing the edges between one subject and
one feature, subjects that are similar should have a similar edge weight. On the
other hand, subjects that are different should have different subjects’ embeddings
and thus different edge weights.

The bipartite graphs are built based on attributes of the subject and the feature.
The relationships between the features and the attributes of the subjects are found
by the same technique as the one developed in Section 4.3. For a binary attribute
ab ∈ {0, 1} such as sex, two groups of subjects are created, one where the sub-
jects have 0 for this attribute and another one where the subjects have 1 for this at-
tribute. These two groups lead to two graphs where each bipartite graph is between
the subjects of one group and the features related to that attribute. For a continu-
ous attribute ac ∈ [amin, amax] such as age, we choose a value l such that we split
[amin, amax] into l intervals. For each interval, we group together the subjects that
have a value for ac in the given interval. These l groups lead to l bipartite graphs
where each graph is between the subjects of one group and the features related to
that attribute. A group of subjects is defined by an attribute of a subject or by an
intersection of attributes and by a range of attribute values. A group of features is
defined by an attribute of a subject or by an intersection of attributes.

5.3.1 Multiple-Graph Graph Auto-Encoder (MG-GAE)

We propose an architecture based on a graph auto-encoder. We adapt the architec-
ture from [38] to take into account the subjects’ attributes, the fact that the values in
the matrix are continuous and the prediction task. We have a matrix M of dimen-
sions m× n, where m is the number of subjects and n is the number of features. The
n-th column of this matrix is the outcome vector y. The architecture is described
in Fig. 5.1 where the encoding is done for subject i and feature j. The relationships
taken here are age, sex and age & sex but it is possible to take other relationships
into account.

Each column of M is normalized so that the values lie between -1 and 1, by
scaling based on the minimum and maximum observed values in the column. Some
of the elements of M may be missing. We set these to a value of zero. We construct
two identity matrices Im×m and In×n. Each row corresponds to a subject (feature).

We have K binary indicator matrices S(i) that correspond to a relationship be-
tween a group of subjects and a group of features. For example, the matrix S(1)
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FIGURE 5.1: Graph auto-encoder process for subject i and feature j.

might indicate subjects that are in the age range 80-85 and features that are age-
dependent. We define A(i) = M � S(i) as the element wise product of the nor-
malized data matrix M and the i-th indicator S(i). An example of several bipartite
graphs is given in Fig. 5.2 where the values of A(i) are on the edges. If the value
corresponding to an edge is null then there is no edge. For each of the i indica-
tor matrices, we identify two real-valued weight matrices W(i) (dimensions m× o)
and V(i) (dimensions n × o). o is the subject and the feature-specified embedding
dimension.

The initial embedding Q(i) of the subject is obtained by multiplying Im×m by
W(i), so that Q(i) = Im×mW(i) = W(i). It is clear that the o-dimensional embedding
of the j-th subject is just the j-th row of the weight matrix. Similarly, the initial
embedding P(i) of the features is obtained by multiplying In×n by V(i), so that P(i) =

In×nV(i) = V(i). It is clear that the o-dimensional embedding of the j-th feature is
just the j-th row of the weight matrix V(i).

We then define Z(i) = A(i)P(i) to form an m× o dimensional matrix. If we inspect
this equation, we see that the j-th row is a weighted sum of the embeddings p(i)s . The
weights correspond to the entries of A(i) corresponding to the j-th subject. We have
z(i)j = ∑ A(i)

js p(i)s . Similarly we define B(i) = A(i)TQ(i) to form an n× o dimensional
matrix. If we inspect this equation, we see that the j-th row is a weighted sum of
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FIGURE 5.2: Three bipartite graphs corresponding to different at-
tributes of the subjects. The three colors represent three different bipar-
tite graphs that act between different groups of subjects and features.
Group 1 is for example a group of subjects that have an age between
70 to 75. Subjects 1 and 2 have an age between 70 to 75 and feature
1, 2, j + 1 and n are age-related features. M(2, 1) is missing hence the

missing edge.
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FIGURE 5.3: Depiction of the architecture. M is the input and the grey
elements are missing values. M̃ is the output. GAE is the Graph Auto-

encoder.

the embeddings q(i)s . The weights correspond to the entries of A(i) corresponding to
the j-th feature. We have b(i)j = ∑ A(i)

sj q(i)s . We use the term "GCN layer" to refer to

the operation performed to create Z(i) and B(i). We concatenate the Z(i) and B(i) to
form matrices Z and B. At this stage, a non-linearity (e.g. ReLU) is applied to Z and
B. Finally, we have linear transforms Z′ = ZG and B′ = BH to produce matrices
of dimension m × d and n × d. G and H are learnable parameters. We can add a
non-linearity to Z′ and B′. We use the term "dense layer" to refer to the operation
performed to create Z′ and B′.

For the decoder, we identify one weight matrix Wd (dimension d× d). The de-
coder performs the operation Z′WdB′T to produce an output of dimension m × n.
We can add a non-linearity to the produced output.

The loss function is defined as Eq. (5.1) where the first term is for the matrix
completion task and the second one for the classification task. The matrix com-
pletion term is the Frobenius norm ||.||F of the difference between the values of
the known feature entries of the input matrix M and the reconstructed matrix M̃.
The Frobenius norm is ||A||F =

√
∑m

i=1 ∑n
j=1 |aij|2 for an m × n matrix A. Ωa is

the indicator matrix of the known feature values, the concatenation of a m× n ma-
trix filled with 1 when the feature is available in M and 0 otherwise and a m × 1
vector of 0. The classification term is a binary cross-entropy term lΩb(Z, M) =

−(y log(p) + (1− y) log(1− p)), where Ωb is the indicator matrix of known out-
comes, the concatenation of a m× n matrix filled with 0 and a m× 1 vector of 1, p is
the classification output vector and y the label vector. The last one is an l2 regular-
ization term where (W1, . . . , Wq) represents the weight matrices of the architecture.
γ and β control the balance between the different loss terms.
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l = ||Ωa ∗ (M− M̃)||F + γlΩb(M, M̃) + β
q

∑
i=1

Wi. (5.1)

5.3.2 Application to Alzheimer’s disease

We apply the proposed MG-GAE to the prediction of conversion from MCI to AD
with the same dataset as the one used in Chapter 4, the TADPOLE dataset. The first
step is to choose the support matrices. In the TADPOLE dataset, we have subjects
from 54 to 92 years old. For each of the support matrices Si, Si(k, l) = M(k, l) if
subject k belongs to the group i and if feature l is dependent on the characteristic
of group i. For example, the first support matrix is for men so S1(k, l) = M(k, l)
if subject k is a man and if feature l is sex-dependent. We use the same support
matrices for the synthetic dataset. Table 5.1 gives the 23 characteristics used for the
support matrices. M and W denote Men and Women. 54 - 59 means that the subjects
that are between 54 and 59 are used in this support matrix. In order to know the
feature dependencies, we use the statistical significance test introduced in Chapter 4
to determine the subsets of the features that are relevant to each of the graphs.

Feature Characteristics used for the support matrices
dependence
Sex-related Men, Women
Age-related 54 - 59, 59 - 64, 64 - 69, 69 - 74, 74 - 79, 79 - 84, 84 - 92
Age & Sex 54 - 59 & M, 59 - 64 & M, 64 - 69 & M, 69 - 74 & M, 74 - 79 & M,

related 79 - 84 & M, 84 - 92 & M, 54 - 59 & W, 59 - 64 & W, 64 - 69 & W,
69 - 74 & W, 74 - 79 & W, 79 - 84 & W, 84 - 92 & W

TABLE 5.1: List of the 23 support matrices

5.4 Results

We discuss here the different experiments realized for the task of prediction of con-
version from MCI to AD. First, we optimized the hyperparameters in order to in-
crease the performance and then we compared our results to the results of standard
classification method algorithms. Finally, we inspect the embeddings Z and B gen-
erated by the GCN layer and assess whether they are meaningful.
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5.4.1 Optimization of the hyperparameters

We develop a Python and Tensorflow implementation of the algorithm, building on
the matrix completion code provided by Van Den Berg et al. [38].

We tested this architecture for the task of prediction of conversion from MCI to
AD. We used the TADPOLE dataset as in Chapter 4 but we also created a synthetic
dataset to help develop an understanding of the behaviour of the algorithm. Details
concerning the creation of the synthetic dataset are given in Appendix A. The first
step of the experiments was to choose the support matrices. After determining the
normalization to use, we can optimize the hyperparameters in each case in order to
assess the performance of the proposed architecture.

Optimization is realized with RBFOpt [116]. In order to ensure that classification
performance generalizes, we optimize the hyperparameters over a validation set
that is different from the test set. We want to maximize the validation AUC. We
take the best validation AUC over 1000 iterations as the value of the function we
want to optimize. The 5 hyperparameters are:

• parameters in front of the loss terms in the loss function (Eq. (5.1)) γ and β,

• number of hidden units for the GCN layer for one support a,

• number of hidden units for the dense layer b,

• learning rate.

We first run the optimization for the synthetic dataset for 500 different tries of
values for the hyperparameters and the best value of the AUC on the validation set
was 88.93. The optimized hyperparameters are presented in Table 5.2.

Hyperparameter Bounds Identified value
γ 0.1-100 0.119
β 0.001-1 0.091
a 1-100 61
b 1-100 47

Learning rate 5× 10−5-5× 10−3 7.80× 10−3

TABLE 5.2: Results of the optimization of the hyperparameters for the
synthetic dataset.

Then we run the optimization on the TADPOLE dataset for 500 different tries
of values for the hyperparameters and the best value of the AUC on the validation
set was 79.26. The hyperparameters found for this value of AUC are reported in
Table 5.3.
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Hyperparameter Bounds Identified value
γ 0.1-100 0.576
β 0.001-1 0.914
a 1-100 99
b 1-100 25

Learning rate 5× 10−5-5× 10−3 9.97× 10−3

TABLE 5.3: Results of the optimization of the hyperparameters for the
TADPOLE dataset.

5.4.2 Results of the experiments

In this section, we fix the parameters to the values found in the optimization step
in Section 5.4.1. For each experiment, defined by a different initialization of the
subjects in the training, validation and test sets, we now use the validation set to
know at which iteration the validation AUC is the best and to compute the test AUC
for that iteration. Then we average over the 100 different initializations to have
generalized results. We test the proposed architecture on the synthetic dataset and
on the TADPOLE dataset. The violin plots of the results on the TADPOLE dataset
for linear SVM, sRGCNN [96], MG-GAE, the GCNN-based algorithm designed by
Parisot et al. [103] and random forest are presented in Fig. 5.4.

Algorithm Mean AUC ± std
MG-GAE 0.842± 0.026
Random Forest 0.760± 0.034
Linear SVM 0.934± 0.013

TABLE 5.4: Mean test AUC in the different cases presented for the syn-
thetic dataset.

Algorithm Mean AUC ± std
sRGCNN [96] 0.719± 0.056
MG-RGCNN GCNN similarity 0.739± 0.044
MG-GAE 0.748± 0.036
Random Forest 0.771± 0.032
Linear SVM 0.690± 0.027
Multi-Layer Perceptron - (6) 0.736± 0.037
Parisot et al [103] - (7) 0.767± 0.036

TABLE 5.5: Mean test AUC in the different cases presented for the
TADPOLE dataset.

For the synthetic dataset, the linear SVM achieves the best performance. Our
algorithm outperforms the random forest by 8%. For the TADPOLE dataset, the
architecture proposed outperforms by 2.9% the sRGCNN by Vivar et al. [96]. On the
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FIGURE 5.4: Violin plots of the distribution of the AUC over
the 100 different train/validation/test initializations for linear SVM,
sRGCNN, MG-GAE, the GCNN-based algorithm designed by Parisot

et al. and random forest.

Parameter Value
Split train/validation/test 0.6/0.2/0.2
Number of iterations 500

TABLE 5.6: Table of fixed hyperparameters to run each different algo-
rithm.

matrix completion task for recommender systems, Van den Berg et al. [38] achieve
better results with the GC-MC than Monti et al. [36] with the sRGCNN. However,
the MG-GAE is being outperformed by the random forest by 2.3%. This may be
due to the fact that there are only 21% of missing values and using the mean of
all known features to impute this feature is not impacting the classification result
for the random forest. Moreover, we might need to have more subjects to train the
neural network.
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5.4.3 Vizualization of the embeddings

We have 23 support matrices that represent the data. They are defined in Sec-
tion 5.3.2. For each one of these support matrices, we have o outputs of the GCN
layer to encode something relevant from the support matrix. o is the subject-specified
embedding dimension. We want to check if the output of the GCN layer actually
takes into account the attribute of the subject that is supposed to be taken into ac-
count in the support matrix.

In order to do such a check, we apply principal component analysis (PCA) on
the o outputs. We take into account the two principal components of PCA in order
to see if there are differences in the subjects belonging to different groups. We plot
the results in a scatter plot where the x axis represents the first component of PCA
and the y axis represents the second component of PCA. We have 23 plots, one per
support matrix. The group "Support 1" corresponds to the group of subjects that
have the attribute that is under study. For example, if we want to inspect the em-
bedding for men, "Support 1" is composed of all the men. We split this group into
two subgroups to see if the embedding takes into account the two different classifi-
cation results (MCIc or MCInc). The group "Support 0" is composed of all the other
subjects that do not have the attribute. In all the plots, we can clearly see that the
two classes are well separated and that the embeddings accurately take into account
the known subject’s values to create a boundary between MCIc subjects and MCInc
subjects.

The embeddings are computed on the training data. For the TADPOLE dataset,
o = 99. The MG-GAE was run with the hyperparameters from Table 5.3 and an
AUC of 0.998 was obtained for the training set. We took the results at the best
validation AUC, which was 0.785. The test AUC was 0.776. We only include 6
plots, two for sex-related embeddings (Fig. 5.5), two for age-related embeddings
(Fig. 5.6) and two for age & sex-related embeddings (Fig. 5.7). The other plots are
in Appendix B.

We can see that the different groups do not overlap too much and that the
boundaries between the different groups are visible in every case. The GCN layer is
doing what we want it to do, i.e., it is differentiating the subjects with the attribute(s)
taken to built the support matrix and it is also giving a different embedding based
on the label. If a subject does not belong to the group that the embedding built is
based on then no embedding is computed for that subject. Considering the differ-
ence in the embedding and the splitting visible on the plots, it makes sense that a
good AUC value is reached. The plots obtained for the synthetic dataset are avail-
able in Appendix C where the same conclusion can be drawn.
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FIGURE 5.5: Scatter plots of the two first components of PCA for the
sex-related embeddings.
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FIGURE 5.6: Scatter plots of the two first components of PCA for the
age-related embeddings.
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FIGURE 5.7: Scatter plots of the two first components of PCA for the
age & sex-related embeddings.
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5.5 Conclusion

We introduce the multiple-graph graph auto-encoder, an architecture based on a
graph auto-encoder to predict disease outcomes for datasets with missing values.
It uses multiple bipartite graphs built on subjects’ characteristics to create embed-
dings for each subject and each feature based on the known subject’s value for each
feature and on the relationships between features and subjects. This leads to an
improvement of 3% on the mean AUC compared to the sRGCNN from Vivar et
al. [96]. This novel architecture is also outperforming the MG-RGCNN architecture
from Chapter 4 by 1%. However, it is being outperformed by the random forest and
the GCNN-based algorithm designed by Parisot et al. [103], architectures where the
missing values are imputed by a mean of the known values for this feature. This
could be due to the fact that the dataset is not large and there are only 21% of miss-
ing values which is not enough to interfere with the classification results. Moreover,
the AUC on the training set is close to 1 which is probably indicative of overfitting.
The architecture is perhaps too powerful for the provided data. One way to allevi-
ate this might be to introduce perturbances in the data.
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6 Conclusion

We proposed in this thesis two novel graph-based approach to predict disease out-
comes.

The first approach, the multiple-graph recurrent graph convolutional neural net-
work, is novel because it uses multiple graphs based on the feature dependencies
with attributes of the subjects (such as age or sex). The feature dependencies are
computed by fitting a generalized linear model (GLM) to the known values of the
studied feature. Features are then grouped according to their dependencies on the
attributes. Then, multiple graphs are built, each one based on some attribute(s),
where each subject is at one node of the graph. Each node is characterized by
the subject’s values of the features that are dependent on the attribute(s) that the
graph is built on. The edge between two subjects represents the closeness in the
attribute(s). An iterative process composed of multiple graph convolutional neural
networks (GCNNs) and an LSTM is used to update the initial matrix to find the
missing values in the features and in the labels.

The second approach, the multiple-graph graph auto-encoder, is the first archi-
tecture based on a graph auto-encoder to predict disease outcomes. It uses bipartite
graphs between subjects and features constructed according to the characteristics
of the subjects where the edges equal the subject’s value of the feature. Then, these
bipartite graphs help in building embeddings and a decoder is used to reconstruct
all entries of the initial matrix, missing and non-missing.

We tested these two algorithms on the task of prediction of conversion from
MCI to AD with the TADPOLE dataset, a matrix composed of 779 subjects and 564
features. It has 21% of missing values. Both methods outperform by respectively 2%
and 3% the AUC of the sRGCNN by Vivar et al. [96], which is the only graph-based
method for prediction of conversion from MCI to AD with missing data.

However, both methods are being outperformed by the random forest and the
GCNN-based algorithm designed by Parisot et al. [103]. These architectures cannot
process missing values so the missing values are imputed by a mean of the known
values. The achieved performance could be due to the fact that the dataset is not
large and there are only 21% of missing values which is not enough to interfere with
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the classification results.

In future work, we will test the algorithms when more data is missing to de-
termine if jointly performing matrix completion and classification can improve the
classification performance in scenarios where there is a large amount of missing
data.

We can also use more attributes of subjects to build the graphs such as the edu-
cation level of subjects or mental test results.

As the results from the GCNN-based algorithm designed by Parisot et al. [103]
are better than the results we obtained, it would be worth trying to move the archi-
tecture from Parisot et al. to a multiple graph architecture to see the performance.

Moreover, instead of focusing on classification and providing an output that
only indicates if the subject will progress to the disease or not, we will incorporate
a calibration mechanism so that the provided value represents the probability of
conversion.

We will also apply the proposed multiple graph algorithm to other disease out-
come datasets and explore methods for automatically choosing the attributes used
to construct graphs instead of using ad hoc rules.
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A Datasets for the prediction of
Alzheimer’s disease

Data used in this thesis were obtained from the ADNI database [66]. As such, the
investigators within the ADNI contributed to the design and implementation of
ADNI and/or provided data but did not participate in analysis or writing of this
report. A complete listing of ADNI investigators can be found at [117]. In particular,
this work uses the TADPOLE dataset [118] constructed by the EuroPOND consor-
tium [119] funded by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 666992.

A.1 TADPOLE dataset

We used in this thesis the TADPOLE dataset. More details on the dataset and on the
different image modalities used are provided in Section 2.4. We will describe here
the preprocessing steps.

A.1.1 Preprocessing of the TADPOLE dataset

The TADPOLE dataset is represented by a csv file with 12, 741 rows, all representing
a different examination for a patient at a specific time. As the data is longitudinal,
several rows can be for the same subject but the scans and different tests were done
at different times. Our goal is to predict the onset of Alzheimer’s disease using
only baseline data, so the first step was to remove the data where the visit code
was different than baseline. The number of rows decreased to 1, 737. Then, only
the patients that were diagnosed with MCI at their baseline visit were kept. The
number of rows decreased to 869. And finally, when labeling the data, we removed
of the patients that converted to AD more than 48 months after the baseline and
the patients that were wrongly labeled. The number of rows decreased to 779. The
initial number of columns was 1, 919. The first step was to remove the columns that
did not correspond to medical examination data (age, sex, date, diagnosis, patient
number. . . ). Then, the columns where too much information was missing were also
removed: if more than half of the values were missing, the column is removed. At
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FIGURE A.1: Histograms of the number of men and women in each
age group.

the end, the number of columns is 563. Our feature matrix has a shape 779× 563.
For the included subjects, 20.7% of feature values are missing. The characteristics
of the TADPOLE dataset are given in Table A.1. A histogram with the repartition of
women and men per age group is given in Fig. A.1.

The labels (MCIc and MCInc) are not given in the TADPOLE dataset. We com-
pute the labels from the different diagnosis of a subject. In the TADPOLE dataset,
we had to take into account two columns: DX_bl and DX_CHANGE. The first one
represents the baseline diagnosis and the second one the change in the diagnosis
over the visits. From seeing how the values of DX_CHANGE evolve over the visits,
we can classify the subject as MCI converter (MCIc) or MCI non converter (MCInc).
The number of MCIc is 296 and the number of MCInc is 483. The data is unbalanced.

Age 54-59 59-64 64-69 69-74 74-79 79-84 84-92 Total
Men 14 37 55 113 122 79 40 460
Women 13 39 59 74 62 59 13 319
Total 27 76 114 187 184 138 53 779

TABLE A.1: Characteristic of the subjects for the TADPOLE dataset.
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A.2 Synthetic dataset

In order to conduct a more controlled analysis of the performance of the algorithm,
we created a synthetic dataset. The synthetic dataset is constructed with specified
relationships between the features and the characteristics of the subjects (age, sex,
age&sex). The conversion probability is constructed to depend on a subset of the
features.

A.2.1 Creation of the synthetic dataset

Let M ∈ Rm×n be the synthetic dataset and M(i, j) ∈ R be the feature value for
subject i and feature j. Let xi denote the age, si denote the sex, and yi denote the
disease conversion variable for subject i. We draw random values for these subject
attributes using the following distributions:

xi ∼ U [xmin, xmax], (A.1)

si ∼ Be(0.5), (A.2)

yi ∼ Be(0.5). (A.3)

Let p be the number of features created, p� m. Features can be age related, sex
related or age & sex related. At each creation of a feature j, we randomly choose a
dependence for the feature. Let dj ∈ [age, sex, age & sex] denote the dependence
variable, fij=f(dj, xi,si) ∈ R denote a variable that relates to the value of the feature
dependence, mj denote the slope and ij denote the intercept. Let εij ∈ R denote
the noise for each subject/feature pair. Then M(i, j) = mj fij + ij + εij. Then we
randomly delete p−m features. For each feature j, let vj denote a random variable
related to the label. For each subject i, M(i, j) = M(i, j) + vj ∗ yi.
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dj ∈ [age, sex, age&sex] ∼ Categorical(1/3, 1/3, 1/3). (A.4)

fij = xi if dj = age, (A.5)

= si if dj = sex, (A.6)

= sixi if dj = age & sex. (A.7)

mj ∼ U [−z, z]. (A.8)

ij ∼ U [a, b]. (A.9)

εij ∼ N (0, σ). (A.10)

vj ∼ U [c, d]. (A.11)

A.2.2 Implementation

We choose the following values for the parameters of the synthetic dataset.

Parameter xmin xmax p z a b σ c d
Value 64 92 1000 0.1 0 1 5 0 0.25

TABLE A.2: Table of parameters for the synthetic dataset.
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B Vizualization of the embeddings on
the TADPOLE dataset.

Here are the other scatter plots of the two first components of PCA on the TADPOLE
dataset for the age-related embeddings (Fig. B.1) and for the age & sex-related em-
beddings (Fig. B.2).
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FIGURE B.1: Scatter plots of the two first components of PCA for the
age-related embeddings.
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FIGURE B.2: Scatter plots of the two first components of PCA for the
age & sex-related embeddings.
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C Vizualization of the embeddings on
the synthetic dataset.

For the synthetic dataset, o = 61. Fig. C.1, C.2 and C.3 highlight the results for the
synthetic dataset where the architecture was run with the hyperparameters from
Table 5.2 and an AUC of 1 was obtained for the training set. We took the results at
the best validation AUC, which was 0.86. The test AUC was 0.86.
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FIGURE C.1: Scatter plots of the two first components of PCA for the
sex-related embeddings.
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FIGURE C.2: Scatter plots of the two first components of PCA for the
age-related embeddings.
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