
Distributed Consensus and Optimization under
Communication Delays

Konstantinos I. Tsianos
Department of Electrical and

Computer Engineering
McGill University

Montreal, Quebec H3A 2A7
Email: konstantinos.tsianos@gmail.com

Michael G. Rabbat
Department of Electrical and

Computer Engineering
McGill University

Montreal, Quebec H3A 2A7
Email: michael.rabbat@mcgill.ca

Abstract—We study the effects of communication delays in
distributed consensus and optimization algorithms. We propose
two ways to model delays. First, assuming each edge of a
communication network has a fixed delay, we characterize the
consensus value exactly as a function of the delays and edge
weights and obtain convergence rate bounds using results from
non-reversible Markov chains. Second, we propose a novel way to
model random delays per edge. Our model allows the reception
of multiple delayed messages from the same sender in the same
time slot, a situation that can happen in practice. Both models
admit a description of the consensus updates in the presence
of delays via linear equations. Finally, we briefly discuss how
to apply our delay models to analyze distributed optimization
algorithms in the presence of delayed information.

I. INTRODUCTION

In this paper we study the effects of communication delays
in distributed consensus and optimization algorithms. We
propose a fixed and a random delay model in discrete time
for a communication network exchanging messages to reach
consensus. Both models describe the consensus dynamics via
linear update equations. Assuming a network with fixed (but
not equal) edge delays, we characterize the consensus value
exactly and bound the convergence rate using non-reversible
Markov chain theory. Our random delay model is more general
and allows the reception of multiple messages from the same
sender in the same time slot, a scenario that happens in practice
and is not captured by continuous time models. In the final
part of the paper, we briefly discuss how our delay models
can be used to understand the effect of delayed information
on distributed optimization algorithms.

The problem of distributed computation over a network has
recently received significant attention. For example, gossip
and consensus algorithms [1], [2] appear as a key component
in problems such as distributed linear parameter estimation,
source localization, distributed compression and field estima-
tion and many others. More recently, consensus algorithms
have found a new application in the area of distributed
optimization. For example, in large scale machine learning,
a dataset is distributed across a network of processors and
we typically try to optimize a cost function over all data to
learn a model [3]–[5]. In these problems, the communication
overhead can greatly affect the performance of a distributed

algorithm. The network can incur communication delays such
that nodes consistently receive outdated information from their
neighbours. Just as a simple example, consider a network
with 1 Gigabit per second ethernet. For a small machine
learning problem we may need to send messages of size
1Mbyte per iteration which translates to a transmission delay
of 8 milliseconds per message. For a modern processor using
some fast local optimization routine (e.g. stochastic gradient
descent [6]), 8 milliseconds is enough time to perform multiple
iterations, and the time it takes to exchange information over
the network is not negligible.

There exist various studies of the effects of communication
delays on consensus algorithms in the literature. For applica-
tions in partial differential equations, distributed control and
multi-agent coordination we can find a lot of continuous time
models. See for example [7], [8] and [9], [10] which analyze
a simplified variation where all edges experience the same
constant delay. Our motivation comes from applications in
distributed optimization where both computation and commu-
nication happen in rounds and take a significant amount of
time. For this reason we focus on discrete time models which
are more suitable. An early treatment of delays in discrete
time consensus can be found in [11], where it is proven
that convergence is not guaranteed if delays are unbounded.
An analysis of conditions for convergence in the presence of
delays is given in [12]. Closer to our work are [13] and [14]
which model delays in discrete time for consensus problems by
augmenting the state space with delay nodes. However, none
of these models allows for receiving multiple messages from
one sender in the same time slot, a situation that can occur
when assuming bounded delays in discrete time, as we explain
below. Moreover, the value at which the consensus algorithm
asymptotically converges to is not characterized. Finally, the
convergence rate bound in [14] is loose in many situations of
practical interest.

The main contribution of this paper is the description of
two models for analyzing discrete-time distributed consensus
algorithms in the presence of communication delays. The first
model covers the case where each directed edge experiences a
randomly chosen but fixed delay throughout execution of the
consensus algorithm. The second model allows for random

bounded delays per edge and is to the best of our knowledge
novel. Our random delay model is very general allowing the
reception of multiple messages from the same sender in one
iteration. For both models we explicitly show how to describe
the consensus dynamics as a set of linear update equations.
We can thus exploit known results for non-reversible Markov
chains to bound the convergence rate in the presence of delays.
In the case of fixed delays we characterize the consensus value
exactly and show that for max-degree weights the stationary
distribution only depends on the total amount of delay and not
how the delay is distributed across the edges. We also show
that it is possible to solve a network optimization problem
to mitigate the effect of delays. Finally, we briefly discuss
how to use our models to understand the effects of delayed
communication in the context of distributed optimization.

The rest of the paper is organized as follows. Section II
defines the consensus problem and introduces some of the
notation used throughout the paper. We describe and analyze
our two delay models in Sections III, IV and V, while Section
VI employs those models in the context of distributed opti-
mization. The paper concludes in Section VII with a summary
and a listing of possible future research directions.

II. DISTRIBUTED CONSENSUS

Let us consider a network G = (V,E) of n nodes.
Assuming each node i ∈ V holds a value xi(0) at time 0, the
consensus problem asks for an algorithm such that the nodes
exchange messages over the links in E to eventually reach a
consensus, i.e., [x1(k) x2(k) · · · xn(k)]T → v1 as k → ∞.
Generally v is a function of the initial values. An extremely
popular variant demands that all nodes converge to the average
[15]. For the purposes of this paper it is enough that the nodes
reach an agreement on a value that is just a weighted average.
We will consider distributed protocols where at each iteration
each node computes a convex combination of its own current
value and the values received by its neighbours; i.e.,

xi(k + 1) =

n∑
j=1

pijxj(k). (1)

We assume that pij > 0 only when (i, j) ∈ E so that
the matrix P = [pij] describes the connectivity structure of
G. To form convex combinations of incoming messages, we
require

∑n
j=1 qij = 1. Thus, P is a (row) stochastic matrix

describing a Markov chain. If, in addition, the Markov chain
P is irreducible and aperiodic, protocol (1) solves the con-
sensus problem [9]. Without further assumptions, P describes
a generally non-reversible Markov chain whose stationary
distribution is not uniform. For the rest of the paper we assume
that the delay-free transition matrix P is doubly stochastic;
i.e., its columns also sum to one (1TP = 1T). In that case it
can be shown that P k → 1

n11
T as k →∞. We now proceed

to model and analyze the case where messages are delivered
with time delay.

III. TIME DELAYED COMMUNICATION MODELS

Equation (1) updates the network state in discrete time steps.
We say that a message from node i to node j is delayed by b if
it is received b time steps after it has been sent. For simplicity,
let us first assume that each directed edge (i, j) experiences
a fixed delay bij in the sense that each message leaving node
i takes bij iterations to reach j. This suggests linear update
consensus equations of the form

xi(k + 1) =

n∑
j=1

pijxj(k − bij) (2)

where 0 ≤ bij ≤ B for a network with bounded maximum
delay B. This model describes a system with fixed delays and
is analyzed in the following section. Each bij can be thought
of as the average delay experienced on that link.

A more realistic model relaxes the fixed delay assumption.
Assuming there is still a maximum delay bound B, we allow
for random time-varying delays sampled in {0, . . . , B} every
time a new message is sent. Under this random delay model
analysis is more complicated since in one iteration a node
can receive multiple messages from the same sender. This
situation is analyzed in Section V. For both models we assume
that there is no delay in self loop messages; i.e., each node
always has access to its most recent local estimate. As we
will see, for both models we devise a formulation to describe
the consensus update equations with a new matrix Q that
is constructed from the initial matrix P . The construction
involves an augmentation of the communication graph G with
delay nodes. The idea itself is not new and appears in other
work such as [13] and [14]. However our formulation is
significantly different both in terms of the number of delay
nodes we introduce as well as the equations it leads to. In our
model, the intuition is that for every unit of delay on an edge
we force a message to pass through an extra intermediate node
before reaching its destination.

To understand the effect of delays in distributed consensus
processes we ask the following questions:
• How do we construct the matrix Q by adding delays to

a network initially described by P ?
• What is the stationary distribution π of Q?
• At what rate does Q converge to π?

IV. FIXED DELAY MODEL

As mentioned earlier, without delays we have a communica-
tion network G described by a doubly stochastic matrix P . By
adding delays nodes we augment G so that it is described by a
row stochastic matrix Q. We develop a procedure using simple
matrix operations to build Q from P by inserting delays on
edges one at a time. Suppose after some delay insertions we
have a matrix Q and want to add a delay of bij on edge (i, j).
We replace edge (i, j) by a delay chain d1, d2, . . . , dbij and
re-route all messages from i to j through that chain (see Figure
1). We define an n × n matrix M1 responsible for setting to
0 the entry of Q corresponding to sending information from
i to j without delay. Instead, i sends its message to the first

delay node d1. The weight of the message is the same as the
one that would be used to send from i to j directly without
delay; i.e., qij = pij . This is achieved by an n×bij matrix M2.
A bij × n matrix M3 delivers the message to j from the last
delay node in the chain dbij and we use a bij× bij matrix M4

to pass messages along the delay chain. We use ei to denote
the i-th column of the n× n identity matrix and gi to denote
the i-th element of the bij × bij identity matrix. With these
definitions, we initialize Q = P . To add bij delay nodes on
the edge i→ j we apply the transformation

Q =

[
In

0bij×n

]
Q
[
In 0n×bij

]
+

[
M1 M2

M3 M4

]
(3)

M1 = −eieTi PejeTj (4)

M2 = −M1ejg
T
1 (5)

M3 = gbije
T
j (6)

M4 =

n−1∑
k=1

gkg
T
k+1. (7)

Example: Consider a very simple chain graph G with 3 nodes.
Without delays we define

P =


2
3

1
3 0

1
3

1
3

1
3

0 1
3

2
3

 . (8)

To model a fixed delay of 2 whenever node 1 transmits to node
2, we consider the graph G as directed and augment it with
two delay nodes d1, d2 so that information from 1 to 2 always
goes through them (see Figure 1). The augmented graph is
described by a stochastic matrix Q:

Q =



1 2 3 d1 d2

1
2
3 0 0 1

3 0

2
1
3

1
3

1
3 0 0

3 0 1
3

2
3 0 0

d1 0 0 0 0 1

d2 0 1 0 0 0

. (9)

Node 1 sends messages to the first delay node, scaled by
the amount q12 = p12. After that, all delay nodes just
forward information until the destination node 2 is reached.
Q represents a Markov chain with a stationary distribution
that is not uniform. In the next two subsections we compute
the stationary distribution exactly.

A. Stationary Distribution - Max-Degree Weights P

A popular choice for achieving (average) consensus is to
use a doubly stochastic P representing a max-degree random
walk [16]:

P = I − D −A
dmax + 1

(10)

where A is the adjacency matrix of the (undirected) graph
G, D = diag(deg(1), . . . , deg(n)) has the node degrees in
the diagonal and dmax = maxi∈V deg(i). As we show below,

!"

#"

$" !"

#"

$"

%!"

%#"

Fig. 1. (left) A network with 3 nodes. (right) The network when we add a
delay of 2 on the edge (1, 2).

this P has an appealing property when adding delays: the
stationary distribution is only affected by the total number of
delay nodes on the network and not by the amount of delay
on any particular edge.

For the max-degree transition matrix P , computing the
stationary distribution is relatively simple. Take a network G
with n nodes and m = 2|E| edges and add 0 ≤ br ≤ B
delay nodes on edge r where r = 1, . . . ,m for a total of∑m
r=1 br = b delay nodes. We construct the delayed commu-

nication matrix Q as described earlier. The nodes in the graph
with delays belong to either the set of the original computing
nodes V , or the set of delay nodes – call it C. Matrix P
is doubly stochastic, irreducible and aperiodic so a random
walk on the original graph (only nodes in V) converges to
the uniform distribution. Since the addition of delay nodes
does not change the connectivity structure (degrees of nodes
in V), a random walk on the augmented graph still converges
to a stationary distribution where all nodes in V have equal
probability. However, the probability of each node in V will
be less than 1

n since part of the stationary mass has to go
to the delay nodes. Moreover, the delay nodes only forward
information so a random walk spends an equal amount of
time on all nodes of the same delay chain. Finally, P assigns
equal probability to transition out of a computing node to
any of its neighbouring nodes. We thus expect that the nodes
in C will also all have equal probability mass. In summary,
we expect the stationary distribution of Q to be of the form
π = [πV 1

T
n πC1

T
b]T where 1b is the vector of all ones of

length b. To confirm this intuition, we compute the stationary
distribution exactly by solving the balance equations:

QTπ = π. (11)

From this set of equations, we take an arbitrary one for a node
i ∈ V which has 0 ≤ mi ≤ deg(i) outgoing edges to delay
nodes. We have(

1− mi

dmax + 1

)
πV +miπC = πV (12)

which implies

πV = (dmax + 1)πC . (13)

If we also demand that
∑n+b
i=1 πi = 1, we obtain

πV =
dmax + 1

b+ n(dmax + 1)
(14)

πC =
1

b+ n(dmax + 1)
. (15)

We can similarly verify that the rest of the stationarity equa-
tions are satisfied. Since the resulting π is a valid probability
distribution and we know that the stationary distribution is
unique, our intuition that at convergence we will only have
two probability values was correct. However this is just a
consequence of the fact that P assigns equal probability to all
outgoing edges. Another important consequence is that for this
particular P it does not matter how the delay is distributed on
the edges. All that matters is the total number of delay nodes
b. This situation is different if we consider P with general
structure as we see next.

B. Stationary Distribution - General Case
In general, a delay free network is described by an aperiodic,

irreducible, doubly stochastic matrix P which is not symmetric
and does not necessarily assign equal weights to all outgoing
edges from a node. Nevertheless, since P converges to the
uniform distribution, we still expect the stationary probability
mass to be equal for all computing nodes. We also expect
the probability mass to be equal for delay nodes on the same
edge but different between edges. We can still compute the
stationary distribution by solving the balance equations. We
assume again that the computing nodes have probability mass
πV . We have m = 2|E| directed edges with br, r = 1, . . . ,m
delay nodes per edge. Denoting by i(r) and j(r) the two nodes
of the original graph connected by edge r experiencing delay
br, a delay chain Cr replaces the directed edge (i(r), j(r)) and
i(r) sends messages to the first delay node of Cr with weight
pi(r)j(r). Letting all delay nodes on the same edge r have equal
probability πr, we are looking for a stationary distribution of
the form

π = [πV 1
T
n π11

T
b1 · · · πm1Tbm]T . (16)

First we build the delay matrix Q as explained before. Looking
closely, we observe that for each edge (i(r), j(r)), r =
1, . . . ,m we have a row in QT whose only non-zero element
is pi(r)j(r) at column j(r). From QTπ = π for all such rows
we obtain equations of the form

πV pi(r)j(r) = πr. (17)

Moreover, the elements of the stationary distribution π must
sum to 1; i.e.,

1T · π = 1 ⇒ nπV +

m∑
r=1

brπr = 1. (18)

Substituting πr from (17) to (18), we first compute πV and
then go back to (17) to get the πr’s:

πV =
1

n+
∑m
r=1 brpi(r)j(r)

(19)

πr =
pi(r)j(r)

n+
∑m
r=1 brpi(r)j(r)

. (20)

One can easily verify that the rest of the equations in (18)
are satisfied with the computed π. As we see, the stationary
distribution depends both on the weight we use to send
messages through every delay chain Cr and also on the length
of the chain br.

C. Convergence Rate Bound under Fixed Delays

It is expected that the convergence rate of the delayed matrix
Q will not be the same as the rate at which the original P
converges. Characterizing the convergence rate of Q in relation
to the convergence rate of P however is not obvious. Q is not
symmetric and represents a non-reversible Markov chain. We
can get a bound on the convergence rate using the result by
Fill [17] which suggests using a reversibilization of the chain
as a way for symmetrizing Q. For a Markov chain described
by a stochastic matrix Q with a stationary distribution π, we
compute the reverse Markov chain Q̃ = [q̃ij] as

q̃ij =
πjqji
πi

. (21)

We then define the additive reversibilization of Q as

U(Q) =
Q+ Q̃

2
. (22)

The rate of convergence of Q is bounded using the spectral
properties of U(Q). Let us define λ2(·) to return the second
largest eigenvalue of a matrix and ‖x−y‖TV = 1

2

∑n
i=1|xi−

yi| to be the total variation distance between two discrete
distributions x,y ∈ [0, 1]n. If Q is strongly aperiodic (meaning
that qii ≥ 1

2 ,∀i ∈ V) we have

‖Q(i, ·)k − πT ‖2TV ≤
λ2(U(Q))k

4πi
(23)

where and Q(i, ·) is the i-th row of Q (Fill [17], Theorem 2.9
and Corollary 2.9)). This additive reversibilization bound does
not apply directly in our case however since Q is not strongly
aperiodic. To use Fill’s result, we employ a standard trick and
consider a lazy version Qlazy = 1

2 (I + Q) of Q. The latter
is expected to converge slower than Q but is by definition
strongly aperiodic and has the same stationary distribution as
Q (i.e., πlazy = π). Based on (24) we obtain

‖Qt(i, ·)− π‖2TV ≤‖Qtlazy(i, ·)− πlazy‖2TV (24)

≤ (λ2(U(Qlazy)))t

4πlazy(i)
. (25)

In Figure 5 we plot this bound in black and the actual total
variation distance in red for a graph with 3 nodes and delay
3 on edge (1, 2). As we see the bound is of the right order of
magnitude.

Optimizing P : Introducing delays lets us pose a matrix
design question. Given fixed delays on the edges, what is the
optimal P such that convergence of the delayed matrix Q to
π(Q) is as fast as possible? Allowing for an initial general
doubly stochastic P leads to a stationary distribution for Q of
the form

π = [πV 1
T
n π11

T
b1 . . . πm1Tbm]T (26)

for m delay edges with br delays nodes on edge r and∑m
r=1 br = b. We are looking to maximize the convergence

speed which is bounded by the second largest eigenvalue of
U(Qlazy). Specifically, we would like λ2(U(Qlazy)) to be as
small as possible. Our constraints are that P remains doubly
stochastic with positive entries, and that the topology of the
network is not altered, i.e., the zeros of the initial P remain
zero1.

We write the optimization problem as follows:

minimizeP λ2(U(Qlazy)) (27)

subject to P1 = 1, PT1 = 1, pij ≥ 0 (28)
pij = 0 if (i, j) 6∈ E (29)

where the first set of constraints forces P to be doubly
stochastic with positive entries. The last constraints, says that
every P considered by the optimization routine, must keep at
zero all the entries for which the original P has zeros. It is
not explicitly shown, but remember that the objective function
λ2(U(Qlazy)) is a function of P .

To verify that solving the above optimization problem can
yield meaningful results, we tried to solve the following very
simple example numerically. We consider a network of 3 nodes
with all edges included:

P =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 . (30)

Figure 2 shows the total variation distance of P k, Qk and Qkopt
when P has been optimized as k increases. The initial P has
a total variation distance of 0 since the graph it represents is
complete. If we add a delay of 3 on edge (1, 2), then Q takes
about 16 iterations to converge as shown by the red curve.
Next, we use our optimization routine, to get a new matrix

Popt =

0.4034 0 0.5966

0.3113 0.4383 0.2504

0.2853 0.5617 0.1530

 . (31)

The corresponding matrix Qopt converges now much faster
needing only 6 iterations as shown by the green line. The
optimization routine is doing something reasonable. The edge
with delay is turned off receiving a weight of zero. The second
largest eigenvalue of the additive reversibilization of Qlazy is
reduced from 0.8198 to 0.8067 yielding faster convergence.

V. RANDOM DELAY MODEL

A fixed delay model is appealing because it is represented
by linear updates as

xi(k + 1) =

n+b∑
j=1

qijxj(k) (32)

1The contrary does not have to hold. A non zero entry, can be set to zero
meaning that a node chooses never to use a certain link if for example that
link experiences a large delay

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

M
ax

im
um

 T
V

D
is

ta
nc

e

P Delay(1,2) = 3
Popt Delay(1,2) = 3
Bound

Fig. 2. Optimizing P can yield faster convergence in a network with delays.
The total variation distance of Pk without delays is 0 as P represents a
complete graph. (Red) Total variation distance of Qk when edge (1, 2) or P
experiences a delay of 3. (Green) Total variation distance of Qopt when edge
(1, 2) of Popt experiences a delay of 3 and Popt is an optimized version of
P as described in the text. (Black) Convergence rate bound (24).

where Q = [qij] is the delayed matrix defined earlier. We
can model scenarios where the actual delay per edge does
not fluctuate too much around its mean value to which we
set the fixed delay. However, network conditions are typically
volatile and edge delays are rarely constant. A more realistic
model is one where each link experiences a random delay
which we assume bounded. Allowing for random delays in
discrete time has a significant implication: it is now possible
to receive multiple delayed messages from the same sender
during the same time slot. In the fixed delay model this
obviously cannot happen as equation (32) suggests. Also in
continuous time, only one message is received at each time
moment since the probability that two messages are delivered
at the exact same instant is zero. The situation changes when
we consider random delays. For example, take an edge (i, j)
whose delay could be 1 or 2. Assume at iteration k node i
sends a message mk to j and at time k + 1, i sends a new
message mk+1 to j. If mk is delayed by 2 time units and
mk+1 is delayed by 1 unit, then both mk and mk+1 will be
delivered to node j at time k+2. This scenario can easily occur
in practice when the act of receiving a message takes itself a
non trivial amount of time during which a second message
can arrive. When this happens, the receiving node polling its
buffer experiences the arrival of two messages during the same
time slot. Under random delays, equation (32) can no longer
represent the consensus dynamics. In this section we show
how we can still represent the consensus process via (time
varying) linear update equations.

To model random bounded delays, we propose replacing
each directed edge of the original graph by multiple delay
chains with varying amounts of delay. Every time a mes-
sage is sent, a random decision is made which delay chain
the message will take to reach its destination. Recall that
our communication network with n computing nodes has
m = 2|E| directed edges (not counting the self loops). Each
edge can deliver messages with some bounded delay. For
simplicity let us assume that every edge has a random delay

!" #" !" #"

Fig. 3. Adding a random bounded delay on edge (1, 2). At this particular
instant, 1 sends with delay 2 since the connections to delays 1 and 3 are
deactivated.

between 1 and B. We replace every edge by B delay chains.
Similar to the fixed delay case, we insert delay nodes to
represent different values of delay. For example for an edge
(i, j) with a maximum delay of 3 we add three delay chains
(d11), (d21, d

2
2), (d31, d

3
2, d

3
3) to send messages from i to j(see

Figure 3). We avoid indexing the delay nodes by edge number
to not clutter notation. We augment the graph with B(B+1)

2

delay nodes per edge or b = mB(B+1)
2 delay nodes total.

Our goal is to write a matrix Q that will describe the
consensus dynamics under random delays using linear updates.
Every time a message is sent, it is routed randomly through
one of the B delay chains. Outgoing edges to the other chains
leading to the same recipient are cut off. We can impose
a discrete probability distribution on the integers 1, . . . , B
to control the expected delay of an edge. For simplicity of
exposition, we take a uniform distribution i.e., each delay
chain on an edge is selected with probability 1

B . As we
see, the augmented graph topology changes at every iteration
based on which outgoing edges to delay chains are active. To
describe the consensus update equations we need to model
the changing topology. Specifically, at each iteration, each
computing node selects for each neighbour how much delay
each outgoing message is going to experience. Based on those
choices, at iteration k the graph adjacency matrix A(k) is a
sample from the set {A1, . . . , AB

m} of possible adjacency
matrices. Moreover, it is important to see that a delay node
could either contain a message or be empty and a zero message
is not the same as the node being empty. To keep track of
which delay nodes are empty we define an indicator sequence
{φ(k)}∞k=1, φ(k) ∈ {0, 1}b. Using A(k) and φ(k) we show
how to write a transition matrix Q(k) at each iteration k.

We begin by noticing that adjacency matrices A(k) have
some structure. Specifically,

A(k) =

[
In×n R(k)

Jb×n Cb×b

]
. (33)

The upper left block is the identity representing the self loop
edges. R(k) is the only random part in the matrix. It contains
a 1 whenever a computing node i sends to a computing node
j using delay chain r = 1, . . . , B. For example, if node i1
sends to j1 with a delay 2 and node i2 sends to j2 with delay
1, R(k) will contain two blocks for those edges with delay

encoded as follows:

R(k)T =



1 ··· i1 ··· i2 ··· n

...
...

...
...

...
...

...
...

d11 0 0 0 0 0 0 0

d21 0 0 1 0 0 0 0

d22 0 0 0 0 0 0 0

d31 0 0 0 0 0 0 0

d32 0 0 0 0 0 0 0

d33 0 0 0 0 0 0 0

d11 0 0 0 0 1 0 0

d21 0 0 0 0 0 0 0

d22 0 0 0 0 0 0 0

d31 0 0 0 0 0 0 0

d32 0 0 0 0 0 0 0

d33 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...



. (34)

Jb×n makes the end nodes drr of each delay chain deliver
messages to the computing nodes. It has 1s only from the
delay nodes drr, r = 1, . . . , B to the computing nodes. The
part of Jb×n corresponding to the two edges of R(k) just
discussed will look like

Jb×n =



1 ··· j1 ··· j2 ··· n

... 0 · · · 0 · · · 0 · · · 0

d11 0 · · · 1 · · · 0 · · · 0

d21 0 · · · 0 · · · 0 · · · 0

d22 0 · · · 1 · · · 0 · · · 0

d31 0 · · · 0 · · · 0 · · · 0

d32 0 · · · 0 · · · 0 · · · 0

d33 0 · · · 1 · · · 0 · · · 0

d11 0 · · · 0 · · · 1 · · · 0

d21 0 · · · 0 · · · 0 · · · 0

d22 0 · · · 0 · · · 1 · · · 0

d31 0 · · · 0 · · · 0 · · · 0

d32 0 · · · 0 · · · 0 · · · 0

d33 0 · · · 0 · · · 1 · · · 0
... 0 · · · 0 · · · 0 · · · 0



. (35)

Finally, we define the matrix Cb×b for forwarding messages
from one delay node to the next on each chain. On a specific
delay chain of length h, we can forward messages using an
h×h Toeplitz backward shift matrix with 1s on the first upper

diagonal, i.e.,

Sh =



0 1 0 · · · 0

0 0 1 0
...

. . .

0 0 1

0 0 · · · 0 0

 . (36)

For any edge r = 1, . . . ,m, to forward messages through
all delay chains we use a block diagonal matrix Kr =
diag(S1, S2, . . . , SB). Finally, since we have m edges

Cb×b = diag(K1,K2, . . . ,Km). (37)

Looking back at (33), observe that every column of
[
R(k)
Cb×b

]
contains at most one non-zero element.

Next, we define a row vector φ(k) ∈ Rb that keeps track of
whether a delay node on any delay chain contains a message
or is empty. Initially we have φ0 = 0Tb . At iteration k, the
first nodes in the delay chains may receive new information
depending on which edges are activated by R(k). The rest
of the delay nodes will be non-empty depending on whether
their predecessors in the chains were non empty in the previous
iteration. In other words, φ(k) evolves as

φ(k) = 1TnR(k) + φ(k − 1)Cb×b. (38)

By substituting φ(k−1) using the same recursion and remem-
bering that φ(0) is zero we conclude that

φ(k) = 1Tn

k−1∑
t=0

R(k − t)Ctb×b. (39)

The structure of Cb×b suggests that powers higher than B
are equal to zero which makes sense since after at most B
iterations a message is out of any delay chain by our bounded
delay assumption.

After understanding the structure of changing topology
adjacency matrices A(k), to describe the consensus transition
matrices Q(k) we need to specify the weights used to combine
incoming messages. Recall that each computing node might be
receiving multiple messages from a neighbouring computing
node arriving from different delay chains. We could specify
some elaborate scheme for assigning smaller weight to older
messages but for simplicity we will define a matrix that assigns
equal weight to all incoming messages. If a computing node i
receives wi messages total at iteration k from all incoming
delay chains of all neighbours, i will combine them with
weights equal to 1

1+wi
. The added 1 in the denominator comes

from the self loop message. Notice that wi for each node
changes at every iteration and could be zero if all delay nodes
at the chain ends are empty. We collect the weights used for
combining incoming messages in an n×n matrix D(k). Each
diagonal entry D(k)ii has value 1

1+wi
. We express D(k) based

on known quantities as follows:

D(k) =diag

([
1Tn φ(k − 1)

]
A(k)

[
In×n

0b×n

])−1
(40)

=diag

([
1Tn φ(k − 1)

] [In×n
Jb×n

])−1
. (41)

The vector 1Tn accounts for the self loop messages while
φ(k− 1) selects out of all the delay nodes at the end of delay
chains (indicated by Jb×n), the ones that contain non-empty
messages. Inverting a diagonal matrix amounts to inverting the
individual diagonal elements which are always non-zero.

Using the weights D(k) and activating only the delay nodes
that are not empty via diag(φ(k− 1)) the transition matrix at
iteration k is defined as

Q(k) =

[
D(k) D(k)JTb×ndiag(φ(k − 1))

R(k)T CTb×b

]
. (42)

Observe that Qk contains zero rows for the delay chains
that are not used in this iteration. The non-zero rows are by
construction stochastic. If x(k) is the augmented state vector
of compute and delay nodes, the consensus update equations
are written as

xi(k + 1) =

n+b∑
j=1

qij(k)xj(k). (43)

To conclude this section let us note that forcing each edge
to experience a delay of at least 1 is not crucial. The only
modification to allow for edges with zero delay, is that the
upper left block of A(k) in equation (33) will be the identity
to which we need to add a random matrix, call it R0(k),
with 1s for edges (i, j) with zero delay at iteration k. This
modification is reflected in the definition of Q(k) in (42) by
adding R0(k)TD(k) to its upper left block.

VI. DISTRIBUTED OPTIMIZATION UNDER FIXED AND
RANDOM BOUNDED DELAYS

One area where consensus algorithms have potential to play
a key role is distributed machine learning and optimization
where we need to process a large amount of data distributed
over a network of n processors. To learn, e.g., a classifier on
the full dataset it is typically required to optimize a convex
cost function of the form

f(x) =
1

n

n∑
i=1

fi(x), x ∈ X (44)

where fi is the local cost function of processor i. One very
recent distributed algorithm to minimize f(x) is Distributed
Dual Averaging [4]. The minimization proceeds in rounds
updating the local estimates of the optimum xi(k). At each
round, a processor i takes a gradient step in the direction deter-
mined by the accumulated past gradients from i’s neighbouring
processors in the communication graph (stored in the dual
variable zi(k)), plus the most recent local subgradient gi(k)
of fi computed at xi(k). A consensus algorithm using matrix

P = [pij] is responsible for synchronizing the processors and
bringing all the dual variables in agreement about the direction
to the optimum. Given a sequence of non-increasing learning
rates a(k)

∞
k=0 each processor repeats two steps:

zi(k + 1) =
∑
j∈Ni

pijzj(k)− gi(k) (45)

xi(k + 1) =Πψ
X(−zi(k + 1), a(k)) (46)

= arg min
x∈X

[
−zTi (k + 1) · x+

1

a(k)
ψ(x)

]
, (47)

where ψ(x) is a strictly convex proximal function [4]. For
large scale problems, we expect that the exchanged messages
can easily be many Megabytes in size inducing noticeable
delays in communication. Observe that our delay models fit
nicely in the distributed dual averaging framework. We can
analyze the effect of delays by replacing P with a commu-
nication matrix with delays Q. In fact, it can be shown that
the convergence results of [4] can be extended in the case of
delays; due to space limitations the proofs are omitted. In the
case of fixed delays using learning rates a(k) ∝

√
k we can

prove that distributed dual averaging converges like

f(x̂i(k))− f(x∗) ≤ θ1 + θ2 log k√
k

(48)

where x̂i(k) = 1
k

∑k
t=1 xi(t) is the running average of

processor i’s estimate, x∗ is the optimum value and θ1, θ2 are
constants depending on the stationary distribution of Q (which
we can compute using the methods introduced in Section IV),
the second largest eigenvalue of Qlazy and the bounds we have
for ψ(x) and ‖gi‖. This result is an extension of Theorem 2
in [4] and shows that order-wise the convergence rate is not
affected by the presence of fixed delays.

We conclude this section with two experiments that show
the effects of delays when optimizing a hinge loss function
as explained in example 1 of [4]. We generate labeled data
{(uj , yj)} on a unit hypersphere and separate them into two
classes adding 5% of noise in the labels. We distribute the
data among the processors and minimize the misclassification
margin

f(x) =
1

n

n∑
i=1

fi(x) where fi(x) =

ni∑
j=1

[1− yjuTj · xj]+.

(49)
Experiment 1: We run optimization on a random network
with n = 20 nodes whose average edge degree is 8.1 and
maximum degree is 13 not counting self-loops. We use the
communication matrix P = I − D−A

dmax+1 . On total we have
1000 datapoints in R20. In the fixed delays case we add on
each edge r a fixed delay br chosen randomly in the interval
[0, B]. In the random delays version, we define a probability
distribution on the integers {0, . . . , B} with mean br for each
edge. The results for B = 5 and B = 10 are shown in
Figure 4. Obviously, adding delays slows down convergence.
Interestingly, the random delay model seems to converge
faster. Although in expectation random delay and fixed delay

0 100 200 300 400 500 600 700 800 900 1000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time units

f(x
)

No Delay
Fixed Delay B=5
Random Delay B=5
Fixed Delay B=10
Random Delay B=10

Fig. 4. Evolution of maximum value of f(x) being minimized among 10
processors in the case of fixed and random delays bounded by 5 and 10.

0 100 200 300 400 500 600 700 800 900 10000.4

0.5

0.6

0.7

0.8

0.9

1

Time units

f(x
)

No Delay
Delay(1,2)=3, No Opt
Delay(1,2)=3, Opt

Fig. 5. Optimizing P can yield faster convergence in a delayed network.
(Blue) Progress of optimization in complete graph of three nodes without
delays. (Red) Progress when edge (1, 2) experiences a delay of 3. (Green)
Progress when edge (1, 2) experiences a delay of 3 and P is optimized as
described.

models should behave the same as time goes to infinity, for
finite time, the non-zero probability of delivering messages
earlier than br makes a difference. In particular, for B = 10
if we divide the total delay experienced by all messages by
the total number of messages received, the average delay is
4.5659 for random delays and 5.0358 for fixed delays. The
average number of messages each processor receives at each
iteration, is 8.0962 for random delays and 8.0956 for fixed
delays showing that since the sending rate is the same, we
do tend to receive a few more messages in the random delay
model. In other words, receiving multiple messages from the
same sender does happen in practice.
Experiment 2: It is also interesting to see what happens when
we optimize our network according to the delays. Looking
back at the example from Section IV-C, we ran dual averaging
to minimize f(x) with the original and the optimized network
on 3 nodes. Figure 5 shows that adding delays slows down
the optimization but using the optimized matrix Popt can
considerably improve performance.

VII. SUMMARY AND FUTURE WORK

In this paper we study the problem of delayed communi-
cation in distributed consensus algorithms. We propose two

ways to model delays in discrete time systems based on
augmenting the communication graph with delay nodes. The
fixed delay model is simpler and can be used when the network
delay stays consistently around the average behaviour. We
compute the stationary distribution exactly and use results
from the theory of non-reversible Markov chains to bound
the convergence rate. Moreover, we set up and empirically
solve an optimization problem to find weights that minimize
convergence time. Our second contribution is the description
of a random delay model that seems to have been missing from
the literature. For this model we show how to describe the
consensus dynamics via linear time varying update equations.
This opens the door for analyzing systems with random delays
just as we did for the fixed delay model. Finally, we make
a connection with distributed optimization showing how our
delay models can be used to analyze delays in that context.
We also perform simulations using out models to understand
the effects of delays.

There are plenty of future directions to pursue from here.
For example, although we have a convergence bound, it
would be interesting to characterize the precise effect of
adding delays on some edge on the second eigenvalue of
the transition matrix. Moreover, we have posed and solved
the network optimization problem numerically as a proof of
concept. To see if the optimization can be solved efficiently is
an important step. Furthermore, the convergence of the random
delay model has not been discussed here. Very recently we
were able to show theoretically what our experiments already
suggest, i.e., that the random delay model also converges. We
expect this result to appear in an extended version of this
paper. In addition to delays, we could study the effect of
bounded intercommunication where processors do not send
out information at every iteration but rather at least once in a
finite number of iterations. Finally, we have briefly investigated
the effect of delays for the dual averaging algorithm. We feel
confident that our models can be helpful in understanding the
effects of delays in other distributed optimization algorithms
such as [3], [18].

REFERENCES

[1] A. G. Dimakis, S. Kar, J. M. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proceedings of
the IEEE, vol. 98, no. 11, pp. 1847 – 1864, November 2010.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooper-
ation in networked multi-agent systems,” in Proceedings of the IEEE,
vol. 95:1, 2007, pp. 215 – 233.

[3] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, January 2009.

[4] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
arXiv:1005.2012v3, 2010.

[5] S. S. Rama, A. Nedic, and V. Veeravalli, “A new class of distributed
optimization algorithms: Application to a new class of distributed
optimization algorithms: Application to regression of distributed data,”
Optimization Methods and Software, vol. 00, no. 00, pp. 1–18, 2009.

[6] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proceedings of the 19th International Conference on Compu-
tational Statistics, Y. Lechevallier and G. Saporta, Eds. Paris, France:
Springer, 2010, pp. 177–187.

[7] P.-A. Bliman and G. Ferrari-Trecate, “Average consensus problems in
networks of agents with delayed communications,” Automatica, vol. 44,
2008.

[8] J.-P. Richard, “Time-delay systems: an overview of some recent ad-
vances and open problems,” Automatica, vol. 39, pp. 1667–1694, 2003.

[9] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, September 2004.

[10] A. Seuret, D. V. Dimarogonas, and K. H. Johansson, “Consensus under
communication delays,” in Proceedings of the 47th IEEE Conference on
Decision and Control, 2008.

[11] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation:
numerical methods, 1st ed. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

[12] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,” in
IEEE Conference on Decision and Control, 2006, pp. 2996 – 3000.

[13] M. Cao, S. A. Morse, and B. D. O. Anderson, “Reaching a consensus
in a dynamically changing environment: Convergence rates, measure-
ment delays, and asynchronous events,” SIAM Journal on Control and
Optimization, vol. 47, pp. 601–623, 2008.

[14] A. Nedic and A. Ozdaglar, “Convergence rate for consensus with
delays,” Journal of Global Optimization, vol. 47, no. 3, pp. 437–456,
2010.

[15] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, vol. 52, pp.
2508–2530, 2006.

[16] R. Montenegro, “The simple random walk and max-degree walk on a
directed graph,” Random Structures and Algorithms, vol. 34, no. 3, pp.
395–407, May 2009.

[17] J. A. Fill, “Eigenvalue bounds on convergence to stationarity for non
reversible markov chains, with an application to the exclusion process,”
The Annals of Applied Probability, vol. 1, no. 1, pp. 62–87, 1991.

[18] K. Srivastava and A. Nedic, “Distributed asynchronous constrained
stochastic optimization,” IEEE Journal of Selected Topics in Signal
Processing, vol. 99, 2011.

