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Abstract—Moment-based filters, such as the Probability Hy-
pothesis Density (PHD) filter, are an attractive solution to multi-
target tracking. However, an underlying assumption for the PHD
filter is that each measurement is either caused by a single target
or clutter. In this paper, we design a novel moment-based multi-
target filter, the Additive Likelihood Moment (ALM) filter, where
the measurements are affected by all targets. We focus on the
cases where the likelihood can be expressed as a function of the
sum of the individual target contributions. As an example, we
consider radio tomographic tracking where the attenuation of
the signal between a pair of sensors is the sum of attenuations
caused by all targets. Our multi-target tracking algorithm is
based on a particle approximation of our moment-based filter.
Our simulations show that our algorithm has a lower estimation
error than MCMC particle methods while achieving 80% savings
in terms of computational time.
Keywords: Tracking, filtering, clustering.

I. INTRODUCTION

Tracking multiple targets is very challenging due to the
high dimensionality of the state-space. A generalization of the
recursive Bayes filter [1] is the optimal approach, but it is
generally not practical due to its computational complexity.
An attractive alternative is moment-based filters, such as the
Probability Hypothesis Density (PHD) filter [2]. The PHD
filter tracks the first-order moment of the multi-target posterior
rather than the posterior itself. This reduces the dimensionality
of the problem to a single target state space, which is easier
to track than the joint probability distribution. A limitation of
this filter is the assumption that (i) each target causes either
one or no measurement and (ii) each measurement is either
caused by a single target or clutter.

We are interested in developing a moment-based multi-
target filter for applications where all targets have an influence
on measurements (i.e., measurements are a function of all tar-
gets) such as direction of arrival for linear antenna arrays [3],
multi-user detection for wireless communication networks [4]
or radio frequency (RF) tomographic tracking [5]. We will use
the last-mentioned as an example throughout this paper. RF
tomography is a passive and device-free method that can be
used to estimate the position of moving targets in an observed
area surrounded by wireless sensors. The Received Signal
Strength (RSS) of an RF signal is attenuated by obstructions in
the monitored area. Therefore, a greater attenuation between a
pair of sensors can indicate the presence of a moving object. In

this environment, (i) each target can contribute to any number
of measurements, (ii) each measurement is potentially affected
by multiple targets and (iii) measurements are not independent.

In this paper, we design a novel moment-based multi-target
filter, called the Additive Likelihood Moment (ALM) filter,
for scenarios where the likelihood model can be expressed in
the form L(x) = h(

�
i g(xi)). Here h and g are non-linear

functions, satisfying some technical conditions detailed later.
The key aspect in this formulation is that the targets affect
the measurement in an additive fashion, so that the likelihood
value can be determined from the sum of the individual effects.
We focus on the special case where h is a Gaussian function
because it allows us to derive a computationally efficient filter.
The rest of this paper is organized as follows. In Sect. II,
we very briefly review existing methods used for multi-target
tracking. In Sect. III, we formally define the multi-target
tracking problem in the context of RF tomography. In Sect. IV,
we derive equations for our novel ALM filter. In Sect. V, we
describe our implementation of an existing MCMC algorithm
for multi-target tracking. In Sect. VI, we present the results
of our Matlab simulations and use the MCMC algorithm as
a benchmark for the ALM filter. In Sect. VII, we summarize
our work and suggest future directions of exploration.

II. RELATED WORK

There is a large amount of literature on multi target tracking.
In this section, we cite the most important ones which are
relevant to our work. For a more complete survey, see [6].
Sequential Monte Carlo (SMC) methods have proven effective
for non-linear target tracking but their performance is known to
deteriorate when the dimension of the state vector is large [7].
Thus, as an alternative to the SMC methods, Markov Chain
Monte Carlo (MCMC) based particle methods have been
suggested for tracking problems of high dimensionality [8],
[9].Khan et al. construct a Markov chain to sample from
the posterior state distribution at every time step k, but their
method is computationally expensive [8]. Pang et al. use a
more efficient approach and sample from the combined state
at time k and k − 1 [9].

Another approach to reduce the complexity of the problem
is moment-based filters, such as the PHD filter, that prop-
agate the posterior expectation rather than the joint multi-
target posterior distribution [2]. Although most successful



implementations of the PHD filter for multi-sensor multi-
target tracking [10]–[12] are based on the assumption that
measurements are caused by a single target or clutter, there
are a few examples where this is not the case [3], [13].
Balakumar et al. perform direction of arrival tracking for linear
antenna arrays that have an observation model with additive
contributions [3]. Their approach is (i) limited to narrowband,
far-field sources of the linear sensor array and (ii) require
the SMC-PHD filter input to be first processed using discrete
Fourier transform techniques. To the best of our knowledge,
Mahler’s work on superpositional sensors is the most related to
ours [13]. He derives corrector equations for the cardinalized
PHD filter based on a multitarget measurement model with
the same form as the likelihood model we require. However,
the equations include multi-dimensional integrals, which are
computationally intractable. The filter we present in this paper
applies to the superpositional sensors model and is tractable
form (single-target state space).

III. PROBLEM STATEMENT

We are interested in a general multi-target tracking problem
where the multi-target state is represented as a finite subset
Xk. If targets are in the single-target space Es then,

Xk = {xk,1, . . . , xk,Nt(k)} ∈ F(Es) (1)

is the multi-target state, where F(E) denotes the collection of
all finite subsets of the space E and Nt(k) is the number of
targets at time k. Similarly, Zk is a finite set that represents
multi-target measurement at time k. If there are M observa-
tions zk,1, . . . , zk,M in the single-target observation space Eo

are received at time k, then

Zk = {zk,1, . . . , zk,M} ∈ F(Eo) (2)

is the multi-target measurement. We assume that the targets
move according to a Markovian dynamic model in the form
xk+1,i = fk+1|k(xk,i,uk) where uk is noise.

Our formulation differs from most multi-sensor multi-target
problem statements because we consider the case where targets
affect measurements in an additive manner. Also, we assume
that we receive a constant number of measurements, M , at
each time step. More formally, the likelihood model can be
expressed in the form

L(Xk) = h

�
�

xi∈Xk

g(xi)

�
(3)

where g and h are non-linear functions. Also, g satisfies:
�

S
g(x)2λ(x)dx < ∞ (4)

where λ(x) is the intensity of the Poisson process used to
approximate the predictive posterior (see App. A).

A. Example: Radio-frequency tomography
Throughout this paper, we use radio-frequency (RF) tomog-

raphy as an example where the likelihood model fits this form.
The scenario we consider is tracking a fixed number of targets,
Nt(k) = Nt, ∀k, moving according to a known model inside
a L× L observation space surrounded by RF sensors located
on the edge. One such scenario is depicted in Figure 1.

Figure 1. Monitoring area with size L = 3, N = 12 sensors (represented
by circles on the area boundaries) and M = 66 links.

At every time instant k, the sensors communicate with
each other and record the Received Signal Strength (RSS)
values. The N sensors have a total of M = N(N − 1)/2
communication links generating M measurements in every
time step. During a period with an empty surveillance region,
the sensor system learns background RSS values for each
link. The objective of RF tomography is to use the measured
deviations from these background RSS values to track moving
targets inside the observation field. RF tomography avoids
some of the more challenging calibration issues associated
with other localization techniques based on RSS measurements
because it is based on these deviations rather than the raw RSS
measurements. Due to space limitations, we refer the readers
to [14] for more details about the sensors and RF tomography.

In our case, the targets move within the boundaries of the
monitoring area according to a linear Gaussian dynamics [11]:
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where T is the sampling period and ux, uy are zero-mean
Gaussian white noise with respective variance σux and σuy .
In this model, the state of each object i at time k, xk,i, is
represented by a four-dimensional vector: position on the x-
axis and y-axis, velocity on the x-axis and y-axis.

In [14], a single target measurement model has been pro-
posed for RF tomography based on experimental analysis. The
mean RSS attenuation on the link j due to a target at position
x at time k is modelled as:

g
j
k(x) = φ exp

�
−

λ2
j (x)
2σ2

λ

�
(5)

where λj(x) is the distance between a target located at x

and link j; φ and σλ are known and fixed parameter based
on physical properties of the sensors that have been learned



empirically. An intuitive justification for the model is that a
target located far from link j has a large associated λj(x) and
hence causes minimal additional attenuation g

j
k(x); when the

target is close to the link it has a much greater impact.
We extend this model to multiple targets case by using the

fact that the signal attenuation due to multiple targets is the
sum of attenuation due to each of the individual target. Thus
according to this model if g

j
k(xi) is the attenuation on link j

due to the target with state xi, then the total attenuation on
link j due to all the targets combined would be given by

g
j
k(x) =

Nt(k)�

i=1

g
j
k(xi) (6)

The observed noisy measurement at time step k is given by

Zk = gk(x) + σzSk (7)

where gk = [g1
k g2

k · · · g
M
k ] and Sk is the noise assumed to be

distributed according to N (0, IM×M ). This form of measure-
ment allows the likelihood to be expressed as h (

�
i g(xi)).

IV. ALM FILTER ALGORITHM

A. ALM Filter
The notation Dk+1|k+1(x) = Dk+1|k+1(x|Z(k+1)) denotes

the posterior PHD at state value x, calculated at time k + 1
using all measurements up to time k + 1. The notation
Dk+1|k(x) = Dk+1|k(x|Z(k)) denotes a predictive PHD, i.e.
the PHD calculated at time k + 1 using the data up to time
k. The likelihood function at time k is denoted fk(Z|X). Set
integrals are indicated using the notation

�
· δW ; integrals over

the state space are denoted
�
· dx.

Since our assumption about the likelihood model and the
measurements does not affect the time prediction step of the
filter, we can apply Mahler’s general law of motion for PHDs
to compute the predictive PHD [2]:

Dk+1|k(x) = bk+1|k(x)

+
� �

ps(w)fk+1|k(x|w) + bk+1|k(x|w)
�
Dk|k(w)dw (8)

where bk+1|k(Y ) is the likelihood that new targets with state-
set Y enter the monitoring area at time-step k+1, ps(x) is the
probability that a target with state x at time k will survive in
time-step k+1 and bk+1|k(Y |x) is the likelihood that a group
of new targets with state-set Y will be spawned at time-step
k + 1 by a single target that had state x at time k.

On the other hand, we cannot apply Mahler’s single-sensor
Bayes update formula for PHD directly. We start from the
general definition of a multi-target moment density:

Dk+1|k+1(x) =
�

fk+1|k+1({x} ∪W |Z
(k+1))δW (9)

The key ingredient in deriving the update expression is the
form of our likelihood:

fk(Zk|W ) = hZ

�
�

xi∈W

gk(xi)

�
(10)

This formulation allows us to use Campbell’s theorem [15] to
replace the set integral over the entire multi-target space with
an integral over the single-target space. Then, we define s =�

xi∈W gk(xi) and adopt a Gaussian approximation1 to P (s),
which allows us to write this general PHD update equation:

Dk+1|k+1(x) =
Dk+1|k(x)

Dk+1|k(x) + [1−Dk+1|k(x)]Fk+1(x)
(11)

where

Fk+1(x) ≈
�∞
0 hZ(s)Ns(µs,Σ)ds

�∞
0 hZ�(s)Ns(µs,Σ)ds

(12)

Nx(µ,Σ) = exp
�
−

1
2
(x− µ)Σ−1(x− µ)

�
(13)

In general, computing Fk+1(x) is still not trivial. However,
if hZ is Gaussian (as in the RF tomography example), then
the update expression reduces to this ratio of Gaussians:

Fk+1(x) ≈
NZk(µs,Σs + Σ)

NZk(g(x) + µs,Σs + Σ)
(14)

For a complete proof, see the Appendix.

B. Particle approximation
Even after this approximation, the mean and variance re-

main unknown. We construct a particle approximation for
the density function Dk|k associated with the multi-target
posterior pk|k, which allows to form a particle approximation
for µs and Σ. In this context, the interpretation is that the
weight w(i) associated with each particle x(i) represents the
probability that a target is present at the position of that
particle. Instead of a continuous density function, we have
a finite, chosen set of Np positions inside the state space. The
particle approximation for the posterior PHD is:

�Dk|k(xk) =
Np(k)�

i=1

w
(i)
k δ

x(i)
k

(xk) (15)

Now, we derive the particle approximations for the time
prediction equation in (8) and the update equation in (11). We
use a particle approximation for the predictive PHD which is
identical to the one derived by Vo et al. (see [11] for more
details). Let pk+1 and qk+1 be proposal densities, γk+1 the
intensity function of the spontaneous birth and φk+1|k(x, w) =
ps(w)fk+1|k(x|w) + bk+1|k(x|w). Then we can write

�Dk+1|k(xk+1) =
Np(k)+Jk+1�

i=1

w
(i)
k+1|kδ

x(i)
k+1

(xk+1) (16)

where

x
(i)
k+1 ∼

�
qk+1(·|x

(i)
k , Zk), i = 1, . . . , Np(k)

pk+1(·|Zk), i = Np(k) + 1, . . . , Np(k) + Jk+1

1The authors of [16], [17] successfully use a Gaussian approximation for
the aggregate interference (generated by interferers modelled by a Poisson
process) in a CDMA network.



w
(i)
k+1|k =






φk+1|k(x(i)
k+1,x(i)

k )w(i)
k

qk(x(i)
k+1|x(i)

k ,Zk)
, i = 1, . . . , Np(k)

1
Jk+1

γk+1(x
(i)
k+1)

pk+1(x
(i)
k+1|Zk)

, i = Np(k) + 1, . . . ,

Np(k) + Jk+1

In the example we are considering in this paper, we are
assuming a fixed number of targets, i.e. no births, spawning
and disappearances (survival probability is one). In that case,
the number of particles is fixed such that Np(k) = Np and
Jk+1 = 0. We choose qk+1 = fk+1|k and, therefore,

x
(i)
k+1 ∼ fk+1|k(·|x(i)

k ) i = 1, . . . , Np

Furthermore, we have φk+1|k(x,w) = fk+1|k(x|w) and the
weight prediction reduces to

w
(i)
k+1|k = w

(i)
k i = 1, . . . , Np

The approximation for the updated posterior is:

�Dk+1|k+1(xk+1) =
Np�

i=1

w
(i)
k+1δx(i)

k+1
(xk+1) (17)

where

w
(i)
k+1 =

w
(i)
k+1|k

w
(i)
k+1|k + (1− w

(i)
k+1|k)Fk+1(x)

(18)

We need a particle approximation for µs and Σ:

µs(x
(i)
k+1) ≈

�

j �=i

w
(j)
k+1|kg(x(j)

k+1) (19)

Note that the sum is over all other particles than i; the value of
µs represents the contribution from all other particles. In other
words, how well do the other particles explain the observed
data if no target is present at the position of particle i. We use
a similar approximation for the covariance matrix Σ:

Σ(a,b)(x
(i)
k+1) ≈

�

l �=i

w
(l)

ga(x(l)
k+1)gb(x

(l)
k+1) (20)

C. Algorithm

initialize particles;1

while tracking do2

foreach particle do3

propagate particle;4

update weight;5

end6

cluster particles with k-means;7

resample (if necessary);8

end9
Algorithm 1: ALM algorithm

Our ALM filter algorithm is outlined in Alg. 1. First, we
initialize our set of particles (line 1). The total number of
particles Np is chosen as a function of the number of targets
Nt: Np = Nt·Nppt. The particles are drawn from a distribution
p0. In the RF tomography case, the initial x and y positions of

each particle are drawn randomly from a uniform distribution
U(0, L) and the velocities from a zero-mean Gaussian with
unit variance. At each iteration, we propagate the particles
(line 4) according to the prediction equation in (16). Then, we
update the weights (line 5) based on (18) using the new set
of measurements. We estimate the targets’ state (line 7) using
k-means clustering [18]. If the effective number of particles
(
�Np

i=1(w
(i)
k )2)−1 is less than a threshold, then we need to

sample a new set of particles (line 8). Importance resampling
is done by drawing Np particles from the current particle set
by using probabilities proportional to the weights w

(i)
k .

D. Computational complexity
The particle initialization (line 1) implies drawing samples

from p0 for each particle, which is O(Np). At each iteration,
we need to propagate the particles (line 4) and update their
weights (line 5). The propagation is a simple multiplication
and is O(Np). The weight update involves the multiplication
of two M ×M matrices, O(M3), and computing the inverse
of an M × M matrix for each particle, O(M3 × Np). The
complexity of the k-means algorithm is O(Nt×Np× I ×R)
where I is the number of iterations (variable) and R = 50 is
the number of times the clustering is repeated with different
initial centroids. Finally, the complexity of importance resam-
pling is O(Np). The overall complexity for one iteration is:

O(Np + M
3 + NpM

3 + 50NtNpI + Np) ≈ O(NpM
3)

V. MCMC ALGORITHM

In this section, we briefly review an MCMC based particle
method for target tracking [7], [9]. At each time k the posterior
distribution is approximated using a set of unweighted samples
(particles) obtained from the MCMC procedure. The Metropo-
lis Hastings algorithm is used to sample from the combined
posterior distribution of Xk and Xk−1 given by

p(Xk, Xk−1|Z
(k)) =

p(Zk|Xk)p(Xk|Xk−1)p(Xk−1|Z
(k−1))

p(Zk|Z
(k−1))

(21)
Since we do not have the exact representation for
p(Xk−1|Z

(k−1)), we use its particle representation obtained
from the previous time step to approximate it. Assume that
at time (k − 1) the unweighted particle representation of
p(Xk−1|Z

(k−1)) is given by

p(Xk−1|Z
(k−1)) ≈

1
Np

Np�

j=1

δ(Xk−1 −X
(j)
k−1) (22)

We use the two step algorithm outlined in [7] with the joint
draw and refinement steps. The proposal distribution q1 for
the joint draw at the mth iteration is chosen as

q1(Xk, Xk−1|X
m
k , X

m
k−1) ∝

Np�

j=1

p(xk,i|X
m
k,i, X

(j)
k−1)δ(X

(l)
k−1 −X

(j)
k−1) (23)

where l is chosen uniformly in {1, 2 · · ·Np} and i is chosen
uniformly in {1, 2 · · ·Nt}. The expression Xk,i refers to the



state vector of all the targets excluding target i. Thus in
the joint draw step, multi-target state update is done only
for one randomly selected target per iteration. The proposal
distribution q3 for the refinement step is chosen as follows

q3(Xk|X
m
k , X

m
k−1) ∝ p(xk,i|X

m
k,i, X

m
k−1) (24)

The same target i whose state is updated in the joint draw step
is refined in this step.

At every time step, the Markov chain is initiated using the
most likely particle chosen among all the particles from the
previous time step. The algorithm described in [7] updates
all the target states in both the steps which gives an order
O(N2

t MNp) algorithm. In the current implementation, we
randomly choose a target and perform the steps for only
that target. This reduces the complexity of the algorithm to
O(NtMNp) and also gives better tracking results.

VI. SIMULATIONS

A. Settings
For the simulations, we arbitrarily choose an observation

field of dimension L = 20. To simulate the target dynamics,
we choose two scenarios with different number of targets
(Nt = 3 and Nt = 5) displayed in Fig. 2. The objects
move within the boundaries of the monitoring area according
to a linear Gaussian dynamics (as described in Sect. III)
where T = 0.3, σux = 1 and σuy = 0.5. We track the
targets for K = 25 time steps. For the RF tomography
likelihood model described by (5), we set φ = 5, σλ = 0.05,
σz = 1. These values were chosen based on experimental
studies described in [19]. We simulate for different numbers of
sensors N = [12, 28, 40] (M = [66, 378, 780]) and numbers of
particles per target Nppt = [250, 500, 750, 1000]. For MCMC
simulations, we set Nburn = 1000 and Nthin = 3. For ALM
simulations, we use Neff = Np/7. We generate 20 different
sets of measurements for each configuration ([Nt, N, Nppt])
and repeat 5 times (total of 100 runs per configuration).
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Figure 2. Target trajectories. The ’x’ indicate the position at t = 0.

The error between the estimated positions of the objects
and the ground truth is computed using the OSPA metric [20].
Since, we are currently assuming that we know the number of
objects, the metric reduces to the p-th order OMAT metric:

dp(X,Y ) =

�
1
n

min
π∈Π

n�

i=1

d(xi, yπ(i))p

�1/p

where Π is the set of permutations of {1, 2, . . . , n}, d(x, y) is
the Euclidean distance between x and y, X = {x1, . . . , xn}

and Y = {y1, . . . , yn} are arbitrary sets and p is a fixed
parameter. For these simulations, we use p = 2. We compute
the average error and observe the computational time for both
the ALM and MCMC algorithms.

B. Results
In Fig. 3, we show the impact of the number of particles

used per target on the average error for the ALM approach
when M = 378 measurements are available. We observe that
using Nppt = 250 is slightly less accurate in the scenario with
three targets. However, in the case of five targets, the algorithm
appears to be less sensitive to the number of particles per
target. It is possible that the algorithm accuracy depends on the
total number of particles, not necessarily the number per target.
Furthermore, the Gaussian approximation might be slightly
less accurate for fewer targets.
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Figure 3. Average error of ALM (over 100 runs) as a function of time for
Nppt = [250, 500, 750, 1000]. The results are shown for M = 378 links.

In Fig. 4, we see that when the sensor density is too
small, the number of measurements is insufficient to provide
accurate estimates. In both scenarios, increasing the number of
measurements from 378 to 780 provides no gain in accuracy
and results in a longer computational time.

In Figs. 5 and 6, we compare average error of ALM to two
versions of the MCMC algorithm. In Fig. 5, initial particles
location are drawn randomly from a uniform and velocities
from a zero-mean Gaussian with unit variance. With this
initialization, the MCMC simulations give high average error.
This is because of the high state dimension 4Nt that makes it
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Figure 4. Average error of ALM (over 100 runs) as a function of time when
the number of links is varied. The results are shown for Nppt = 250.

difficult to be sampled accurately. Thus particles different from
the actual target state are used to represent the posteriori and
as the targets move the error increases with time. We noticed
the same behaviour for the scenario with Nt = 5 targets.
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Figure 5. Average error (over 100 runs) of ALM and MCMC with uniform
particle initialization (uniform) as a function of time. The results are shown
for Nppt = 250 and M = 378.

In Fig. 6, particles are initialized in the vicinity of actual
target state (init). This results in a much lower average error
and it does not increase as the tracking progresses. In both
scenarios, the average error for ALM is slightly higher than the
MCMC (init) method in the first few iterations, but eventually
decrease to an average error below 0.2.

In Fig. 7, we show the average CPU time (computational
complexity) of ALM and MCMC for the same computer
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Figure 6. Average error (over 100 runs) of ALM and the MCMC algorithm
with initial particles positions near actual target positions as a function of
time. The results are shown for Nppt = 250 and M = 378.
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Figure 7. Computational complexity of ALM and MCMC as a function of
theoretical complexity of ALM. Results shown for M = 378 and Nppt =
[250, 500, 750, 1000].

configuration2 as a function of NpM
3 (theoretical complexity

of the ALM approach). The four values of each curve are four
different values of Nppt = [250, 500, 750, 1000] and M = 378
is constant. Although the ALM approach is much faster than
MCMC, its complexity does not appear to increase linearly
with NpM

3. To reduce the complexity of the matrix inversion,
for a given particle i, we ignore all the measurements j for
which g

j
k(xi) < 0.0001. On average, this reduces to matrix

size to M/10 × M/10 and the complexity by a factor of

2Two Xeon 4-core 2.5GHz, 14GB RAM.



103. For lower values of NpM
3, these savings are not as

important, which could explain the non-linear increase. We
need to investigate for larger number of measurements to
verify if the complexity grows linearly for larger M values.
The complexity of the MCMC approach is O(NtMNp), but
the empirical computational time is higher than the ALM
algorithm. This is because the hidden constants within the
complexity computations are much higher for MCMC method
and the algorithm is much slower for low values of M .

Table I
CPU TIME PER ITERATION IN SECONDS (AVERAGED OVER 100 RUNS)

WITH STANDARD DEVIATION FOR Nppt = 250 AND M = 378.

No = 3 No = 5
ALM 0.49± 0.04 1.2± 0.2

MCMC 3.4± 0.2 7.0± 0.6

In Tab. I, we show the average computational time per
iteration (with standard deviation) of both ALM and MCMC
for 100 runs with Nppt = 250 and M = 378. The ALM
approach provides gains greater than 80% in both scenarios.

VII. CONCLUSION

In this paper, we investigated the problem of tracking
multiple targets in an environment where each measurement
is affected by multiple targets and each target contributes to
multiple measurements. As a motivating example, we consid-
ered RF tomographic tracking. We derived the equations of
a novel moment-based filter (ALM) for multi-target tracking
scenarios where the likelihood model can be expressed as
a function of the sum of the individual target contributions.
We also considered the special case where the measurement
model is Gaussian to further reduce the update equation. We
performed Matlab simulations and compared ALM with an
MCMC algorithm. We showed that we can achieve comparable
error with 80% savings in computational time.

In the future, we would like to use active learning strategies
to choose only a subset of sensors at each iteration to perform
measurements. This will (i) enhance the life of the sensors
and (ii) reduce the complexity of the ALM algorithm, which
depends directly on the number of measurements M . This will
also allow us to establish a relationship between the density of
targets in the monitoring area and the minimum sensor density
required to achieve a specified level of error.

APPENDIX

The updated PHD can be expressed as:

Dk+1|k+1(x) =
�

fk+1|k+1({x} ∪W |Z
(k+1))δW (25)

Given the specific structure of our likelihood (see (10)), we
can then write

Dk+1|k+1(x)

= K
−1

�
fk+1(Zk+1|{x} ∪W )fk+1|k({x} ∪W |Z

(k))δW

= K
−1

�
fk+1(Z �k+1|W )fk+1|k({x} ∪W |Z

(k))δW (26)

where Z �k+1 = Zk+1− g(x) and K is a normalizing constant.
Assume that fk+1|k({x}∪W |Z(k)) is a Poisson point process,
i.e. for W = {x1, . . . ,xn}, we can write:

fk+1|k({x} ∪W |Z
(k+1)) = e

−λ
I(x)I(x1) . . . I(xn) (27)

for a mean rate λ and local intensity values I(x). Then:

Dk+1|k+1(x)

= K
−1

I(x)
�

fk+1(Z �k+1|W )e−λ
I(x1) . . . I(xn)δW (28)

= K
−1

Dk+1|k(x)
�

fk+1(Z �k+1|W )fk+1|k(W |Z
(k))δW

(29)

where we have used the result that Dk+1|k(x) = I(x) for a
Poisson point process. Define the normalizing constant K as:

K =
�

fk+1(Zk+1|W )fk+1|k(W |Z
(k))δW (30)

=
�

fk+1(Zk+1|{x} ∪W )fk+1|k({x} ∪W |Z
(k))δW

+
�

x/∈W
fk+1(Zk+1|W )fk+1|k(W |Z

(k))δW (31)

= Dk+1|k(x)
�

fk+1(Z �k+1|W )fk+1|k(W |Z
(k))δW

+
�

x/∈W
fk+1(Zk+1|W )fk+1|k(W |Z

(k))δW (32)

The second term can be simplified as follows:
�

x/∈W
fk+1(Zk+1|W )fk+1|k(W |Z

(k))δW

=
�

f
�
k+1,x(Zk+1|W )fk+1|k(W |Z

(k))δW

−

�
f
�
k+1,x(Zk+1|{x} ∪W )fk+1|k(W |{x} ∪ Z

(k))δW

=
�
1−Dk+1|k(x)

� �
f
�
k+1,x(Zk+1|W )fk+1|k(W |Z

(k))δW

(33)

where

f
�
k,x(Zk|W ) = hZ

�
�

xi∈W

g
�
k,x(xi)

�
(34)

g
�
k,x(xi) =

�
gk(xi) xi �= x

0 xi = x
(35)

We can then write (29) as

Dk+1|k+1(x) =
Dk+1|k(x)

Dk+1|k(x) + [1−Dk+1|k(x)]Fk+1(x)
(36)

where

Fk+1(x) =

�
f �k+1,x(Zk+1|W )fk+1|k(W |Z(k))δW

�
fk+1(Z �k+1|W )fk+1|k(W |Z(k))δW

(37)

Let P (s) = Pr
��

xi∈W gk(xi) = s
�

for the Poisson process
described by fk+1|k(W |Z(k)) and gk. Similarly, P �(s�) =



Pr
��

xi∈W g�k,x(xi) = s�
�

for the Poisson process described
by fk+1|k(W |Z(k)) and g�k. Then we have:

Fk+1(x) =
�∞
0 hZ(s�)P �(s�)ds�
�∞
0 hZ�(s)P (s)ds

(38)

Using Campbell’s theorem [15] we can analyze the distribution
of a summation of a real-valued function defined over the state
space of the Poisson process. It can be applied if:

�

S
min(|gk(x)|, 1)λ(x)dx < ∞ (39)

where S is the state-space over which the Poisson process is
defined and λ is the intensity. This conditions holds for all
gk(x) because λ(x) is integrable - it (should) integrate to the
number of targets. The theorem then states that we can identify
the characteristic (moment generating) function of s as:

E(eθs) = exp
��

S
(eθgk(x)

− 1)λ(x)dx
�

. (40)

This leads to the following expressions for the mean and
variance of s:

E(s) =
�

S
gk(x)λ(x) dx (41)

var(s) =
�

S
gk(x)2λ(x) dx (42)

Furthermore, as long as
�

S
g

j
k(x)2λ(x)dx < ∞ (43)

holds3 for every g
j
k(x), then:

cov(sa, sb) =
�

S
g

a
k(x)gb

k(x)λ(x)dx (44)

We adopt a Gaussian approximation to P (s), setting P (s) =
Ns(µs,Σ2) where the mean and variance are identified by the
values above. Furthermore, because of the expression for the
mean of s, µs� = µs. Therefore, we can write

Fk+1(x) ≈
�∞
0 hZ(s)Ns(µs,Σ)ds

�∞
0 hZ�(s)Ns(µs,Σ)ds

(45)

where

Nx(µ,Σ) = exp
�
−

1
2
(x− µ)Σ−1(x− µ)

�
(46)

When the measurement model is also Gaussian, we can
further reduce the expression for Fk+1(x). Let hZ�(s) =
NZ�(s,Σs). Then we can write

� ∞

0
hZ�(s)Ns(µs,Σ)ds =

� ∞

0
Ns(Z �k,Σ)Ns(µs,Σ)ds

≈ C · NZk(g(x) + µs,Σs + Σ) (47)

where C is a constant that does not need to be computed in
our case because it appears at both the numerator and denom-
inator of (45). Note that to derive an analytical expression

3Given the structure of gk(x) this condition is clearly satisfied.

for this integral, we need to make the approximation that�∞
0 · ds ≈

�∞
−∞ · ds, which introduces an additional error. The

entire expression for Fk+1(x) can now be approximated as:

Fk+1(x) ≈
NZk(µs,Σs + Σ)

NZk(g(x) + µs,Σs + Σ)
(48)
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