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Abstract—Even in the absence of a physical network infras-
tructure, it is important that mobile devices can take advantage of
the opportunities presented to them to maintain communication.
Opportunistic networks are a class of mobile networks that
must rely on unscheduled sporadic meetings between nodes to
achieve communication. The main challenge in these networks
is to route messages towards a destination with high delivery
probability, low average latency and efficient usage of network
resources. Despite the numerous proposals for opportunistic rout-
ing protocols, there are relatively few analytical characterizations
of their behaviour. In this paper, we propose both centralized
and decentralized message forwarding algorithms that, under
relatively strong assumptions about the network’s behaviour,
minimize the expected latency to a destination. After presenting
proofs of the optimality of our proposed algorithms, we confirm
their improvement in system performance through numerical
simulation.

I. INTRODUCTION

In Delay/Disruption Tolerant Networks (DTNs), a commu-
nication path between any two nodes is frequently unavailable
and nodes are only intermittently connected. Due to the
dynamic nature of DTNs, routing is usually performed based
on a store-carry-forward mechanism. The source transmits a
message to a node it meets; this intermediate node stores the
message by buffering it, then carries it (the mobility of the
node is exploited), before forwarding it to another node it
meets. The term opportunistic networks is used to refer to
DTNs where the meetings between nodes are unpredictable.
Opportunistic networks have been studied in the context of
non-intrusive wildlife tracking (e.g. ZebraNet [1], SWIM [2]),
provision of data communication to remote/rural areas (e.g.,
DakNet [3]) and offloading of mobile data traffic (e.g., [4]).

Routing methods in opportunistic networks can be classi-
fied as replication-based, history-based and social-based algo-
rithms. In replication-based routing algorithms such as Epi-
demic [5] and Spray and wait [6], a node forwards messages
stored in its buffer to all or a fraction of encountered nodes
without assessing their capability to deliver them. The only
parameters in these algorithms are the extent of replication
and the nodes that are allowed to make new copies. The
replication approaches can achieve a higher probability of
message delivery since more nodes have a copy of each
message, but they can produce significant network congestion.

History-based routing algorithms assume that nodes’ move-
ment patterns are not completely random and that the rate of
future contacts between two nodes depend on the frequency

and number of past encounters and possibly the time gaps
between them. PRoPHET [7] assigns a “delivery predictabil-
ity” metric to each node for each destination. This metric is
updated each time two nodes meet, and thus takes into account
the history of meetings in the network. The metric is intended
to indicate “how likely it is that this node will be able to
deliver a message to that destination” [7] (perhaps via other
nodes). MaxProp [8] and MEED [9], proposed for vehicular
DTNs, are other examples of this class of algorithms.

Social-based algorithms incorporate the principle that mo-
bile devices are usually carried by members of a society and
therefore the contact patterns depend on their social interac-
tions. This suggests that social network analysis concepts and
community formations can be used to better predict the node
meeting patterns and identify superior forwarding rules. In
Simbet [10], a node decides to forward a message to other
nodes based on their betweenness centralities and a social
similarity metric. BubbleRap [11] makes use of community
affiliation and centrality to make forwarding decisions. The
contact graph based routing algorithm in [12] uses information
derived from a weighted contact graph to make forwarding
decisions based on the neighbourhood, community and degree
centrality of a node.

More recent studies have focused on modeling the network
with more realistic features such as limited buffer size [13],
constrained message generation rate [14], and selfish mobile
nodes [15], [16]. Most of the studies cited above use experi-
mental analysis to demonstrate the efficiency of their proposed
method (primarily simulations based on traces recorded from
opportunistic networks). While the experimental analysis is
valuable and takes into account more practical considerations,
it can leave us with an incomplete understanding of how an
algorithm operates and how it will perform in other untested
network conditions. For example, the behaviour of PRoPHET
has been shown to be very sensitive to parameter choice
[17]. It is also useful to design an optimal algorithm under
somewhat unrealistic modeling assumptions, and then consider
how it can be adapted to address more practical considerations,
without completely losing its desirable features. There are a
few studies that derive a forwarding process whose optimality
(in some sense) can be mathematically proved under relatively
strong assumptions about the behaviour of the network. In
[18] the expected delivery time to the destination has been
considered as a metric to define the best set of candidate relays



in two hop relay strategy introduced in [19]. By increasing the
number of relaying steps recursively, a centralized single-copy
opportunistic routing scheme is proposed for sparse DTNs.
The algorithm is shown to be loop free because messages are
forwarded only to the nodes that have less expected delivery
time to the destination. It is also proved that the recursive
process has a polynomial running time and the number of
steps is finite.

In this paper, we propose centralized and distributed ver-
sions of an algorithm for assigning forwarding rules to each
node in an opportunistic network so that the sum of average
latencies from all the nodes of the network to a particular
destination is minimized. We prove the optimality of our sug-
gested methodology under certain modeling assumptions and
assumed node knowledge. We then explore through simulation
how the relaxation of some of these modeling assumptions
impacts performance. The paper is organized as follows. In
Section II, we define the system model and state the problem.
In Section III, we propose a forwarding algorithm and prove
that it achieves a form of optimality under the network mod-
eling assumptions. We present numerical simulation results in
Section IV and make concluding remarks in Section V.

II. SYSTEM MODEL

We consider a closed network of N mobile nodes which aim
to send messages to a particular destination node d. The set
of nodes is denoted by N . We assume that the random inter-
meeting times of nodes are independent and exponentially
distributed with parameter λij for nodes i and j. We associate
with the network a contact graph which is formed by adding
a link between any two nodes that meet. We assume that the
contact graph is connected and denote the set of neighbors of
node i in this graph by Si. fSince the contacts between nodes
are not pre-scheduled, we cannot identify end-to-end paths
ahead of time. Hence, solving the routing task is equivalent
to identifying the forwarding decisions that nodes should
make when meeting each other. We assume that buffer size is
unlimited, message Time To Live (TTL) is infinity and that any
number of messages can be forwarded during each meeting.

We consider only algorithms that do not involve replication.
In the class of algorithms we consider, each time node i meets
one of its neighbors j ∈ Si, it forwards a message destined
for d with probability pij . Considering the matrix PN×N
comprised of all pairs i and j, we set pij = 0 if nodes i
and j never meet and are thus not neighbors in the contact
graph. We denote the forwarding probabilities of node i by
the vector pi; this is the i-th row of the matrix P.

The expected latency from node i to destination d is a
function of the probability decision matrix P and we denote it
by Lid(P). Our goal is to find the matrix P∗ such that the sum
of the expected latencies of all the nodes in the network to
the specified destination d is minimized. Let us call this utility
function U(P) =

∑
i∈N Lid(P). We assume that the network

topologies and meeting rates are such that the solution P∗ is
unique. If not, our algorithms guarantee that we reach one of
the optimal matrices, but the proofs are more complicated.

Lemma 1 provides an expression for Lid(P) in terms of P
and the expected latencies of its neigbours.

Lemma 1. The expected latency of a node i ∈ N to the
destination d is

Lid(P) =
1 +

∑
j∈Si pijλijLjd(P)∑
j∈Si pijλij

(1)

Proof: When node i commences in its routing of a packet,
it must first wait a time Tw before it meets one of its neighbors.
The amount of time before node i meets a specific neighbor j
is an exponentially distributed random variable with parameter
λij . The time Tw is equal to the minimum of the exponentially
distributed random variables corresponding to all neighbours
k ∈ Si and its expected value is

E(Tw) =
1∑

k∈Si
λik

(2)

The probability that j is the first node that i meets is
λij∑

k∈Si
λik

. Hence Lid(P) is

Lid(P) = E(Tw)+
∑
j∈Si

λij∑
k∈Si

λik
[pijLjd(P)+(1−pij)Lid(P)]

(3)
The last term in (3) follows from the memoryless property of
the distributions. Subsituting (2) into (3) leads to (1).

Before continuing to propose algorithms for finding P∗,
we make two points about the structure of P∗ through the
following theorem.

Theorem 1. Suppose P∗ = argminP∈[0,1]N×N

∑N
i=1 Lid(P).

Then:
(1) P∗ is a binary matrix (its components are either 0 or 1).
(2) For any i ∈ N , the matrix P∗ also minimizes Lid(P):

∀i ∈ N : P∗ = arg min
P∈[0,1]N×N

Lid(P) (4)

Proof: Let us assume that the nodes, excluding d, are
labelled in ascending order of their expected latency under
P∗, i.e., L1d(P

∗) < L2d(P
∗) < · · · < LN−1d(P

∗). For a
given matrix P, we denote by Pī all rows of P except i. If
we fix pi and Lkd for k ∈ Si, k 6= j for some j ∈ Si, then Lid
is monotonically increasing with respect to Ljd (see (1)). This
implies that if we commence with any P and change only pj
to decrease Ljd, then all other Lid such that j ∈ Si either
decrease or remain the same. The matrix P∗ must therefore
satisfy p∗j = argminLjd(P

∗
j̄
,pj) for all j. Otherwise we

could choose an alternative p′j that reduces Ljd and hence
achieves U(P′) < U(P∗).

We can examine the partial derivative of Lid with respect
to pij at P′ = (P∗

ī
,pi):

∂Lid
∂pij

=
λij [

∑
k∈Si λikpik(Ljd(P

′)− Lkd(P′))− 1]

(
∑
k∈Si λikpik)

2
(5)

This derivative has the same sign as: Ljd(P
′) −

1+
∑

k∈Sl
λikpikLkd(P′)∑

k∈Si
λikpik

, or equivalently Ljd(P
′) − Lid(P

′).



This expression for the derivative, together with the
requirement that p∗i = argminLid(P

∗
ī
,pi), implies

that p∗ij = 0 if Lid(P
∗) < Ljd(P

∗) and p∗ij = 1 if
Lid(P

∗) > Ljd(P
∗). Our assumption that the solution is

unique implies that Lid(P∗) 6= Ljd(P
∗). Otherwise, from

(3), it is clear that we could choose any p∗ij between 0 and 1
and achieve the same Lid(P

∗), without affecting any other
Ljd(P

∗). This establishes statement (1) of the theorem.
Although we have established that Lid(P

∗
ī
,p∗i ) =

minLid(P
∗
ī
,pi), we have not yet shown that P∗ globally

minimizes Lid. We establish this by contradiction. Suppose
P∗ does not minimize the expected latency for some non-
empty set of nodes N ′ ⊂ N . In other words, denoting the
minimum expected latency achieved via the minimization in
(4) for node i by L∗id, we have

∀i ∈ N ′ : L∗id < Lid(P
∗) (6)

Let node s be the node in N ′ such that L∗sd < L∗kd for all k ∈
N ′, k 6= s. Denote by ` the ranking of the node with greatest
expected latency under P∗ such that L`d(P∗) < L∗sd. Based on
the discussion above, for each node i ∈ {1, 2, . . . , `}, p∗ik = 0
for all k > ` and hence p∗is = 0. Node s must have at least
one neighbour in the set {d, 1, 2, . . . `}. Otherwise, it could
not achieve an expected latency under P∗ that is less than all
nodes ` + 1, . . . , N − 1 (observe from (1) that Lsd(P∗) >
minpsj>0 Ljd(P

∗)).
The matrix P′ that achieves the minimum L∗sd must satisfy

p′sk = 0 for all k ∈ N ′, since for any matrix P′ we have
Lkd(P

′) ≥ L∗kd > L∗sd. We also have p′sk = 1 for k ∈ Ss ∩
{d, 1, 2, . . . `} if Lkd(P′) < Lsd(P

′). For a fixed choice of
p′s the value Lsd(P

′) decreases if we can reduce Lkd(P
′)

for any k such that p′sk = 1. The matrix P∗ minimizes Lkd
for all k ∈ {1, 2, . . . , `}, implying that p′k = p∗k for all k ∈
{1, 2, . . . , `}. Since Lkd(P

′) = Lkd(P
∗) for all k ∈ Ss ∩

{d, 1, 2, . . . `}, it follows that p′s = p∗s . For node s, the values
of p′j for j /∈ {1, 2, . . . , `, s} have no impact on Lsd, so we
have Lsd(P∗) = Lsd(P

′) = L∗sd. This contradicts the original
assumption that P∗ does not minimize the latency for all nodes
s ∈ N ′, and thus establishes statement (2) of the theorem.

Theorem 1 showed that the minimization problem is ac-
tually a binary problem. Each time node i meets one of its
neighbours j ∈ Si, it either forwards the message or keeps
it. From now on, we change our notation and use the binary
indicator matrix B instead of P to capture this binary decision.
Therefore, the optimization takes the form:

B∗ = arg min
B∈{0,1}N×N

N∑
i=1

Lid(B) (7)

In the next section, we state the algorithms we have proposed
for solving this optimization problem and prove that they find
the optimal solution.

III. ALGORITHM

In the first part of this section, we try to to find B∗ in
a centralized fashion where the whole topology and meeting

Algorithm 1 Centralized Greedy Latency Minimization

1: // Initialization
2: A = {d}, B = 0N×N , Ldd = 0, Ljd =∞ for j 6= d
3: // Iteratively add nodes to the set
4: while A 6= N do
5: for each node i /∈ A do
6: Identify SiA = Si ∩ A
7: Calculate Gid for m∗i ∈ {0, 1}

|SiA|

Gid = minmi

1+
∑

j∈SiA
mijλijLjd∑

j∈SiA
mijλij

8: Denote Di = {j|j ∈ SiA,m∗ij = 1}
9: end for

10: Identify v = argmini∈N/AGid
11: Set Lvd = Gvd
12: Set bvj = 1 for all j ∈ Di
13: Set A = A ∪ {v}
14: end while

rates of the network are available at a central unit. This unit
calculates B∗ and informs the nodes about which neighbours
they should forward their buffered messages to. In the second
part of this section we introduce a decentralized algorithm
and prove that it converges to the same global solution. The
advantage of the decentralized approach is that no node needs
global knowledge of the network and each node can learn
its own optimal forwarding decisions. The only piece of
information a node needs to know is its meeting rates with
its own neighbours. A step forward towards improving the
decentralized partial knowledge approach is that each node
estimates its meeting rates with other nodes it meets and
modifies the estimations each time a contact occurs. This step
is discussed in the third part of this section where we assume
that nodes have no a-priori knowledge of any meeting rates.

A. Centralized Approach with Global Knowledge

Suppose for each node, i ∈ N the set of neighbours Si
and their meeting rates λij , j ∈ Si are known at a central
caluculation unit. Algorithm 1 presents an iterative procedure
to identify B. Theorem 2 demonstrates that the iterative
optimization procedure expressed in Algorithm 1 solves the
minimization task in (7).

Theorem 2. Suppose all meeting rates are different and there
exists a unique solution B∗ for the optimization problem (7).

1) After each iteration of Algorithm 1,
a) ∀i ∈ A,∀j ∈ N : bij = b∗ij
b) ∀i ∈ A : Lid(B) = Lid(B

∗)
c) maxi∈A Lid(B

∗) < mini6∈A Lid(B
∗)

2) Upon completion, Algorithm 1 identifies a labelling B
and associated expected latencies Lid such that B = B∗

Proof: We observe that for all i ∈ N , Gid ≥ L∗id (since
the optimizations are the same). Based on Theorem 1 and its
proof, the equality holds only if j ∈ A for all j ∈ Si such



that L∗jd < L∗id. The statements in the theorem follow based
on an induction argument.

Suppose, without loss of generality, that the nodes are
labelled in ascending order of expected latency under B∗.
For node 1, the only neighbour with lower expected latency
is the destination. In iteration 1, the destination is included
in A and must be in S1. Recall that L∗1d < minb∗1j=1 L

∗
jd.

Node 1 has the minimum expected latency according to the
chosen labelling and Theorem 1, except for the destination
itself. The relationship thus implies that d ∈ S1. We therefore
have G1d = L∗1d < L∗jd ≤ Gjd, and node 1 is selected to
be added to A, with b1d = 1 and bjd = 0 for all j 6= d.
Statements 1a)-c) in the theorem clearly hold one iteration,
i.e. after the addition of node 1 to A.

Assume the same statements hold after the addition of node
k−1 to A. Then, for node k we must have j ∈ A for all j ∈ Sk
such that L∗jd < L∗kd. Again this implies that Gkd = L∗kd <
L∗jd ≤ Gjd for all j > k. Thus, node k is correctly selected
for addition to A and the statements 1a)-c) hold at the end of
iteration k.

It follows that the statements hold for all iterations of the
algorithm, and after completion, when A = N , the second
statement follows.

B. Decentralized Approach with Partial A-priori Knowledge

As opposed to the previous part, suppose no central unit
exists and each node is just aware of its own Si and the
meeting rates λij , j ∈ Si. Algorithm 2 demonstrates how
nodes can make their binary forwarding decisions based on
this local information. We denote by Lid(j) the estimate at
node j of the latency from node i to the destination. Theorem
3 proves that this decentralized approach results in the same
global optimum solution.

Algorithm 2 Decentralized Greedy Latency Minimization

1: // Initialization
2: B = 0N×N
3: ∀i ∈ N/d,∀j ∈ N : Ldd(j) = 0, Lid(j) =∞
4: while Nodes continue to meet do
5: // Nodes i and j meet at time t
6: Set Lid(j) = Lid(i)
7: Set Ljd(i) = Ljd(j)

8: Update Lid(i) = minmi∈{0,1}|Si|
1+

∑
k∈Si

mikλikLkd(i)∑
k∈Si

mikλik

and identify the minimizing m∗i

9: Update Ljd(j) = min
mj∈{0,1}|Sj |

1+
∑

k∈Sj
mikλikLkd(i)∑

k∈Sj
mikλik

and identify the minimizing m∗j
10: Set bi = m∗i and bj = m∗j

11: end while

Theorem 3. The decision matrix B identified by Algorithm 2
converges to B∗ with probability 1.

Proof: Assume that the nodes are labelled in order
of ascending expected latency under B∗, i.e., L1d(B

∗) ≤

L2d(B
∗) ≤ · · · ≤ LN−1d(B

∗). Denote by T1 the moment
of time at which node 1 meets the destination node. For
k = 2, . . . , N denote by Tk the earliest time by which node
k has met all nodes in the non-empty set {1, . . . , k− 1} ∩ Sk
in the time period (Tk−1, Tk]. Due to the assumption that the
inter-meeting times are exponentially distributed, TN is finite
with probability 1.

At T1, node 1 knows its meeting rate with the destination
(λ1d). Since the latencies are initialized to ∞ and due to the
update equations in Algorithm 2, the estimation that node 1
has at T1 of the latencies of its neighbors i ∈ S1 are upper-
bounds, i.e. L1d(i) ≥ Lid(B

∗). As discussed in the proof of
the previous theorems, the minimizer b∗1 has b1d = 1 and
b1j = 0 for all j 6= d. At time T1, since the term involving d
in the update equation of Algorithm 2 has its minimum value,
the vector m∗1 = b∗1 identifies the same minimum latency
L1d(1) = L1d(B

∗). Hence, immediately after time T1 we are
guaranteed that b1 = b∗1.

At Tk, node k is aware of the minimum expected laten-
cies Lsd(k) = Lsd(B

∗) for the nodes in the set Vk =
{d, 1, ..., k} ∩ Sk. All other expected latencies are upper
bounds, i.e. Ljd(k) ≥ Ljd(B

∗) for j /∈ Vk. The solution
b∗k takes value 1 only for nodes in Vk. The minimizer m∗k at
time Tk is thus equal to b∗k and achieves Lkd(k) = Lkd(B

∗).
Therefore, imediately after Tk we will have bk = b∗k.

This argument applies until just after TN , at which point
we have B = B∗. Since TN is finite with probability 1, the
statement of the theorem follows.

Regarding the computational complexity of finding the min-
imum expected latency with the greedy decentralized approach
of Algorithm 2, we should note that the optimizations in lines
8 and 9 of this algorithm are linear-fractional programs and
can thus be solved very quickly using variants from linear
programming.

C. Decentralized Approach with No A-Priori Knowledge

In part III-B, we assumed that as soon as a node meets
another node, it has a perfect knowledge of its meeting rate
with that node. In practice, a node will need to estimate its
meeting rates with the neighbours and periodically revise the
estimation as meetings occur (or fail to occur).

Consider an arbitrary pair of nodes that meet each other
with rate λ. We denote the ith intermeeting time which is
the time between ith and i+ 1th meetings by xi ≥ 0. For
this specific pair of nodes, xi is an independent sample of
an exponentially distributed random variable with parameter
λ. Using the maximum likelihood approach we can estimate
the parameter λ after n samples. The likelihood function
L(λ|x1, .., xn) = λne−λ

∑n
i=1 xi is maximized by λ̂ = n∑n

i=1 xi

Hence, under the exponential model, a node only needs to
remember the last time it met its neighbour and the number
of times it has met that neighbour. With these two pieces of
information, it can update its estimation of the meeting rate
(λ̂n) from the previously estimated value (λ̂n−1) using the



following equation.

λ̂n =
nλ̂n−1

n− 1 + λ̂n−1xn
(8)

In the next section we investigate how this estimation proce-
dure affects the convergence of Algorithm 2.

IV. SIMULATION RESULTS

We now investigate the efficiency of our proposed approach
in modeling and solving the routing problem in different op-
portunistic network scenarios. We use three different networks
to model the contacts between N = 41 mobile nodes.

In the first network (Net I), we construct a contact graph
using an evolving undirected network model based on the
preferential attachment mechanism. We start with a small fully
connected graph of m0 = 5 vertices and add vertices to it one
by one until the graph consists of N = 41 nodes. At each
step, the new vertex is connected to m = 5 previously existing
vertices. The probability that the new vertex is connected to
vertex i is ki∑

j kj
where ki is the degree of i up to this stage.

After building the contact graph, we assign a parameter λij
to each pair of nodes i and j which are connected in the
contact graph and assume that they meet with exponentially
distributed intermeeting times with parameter λij . We choose
the parameters λij from a uniform distribution U [0, 7.5×10−5]
per second; this leads to the same average meeting rate
between nodes as the empirically-derived networks discussed
below.

The characteristics of the second and third networks (Net
II and Net III) are derived from the Infocom05 data set [20].
This data set is based on an experiment conducted during the
IEEE Infocom 2005 conference in Miami where 41 Bluetooth
enabled devices (Intel iMote) were carried by attendees for 3
to 4 days. The start and end times of each contact between
participants were recorded. The average time between node
contacts in the Infocom05 data set is 1.3 × 104 seconds (3.6
hours). This is relatively high because of the night intervals.

In our processing, we only consider the contacts in which
both devices recognized each other so that an acknowledged
message could be transfered between them. We are interested
in the behaviour of the algorithms in relatively sparse net-
works, so we limit the number of neighbours of each node:
node i is only connected to node j in the contact graph if the
meeting rate λij is among the largest K = 10 meeting rates
of either node i or node j.

In Net II, we set λij to be equal to the inverse of the average
intermeeting time between nodes i and j in the sparsified
Infocom05 dataset. In our simulations, the intermeeting times
between nodes i and j are then chosen from an exponential
distribution with parameter λij . In Net III, we use the actual
meeting times recorded in the Infocom05 dataset. In contrast
to our model, which assumes exponential distributions, the
recorded intermeeting times can be reasonably well approxi-
mated by a power-law distribution [21]. Table I summarizes
the properties of the test networks.

TABLE I: Test Network Properties

Net-
work

Contact
Graph Parameters Intermeeting

Times
Simulation
Length (s)

I Preferential
Attachment

m0 = 5
m = 5

Exponential
λ: uniform 100, 000

II Sparsified
Infocom K = 10

Exponential
λ: data-set 100, 000

III Sparsified
Infocom K = 10 Data-set times 247, 031

We call our proposed decentralized greedy latency min-
imization algorithm (Algorithm 2) MinLat, and compare it
with the history-based algorithm PRoPHET. The parameters of
PRoPHET are set to those suggested in [7], i.e., Pinit = 0.75,
β = 0.25, γ = 0.98, and time step=1. We randomly
choose one of the network nodes as the destination and send
M = 10000 messages from all other nodes of the network to
this destination. We conduct 100 simulation runs for networks
Net I and Net II; the destination node, contact graph, and
meeting rates remain fixed for all runs, but the intermeeting
times differ. We evaluate the average latency, delivery rate,
and hop count of these M messages as well as the average
buffer occupancy of the network nodes.

Net I Net II Net III
0

2

4

6x 10
4

(a) Average Latency

Net I Net II Net III
0

0.2

0.4

0.6

0.8

1

 

 

(b) Average Delivery Rate

Net I Net II Net III
0

2

4

6

8

10

(c) Average Hop Count

Net I Net II Net III
0

50

100

150

200

 

 

Prophet MinLat

(d) Average Buffer Occupancy

Fig. 1: Comparison Metrics in Test Networks with N = 41

Figure 1 shows the four comparison metrics in the three
test networks using PRoPHET and MinLat algorithms. The
error bars in the graphs represent the 95% confidence intervals.
The results indicate that MinLat achieves a smaller average
latency than PRoPHET for the test networks. For Net I and
Net II, where the assumption of exponentially distributed
intermeeting times holds, this is expected from Theorem 3.
But we observe that the average latency reduction holds also
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Fig. 2: Evolution of average delivery latency with time (both
in seconds).

for Net III, where a power-law distribution provides a better fit
to intermeeting times. The better performance of MinLat over
PRoPHET in terms of average latency is due to our primary
goal in developing Algorithm 2 which is minimizing the sum
of expected latencies of all nodes to the destination node. Also,
reductions in hop count and buffer occupancy are side effects
of this minimization.The delivery rates of the algorithms are
less than 1 because the simulation is terminated before all
generated messages are successfully delivered

We conducted further simulations with a different message
generation scenario on Net II to explore how the incorporation
of meeting rate estimations in (8) affects the performance of
MinLat. Figure 2 shows the average delivery latency as a
function of time. Messages are generated every t seconds at
randomly chosen source nodes where t is uniformly distributed
in [0, 1]. Each point on the curves represents the average
latency of the most recent 1000 packets. As we see in Figure
2, the average time it takes for a message to be delivered
decreases as time goes by and the forwarding rules discovered
by MinLat get closer to the optimum forwarding rules. This
decreasing trend is observed in both known and estimated
meeting rates scenarios, but the convergence to the optimum
point is slower when nodes need to estimate the meeting rates.

V. CONCLUSION

In this paper, we have proposed an analytical model to
develop a forwarding algorithm which leads to the minimum
expected latency in opportunistic data transfer among mobile
devices. We proved that under relatively strong assumptions,
our proposed forwarding algorithm MinLat can achieve the
minimum of sum of expected latencies from all the nodes
of the network to a particular destination. Simulation re-
sults showed that the performance is improved compared to
PRoPHET, the most similar existing approach. We also made
our model more realistic by assuming that nodes do not know
their meeting rates with other nodes and suggested an approach
to estimate the meeting rates at the same time that the message
forwarding is performed. Simulation results showed that our
proposed method takes longer to converge but eventually
results in almost the same average message delivery latency as

when the meeting rates are known. This work ignores many
practical challenges in opportunistic networks, but provides a
useful foundation for the design of a principled and practical
forwarding algorithm.
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