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Abstract— This paper discusses practical consensus-based
distributed optimization algorithms. In consensus-based opti-
mization algorithms, nodes interleave local gradient descent
steps with consensus iterations. Gradient steps drive the solution
to a minimizer, while the consensus iterations synchronize
the values so that all nodes converge to a network-wide
optimum when the objective is convex and separable. The
consensus update requires communication. If communication
is synchronous and nodes wait to receive one message from
each of their neighbors before updating then progress is limited
by the slowest node. To be robust to failing or stalling nodes,
asynchronous communications should be used. Asynchronous
protocols using bi-directional communications cause deadlock,
and so one-directional protocols are necessary. However, with
one-directional asynchronous protocols it is no longer possible
to guarantee the consensus matrix is doubly stochastic. At
the same time it is essential that the coordination protocol
achieve consensus on the average to avoid biasing the opti-
mization objective. We report on experiments running Push-
Sum Distributed Dual Averaging for convex optimization in a
MPI cluster. The experiments illustrate the benefits of using
asynchronous consensus-based distributed optimization when
some nodes are unreliable and may fail or when messages
experience time-varying delays.

I. INTRODUCTION

Consensus-based optimization algorithms have the ap-
pealing feature that they can operate in a peer-to-peer
fashion, with minimal coordination between nodes. Much
of the existing literature has focused on establishing and
analyzing convergence properties of these algorithms. This
paper discusses issues arising when implementing and using
consensus-based algorithms for distributed optimization in
practice, complementing the existing literature. We find that
having asynchronous algorithms which use one-directional
(push-based) communications and which do not rely on
doubly-stochastic consensus parameters are the most desir-
able from the perspective of developing a robust and efficient
implementation.

The dramatic increase in available data has made imper-
ative the use of parallel and distributed algorithms for solv-
ing large-scale optimization and machine learning problems
(see for example [1], [2]). Among numerous alternatives, a
significant amount of research has focused on developing
consensus-based algorithms [2]–[7] which combine some
version of local optimization with a distributed consensus
algorithm running over a peer-to-peer type of network. These
methods typically focus on solving separable minimization

problems of the form

minimize F (x) =
1

n

n∑
i=1

fi(x) (1)

subject to x ∈ X (2)

where X is a convex constraint set, and it is typically
assumed that the functions fi(x) are Lipschitz continuous,
possibly with Lipschitz continuous gradient. The standard
distributed setup involves a network of n nodes, and the
objective fi(x) is only known to node i. For example,
evaluating fi(x) or its gradient may require access to a
large amount of data (e.g., if the objective is to minimize
loss over a very large distributed dataset), in which case
it is not practical to exchange data. Instead, the nodes
must coordinate and send other information such as primal
variables xi(t) or gradients of fi(x) evaluated at a particular
value. In distributed optimization, this communication occurs
in an unstructured manner over a topology represented as
a graph G; that is, nodes exchange messages with their
neighbors in G. The communication topology G is always
assumed to be connected so that no nodes are isolated from
the rest.

With such an approach, all computing nodes have the
same role in the optimization procedure, thereby eliminating
single points of failure and increasing robustness. This is
important in large-scale systems where machines may fail or
stall during the computation. At the same time, consensus-
based algorithms are simple to implement and avoid the
overhead involved in other approaches (e.g., aggregating up
a spanning tree), especially when the network topology is
time-varying. One downside of consensus algorithms is that
peer-to-peer networks lack a highly organized infrastructure,
and coordinating the computing nodes becomes a challenge.
Consensus algorithms have been analyzed mostly in wireless
network settings [8] and provide an elegant distributed solu-
tion for coordinating the nodes. In this article we consider
implementations of consensus-based distributed optimization
algorithms in wired networks.

In this article, we concentrate on the role and implica-
tions of network constraints on distributed consensus and
consensus-based distributed optimization. We provide a uni-
fied view of how the network affects both the speed of
convergence as well as the solution to which the algorithm



converges. We argue that averaging, one-directional commu-
nication and asynchronism are key aspects that a consensus
algorithm should posses to be of practical importance. To
accommodate all three aspects, it is necessary to relinquish
some of the most popular algorithms that rely on the elegant
properties of doubly stochastic matrices. We conclude the
paper with experiments that complement the theoretical
discussion and illustrate the effects of the network in practice.

II. PREVIOUS WORK

The main motivation for this work comes from applica-
tions in consensus-based distributed optimization [9], [10]
which has recently received a lot of attention in the context
of large-scale optimization and machine learning, as well
as in wireless sensor networks. Consensus-based distributed
optimization algorithms generally interleave a local gradient
descent step with an iteration of distributed averaging to
coordinate or synchronize values across the network

The general theme of these algorithms is the interleaving
of a local optimization routine with a distributed consensus
algorithm to coordinate the nodes of a network towards
the optimum of a separable function whose components are
distributed over the compute nodes. The recent literature
includes many algorithms that exchange either the state infor-
mation [2], [4]–[6], [11] or dual information [2], or gradient
information [3], [12]. The focus is mostly on showing con-
vergence for constrained or unconstrained problems at a rate
which depends on properties of the convex objective such
as smoothness or L-Lipchitz continuity. Very little attention
has been put in practical and implementation aspects.

Integral part of the aforementioned distributed optimiza-
tion algorithms are the consensus algorithms for which the
literature is quite rich. See [8], [13] and references there
in. A lot of effort has been put into analyzing the rate
of convergence to consensus [14]. Very important in that
direction has been the connection of consensus algorithms
to the convergence or Markov chains [15]. Specifically, the
Markov chain view reveals the dependence of the conver-
gence speed on the spectral properties of the underlying
network. Of practical interest is the case of asynchronous
consensus algorithms and the closely related case of time
varying networks or consensus matrices. In [16] is it shown
that using asynchronous broadcasts and forming convex com-
binations of incoming information guarantees convergence to
the average only in expectation. If we model time varying
networks, [17] provides necessary conditions under which
convergence is achieved while [18] characterizes the expecta-
tion and variance of the consensus value. Interestingly, using
a different type of algorithm called Push-Sum [19], [20]
convergence to the true average under the same conditions for
time varying networks or consensus matrices is guaranteed.

III. DISTRIBUTED DUAL AVERAGING

To make the paper self-contained, we provide some nec-
essary background on the distributed dual averaging (DDA)
algorithm which will be used as a concrete example to
illustrate the theoretical aspects in practice. For more details

consult [3]. We present DDA as a prototypical example of
consensus-based distributed optimization.

DDA solves the problem (1). Suppose we are given an
undirected network G = (V,E) of |V | = n compute nodes.
Each node i knows a function fi(x) : Rd → R. Moreover,
nodes can communicate with one another using the available
communication channels indicated by the edge set E. We
assume that each fi is convex and L−Lipschitz continuous
with respect to the same norm ‖·‖; i.e., |fi(x)− fi(y)| ≤
L ‖x− y‖ ,∀x, y ∈ X . As a consequence, for any x ∈ X
and any subgradient gi ∈ ∂fi(x) we have ‖gi‖∗ ≤ L where
‖v‖∗ = sup‖u‖=1〈u, v〉 is the dual norm.

Let us select select a 1-strongly convex function ψ : Rd →
R such that ψ(x) ≥ 0 and ψ(0) = 0. For example, take
ψ(x) = ‖x‖22. Also select a non-increasing sequence of
positive step sizes {a(t)}∞t=0 and a doubly stochastic matrix
P = [pij ] that respects the structure of G in the sense that
pij > 0 only if i = j or (i, j) ∈ E. DDA proceeds as
follows. Each node maintains a primal variable xi(t) and a
dual variable zi(t). At iteration t, node i performs two steps:

1. Communicate: Send zi(t) to and receive zj(t) from
neighbors.

2. Compute: Update the primal and dual variables by
setting

zi(t+ 1) =

n∑
j=1

pijzj(t)− gi(t) (3)

xi(t+ 1) =Πψ
X (zi(t+ 1), a(t)) (4)

where gi(t) ∈ ∂fi(xi(t)) and the projection operator Πψ
X (·, ·)

is defined as

Πψ
X (z, a) = argmin

x∈X
{〈z, x〉+

1

a
ψ(x)}. (5)

In [3] it is shown that, for the updates above, the local
running average x̂i(T ) = 1

T

∑T
t=1 xi(t) converges to the

optimum at a rate O( log(
√
nT )√
T

). Specifically, keeping track
of the average cumulative gradient

z̄(t) =
1

n

n∑
i=1

zi(t), (6)

the following basic theorem is proven.
Theorem 1 ( [3]): Let the sequences {xi(t)}∞t=0 and

{zi(t)}∞t=0 be generated by the updates (3),(4) using a non-
increasing step size sequence {a(t)}∞t=0. For any x∗ ∈ X
and for every node i ∈ V we have:

f(x̂i(T ))− f(x∗) ≤ 1

Ta(T )
ψ(x∗) +

L2

2T
a(t− 1)

+
2L

nT

T∑
t=1

n∑
j=1

a(t) ‖z̄(t)− zj(t)‖∗

+
L

T

T∑
t=1

a(t) ‖z̄(t)− zi(t)‖∗ . (7)

The first two terms in (7) are common in subgradient
optimization algorithms while the last two terms capture
the network error due to the discrepancy between the local



gradients and the true average gradient. By bounding the
network error ‖z̄(t)− zi(t)‖∗, we can derive convergence
rates that depend on the network characteristics.

DDA interleaves a local gradient step with a consensus
step in (3), and this involves communication. It should be
clear that the underlying communication network has an
effect on the performance of the optimization algorithm.
From a theoretical standpoint, the main factor is node
connectivity for quick information diffusion. From a more
practical view, possible communication delays and also the
actual communication exchange mechanism (e.g., blocking
vs non-blocking communication) play an important role.
Notice that, as described above, DDA is a synchronous
algorithm; i.e., all nodes exchange information and then
perform the updates (4) and (4) simultaneously. As we will
see below, this may be difficult or even undesirable to enforce
in an actual implementation.

IV. DISTRIBUTED CONSENSUS ALGORITHMS

Recall equation (3) of the DDA algorithm. If we disregard
for the moment the addition of the latest local gradient gi(t),
we see that a consensus step involving communication with
other nodes is involved. Each node (i) receives the variables
zj(t) from its neighbors and forms a convex combination.
Intuitively, for the network to agree on the solution with
minimizes f(x), the nodes need to agree on the direction to
the optimal value which is locally captured by each variable
zi. This notion of agreement, or consensus in a network is
described as follows.

Assume each node i in a network G holds a value zi. We
stack the initial values in a vector z(0) = (z1, . . . , zn)T . The
general consensus problem asks for a distributed algorithm
such that the nodes of the network iteratively exchange mes-
sages with their neighbours in order to reach consensus; i.e.,
z(t)→ c1 as t→∞. In other words, we want the nodes to
agree on a common value c using only local communication
with neighboring nodes. The consensus literature is quite
voluminous but most of the proposed schemes revolve around
a linear iteration scheme of the form

z(t) = P (t)z(t− 1). (8)

It follows from Perron-Frobenius theory that if we choose a
time-homogeneous row stochastic matrix P (t) ≡ P ∈ Rn×n
such that P1 = 1 and pij > 0 if (j, i) ∈ E, consensus
is achieved almost surely on a value c that is a convex
combination of the initial values z(0).

In the following subsections, we analyze the consensus
iteration from a practical standpoint. We first distinguish
certain properties that a theoretical scheme should posses
to be applicable. This restricts the choices of permissible
P matrices and, in turn, limits the available theoretical tools
that can be applied to analyze consensus. The last part of this
section discusses theoretical results that may still be useful.

A. Average Consensus

A very popular special case is the average consensus
problem where the limit value must be the average of the

initial values; i.e., c = 1
n

∑n
i=1 zi(0). As it turns out, for

the purposes of consensus-based distributed optimization,
an averaging protocol is necessary in order not to bias the
objective function being optimized. The importance of aver-
aging has been mentioned in previous work on distributed
optimization (e.g., [4], [21]). To see the reason, consider
equation (3). Unwrapping the recursion and assuming zero
initial conditions for simplicity, we have

zi(t) = −
t−1∑
s=1

n∑
j=1

[
P t−s−1

]
ij
gj(s)− gi(t). (9)

As t grows and P t−s−1 converges to its limit 1 · πT
where π is the stationary distribution of P , the gradients
of different nodes are weighted based on the stationary
distribution π, and this weighting is unequal unless π is the
uniform distribution. The implication for consensus-based
optimization is that instead of minimizing the true objective
(1) a naı̈ve consensus-based approach will minimize the
biased objective f̃(x) =

∑n
i=1 πifi(x).

To avoid this problem, most previous work has insisted
of sticking to doubly stochastic protocols P , i.e., protocols
where 1TP = 1T . Such protocols are, by definition, aver-
aging protocols. As we will explain below however, doubly
stochastic protocols are undesirable to use in practice because
they require synchronization and coordination. Furthermore,
it turns out that averaging can be achieved without them.
For example, [21] shows that a simple reweighing of the
objective removes the bias and achieves averaging for any
row-stochastic matrix P with stationary distribution π (see
also the scaled agreement algorithm in [22]):

f(x) =
1

n

n∑
i=1

fi(x) =

n∑
i=1

πi

[
fi(x)

πin

]
=

n∑
i=1

πihi(x).

(10)

Note that an implementation of this approach requires that
both π and n are known. Moreover, it requires that P
be time-homogeneous, which is not reasonable when the
network induces time-varying delays.

A different solution is proposed in [12], [23] by employing
an algorithm called Push-Sum [19]. This approach makes use
of a column-stochastic matrix P that is compatible with the
structure of network as embodied in G. In addition to the
parameters zi(t), each node also maintains a weight variable
wi(t) which is initialized to zi(0) = 1. Then, by repeating
iteration (8) together with an iteration w(t+ 1) = Pw(t), it
can be shown that zi(t)

wi(t)
approaches the average as t→∞.

This is a very elegant solution, since the nodes do not need
to know the stationary distribution of P (they are implicitly
computing it through the iteration on the weights) or the
network size. Furthermore, Push-Sum works even when the
weights P (t) vary with time [20].

B. One-Directional Communication

There exist consensus algorithms with bi-directional com-
munication between nodes. For example, a popular algorithm
for distributed averaging is Randomized Gossip [15]. This is



a very simple asynchronous protocol where at each iteration
a pair of neighbours exchange values and set their new
values to the pairwise average of their previous values. In the
context of distributed optimization, this protocol is suggested
in [3] as a way to reduce the communication overhead
when nodes have a large number of neighbours. However,
in practice, the bi-directional communication model can be
problematic as it creates deadlocks. Consider, for example,
three nodes i, j, and k connected in a clique. Without
coordination, there is no way of enforcing a rule that only
two neighbours activate in one time instant and that no other
node initiates an averaging update until the one currently
in progress is completed. Consequently, suppose i attempts
to exchange its value with j. While i blocks, expecting j’s
response, node j attempts to exchange values with k. While
j is blocked waiting, k, being oblivious to the situation,
independently initiates an exchange with i. Now there is a
deadlock since i cannot proceed without j’s value, j cannot
proceed without k’s value, and k is waiting for i. Researchers
have previously argued that (theoretically) this will not
happen if the time it takes to transmit information is much
shorter than the frequency of communication. However, in
distributed optimization problems, where the amount of data
transmitted is non-trivial, this scenario is not unlikely and
we have certainly encountered it in our experiments. One
fix may be to artificially slow down the rate at which nodes
communicate (e.g., by sleeping for a random time before
transmitting), but this is undesirable since the ultimate goal is
to solve the optimization as quickly as possible. In addition,
the added complexity of coordinating two nodes that ex-
change information via blocking receive operations or idling
in non-blocking communication is usually undesirable. For
these reasons, we argue that a consensus protocol must rely
on one-directional communication where nodes only transmit
information and then proceed with their local computations
without expecting a response.

C. Semantics of Different Protocols

With the above considerations in mind, we turn our
attention to protocols described by a consensus matrix P (t).
In discrete time, at each iteration the state vector of the
node values evolves as (8). Depending on the structure and
behavior of P (t), such protocols can encode the semantics
of one- or two-directional communication and they can drive
z(t) to average consensus.

An important distinction is made depending on whether or
not P (t) varies with time. The case where P (t) = P is time-
homogenous implies that the algorithm is synchronous; i.e.,
where each node communicates with all of its neighbors in
every iteration. As discussed above, synchronous protocols
require that nodes block until they have received one message
from each neighbor, and this is undesirable since then the
entire network moves at the pace of the slowest node. Al-
lowing the consensus matrix to be time-dependent provides
more freedom to model time varying communication delays
or to encode asynchronous communication where a node may
choose whether or not to transmit something to each neighbor

at each round.
To achieve average consensus with one-directional com-

munication, previous work has insisted on using doubly
stochastic consensus protocols where each row and column
of P (t) sums to 1. See for example [13]. However, in
asynchronous and time-varying protocols, agreeing on time-
varying weights that preserve double stochasticity requires
additional coordination, effectively foregoing asynchronous
operations. In addition, to model in the presence of commu-
nication delays, double stochasticity can be lost [23]–[25].
Finally, there might be cases where a directed network does
not admit a doubly stochastic consensus matrix [26]. For
these reasons we focus on the case where P (t) is stochastic
but not doubly stochastic.

With stochastic protocols, the nodes become disentangled
and more autonomous. When P (t) is row stochastic, each
node controls a row of the consensus matrix (each node
applies the weights in its row of P (t) to the messages it
receives). At each iteration, the new value at a node is a
weighted average of the incoming values. The weights are
encoded in the corresponding row of P (t) and need to sum
to 1. If on the other hand we use a column stochastic matrix
P (t), the semantics are different as each node controls a
column of the matrix; each node sends a portion of its current
value to each neighbour so that the portion fractions sum to
one (as indicated by the stochastic columns).The receiver
simply sums up the incoming messages which is convenient
when we do not know how many messages will be received
at each iteration (e.g., due to random communication delays).

D. Summary of Theoretical Results

We conclude this section by summarizing some important
results and properties of (8) for the two cases of time
invariant or varying consensus matrices P (t). Choosing a
row or column stochastic protocol has implications on what
we can say about the convergence properties of (8).

As mentioned above, time-homogeneous consensus proto-
cols, where P (t) ≡ P for all t, must be implemented using
synchronous, blocking communications so that each node
receives a message from all of its neighbors before com-
puting the update for each iteration. Such protocols admit
fairly straightforward convergence analysis. The underlying
graph G is connected by assumption. In this case, since the
entries of P respect the connectivity of G (i.e., Pi,j > 0 if
and only if (i, j) ∈ E), then P is an irreducible matrix. It
follows that if G is symmetric and P is doubly stochastic,
then it corresponds to the transition matrix of a reversible
Markov chain, and a number of standard results apply. In
particular, P converges to a unique stationary distribution π
at a rate O(|λ2(P )|t), where λ2(P ) is the second largest
eigenvalue of P (see, e.g., Theorem 4.2 in [27]). More
generally, if P is not reversible (e.g., if G is not symmetric)
then the theory for reversible chains can still be applied
to obtain bounds by first reversibilizing the chain (akin to
a symmetrizing transformation); see, e.g., [28]. In general,
the reversibilization transforms require that P be strongly
aperiodic (all diagonal elements satisfy Pi,i ≥ 1/2). When



this is not true, it is common to study a lazy version of the
corresponding chain, 1

2 (I +P ). We remark that more recent
results for characterizing the mixing times of non-reversible
Markov chains with zero minimum holding probability [29]
may lead to tighter results and this is an interesting direction
for future work.

It is generally more difficult to obtain tight bounds for
convergence rates of products of time-varying stochastic
matrices. If the matrices P (t) are drawn i.i.d. according
to a known distribution, then the bounds mentioned above
for time-homogeneous protocols can be applied to the ex-
pected update matrix E[P (t)]. When all matrices P (t) are
row stochastic, the process (8) gives rise to a backward
product, x(t) = P (t)P (t − 1) · · ·P (1)x(0)

def
= T (1, t)x(0).

(The corresponding quantity is a forward product when
the matrices are column stochastic.) Convergence properties
of backward products of stochastic matrices are typically
obtained by establishing weak ergodicity [27]; i.e., that
[T (r, t)]i,s − [T (r, t)]j,s → 0 as t → ∞ for all i, j, s,
and r, where [T ]i,j denotes the entry of the matrix T in
row i and column j. In this setting, rates of convergence
are traditionally obtained using coefficients of ergodicity
and related scrambling properties of the matrix process
{P (t)} [17], [27], [30]. More recently, the PhD thesis
of Touri [31] provides rates of convergence for backward
products using a suitable Lyapunov function and the infinite
flow property which ensures that the graph formed by putting
edges between nodes that exchange information infinitely
often is connected. In general these rates of convergence are
pessimistic, involving a worst-case analysis. For example,
when packets can be delayed, the bounds depend on the
largest possible delay.

V. PUSH-SUM DISTRIBUTED DUAL AVERAGING

Based on the discussion in the previous section, Dis-
tributed Dual Averaging is not a practical algorithm. It is
a synchronous algorithm that relies on a doubly stochastic
consensus protocol P . DDA can however be used as a base
for constructing a new distributed optimization algorithm
that does not have those shortcomings. Push-Sum Distributed
Dual Averaging (PS-DDA) is presented and analyzed in [12].
The fundamental difference is in the consensus algorithm
used which, as the name, suggests is the Push Sum algorithm.

A. Asynchronous Distributed Optimization

The algorithm introduced in [12] is a variation on dis-
tributed dual averaging to make it suitable for implementa-
tion in a cluster. In particular, it uses asynchronous updates,
one-directional push-only communications, and it does not
require that the consensus matrix P be doubly stochastic;
rather P should be column stochastic. PS-DDA works similar
to distributed dual averaging. In addition to the primal and
dual variables xi(t) and zi(t), each node i also maintains a
weight wi(t). At each iteration, node i transmits messages
with pjiwi(t) and pjizi(t) to each neighbor j. Then it

computes updates

wi(t+ 1) =

n∑
j=1

pijwj(t) (11)

zi(t+ 1) =

n∑
j=1

pijzj(t)− gi(t) (12)

xi(t+ 1) =Πψ
X

(
zi(t+ 1)

wi(t+ 1)
, a(t)

)
. (13)

The weight variable wi(t) automatically rescales the dual
variables to account for the case where the stationary dis-
tribution of P is non-uniform. In this way, PS-DDA more
naturally accommodates the challenges posed by a real
implementation. However, as we discuss next, there still exist
implementation subtleties that need to be addressed.

B. Implementation Remarks

Here we summarize a number of issues that arise and must
be addressed in a real implementation. We assume that each
node has the ability to send and receive messages and also
to poll its buffer for incoming messages that have not been
received yet. In our implementation, discussed in Section VI
below, these features are provided by the message passing
interface (MPI) library.

1) One directional communication: PS-DDA uses one-
directional communications so that each node sends informa-
tion without expecting replies before it updates. Specifically,
node i rescales wi(t) and zi(t) by pji and send the rescaled
values to its neighbor j. The receiver forms the sum of the
receives w and z messages.

2) Numerical instability: In asynchronous mode, each
node independently decides when to send a message to
its neighbours. Moreover, a message w from node i to
node j is pjiwi(t). If, for some reason, node i finishes
its iterations faster than its neighbours (in which case its
incoming message buffer will be empty most of the time
and so it will not update (11)), it is possible that wi(t) will
become very small due to repeated rescaling by pji < 1.
In practice after a few thousand iterations we could hit the
numerical precision limits. To prevent this from happening,
it is sufficient to add a condition that prevents node i from
transmitting if wi(t) is too small. We use a threshold of
10−40 in our experiments and find that this value suffices to
avoid any numerical instabilities.

3) Step-size de-synchronization: By allowing the consen-
sus matrix P to be time-varying the algorithm becomes
asynchronous. Note, however, that the description (11)-(13)
is in terms of iterations and the step size at each node is set
as a(t) = O

(
1√
t

)
. If each node operates at its own pace,

maintaining a local iteration counter, the step sizes can end
up being very different at different nodes. This situation can
be problematic in practice because the incoming messages
will be discounted by step sizes that differ by orders of
magnitude at different nodes just because the nodes are at
different stages of the computation. To prevent this from
happening, we update the step size based on actual wall clock



time instead of iterations. Each node maintains a secondary
iteration counter τ which is incremented by 1 every 100ms.
This way if a node experiences a delay and finishes an iter-
ation in, e.g., 1 second, then it will set τ new = τ old + 10 and
a(τ new) = 1√

τ new . In a somewhat controlled environment like
a cluster, where nodes begin the computation at effectively
the same time, this solution suffices. A theoretical analysis
of the effect of de-synchronized step-sizes is an important
topic for future work.

4) Incoming message handler: Clusters are shared re-
sources, and it is not uncommon for one node to be si-
multaneously assigned to process multiple tasks for different
users. Moreover, network throughput may vary significantly
depending on other background traffic. Both of those factors
can result in some nodes transmitting more frequently than
others. Consequently, when the (slow) receiver polls its
incoming message buffer it may find multiple messages from
the same neighbor. Those messages would have been sent at
different moments in time, but they arrive and are processed
during the same update due to, e.g., communication delays.
It is an interesting question how to handle such incoming
information. At the one extreme, a node can wait until
it receives at least one message per neighbour. We have
found that this approach does not work well in practice
and goes against the desired asynchronous operation. At
the other extreme, a node may empty its incoming buffer
and sum all the incoming messages at the beginning of
each iteration. Then the sums in (11) and (12) are over
all messages in the buffer, not over all nodes. The danger
in this case is to run into a producer-consumer scenario
where one node continuously sends new information while
another node continuously receives it. In this scenario, the
receiver may never exit the receive mode to continue with
local computations. Although this could happen in principle,
in practice we did not observe this behaviour. It would
be interesting to explore if assigning less weight to older
messages can speedup convergence.

5) Communicator saturation: Depending on the CPU and
the problem being solved, it is possible that the local gradient
and projection computations will be very quick, and a node
may poll its communicator (at the lowest level a TCP socket)
very frequently for new messages. This is not uncommon in
practice and can result in the system stalling simply because
the network cannot be polled too frequently. This issue can
also be easily prevented by making sure that a minimal
amount of time always lapses between polls. A value of 10ms
was found be sufficient in our implementation.

VI. EXPERIMENTAL EVALUATION

A. Benchmark Problem and Setup

To complement the discussion above, report experiments
using implementations of DDA and PS-DDA on a cluster of
15 nodes. Each node has a 3.2 GHz Pentium 4HT processor
and 1 GB of memory, and they are physically connected
in a star topology through an Ethernet switch that allows
for roughly 11 MB/sec throughput per node. Our implemen-
tation is in C++ using the send and receive functions of

OpenMPI v1.4.4 for communication. The Armadillo v2.3.91
library, linked to LAPACK and BLAS, is used for efficient
numerical computations.

As a benchmark problem we seek to minimize a sum of
quadratics with

fi(x) =

M∑
j=1

(x− cj|i)T (x− cj|i) (14)

where x ∈ R5,000, M = 500 and cj|i is the centre of the j-th
quadratic of node i. The cj|i are designed so that the minima
of the components fi(x) at each node are very different, so
that coordination is essential in order to obtain an accurate
optimizer of F (x).

B. There Exist No Doubly Stochastic Matrices in Practice

The first experiment aims to illustrate that it is not possible
to guarantee that the updates P (t) are doubly stochastic
due to network delays and nodes that experience different
amounts of communication overhead and workload, even if
the consensus protocol is initially designed to be doubly
stochastic. Consequently, the standard consensus algorithm
is not an averaging algorithm anymore and convergence to
the right solution is lost.

To illustrate the point, we solve problem (14) on a 15-node
with neighborhood structure defined through P so that node
1 has a much higher degree than all other nodes, as shown
in Figure 1. We expect that node 1 will spend more time
communicating than the others, and its iterations will take
more time to complete. We select P = I− D−A

dmax+1 where, D
is a diagonal matrix containing the node degrees (excluding
self loops), A is the symmetric graph adjacency matrix and
dmax is the maximum node degree. It can be verified that
P is doubly stochastic. Figure 2 shows the evolution of
the objective value F (xi(t)) at each node when we solve
the problem using DDA (i.e., with asynchronous consensus
updates that are not doubly stochastic, not asynchronous
Push-Sum). Note that if the true consensus matrix used at
each iteration was indeed the doubly stochastic matrix P ,
then all nodes would converge to the average consensus
solution. However, this is clearly not the case in practice. As
the figure shows, node 1 being slower than the rest, cannot
coordinate with the team. The resulting consensus protocol
is no longer averaging and we have disagreement. On the
other hand, if we make use of the asynchronous Push-Sum
weights and run PS-DDA, then as Figure 3 shows consensus
does work and the objective is minimized as desired.

C. Comparison with AllToAll

In the next experiment, we compare the performance of
consensus-based PS-DDA with a solution that uses MPI’s
specialized All2All communication capabilities. The latter is
available in high-performance computing clusters supporting
MPI and allows for all the nodes to exchange information
with each other and obtain the true average z at each
iteration. All2All is designed as an efficient primitive to
allow all nodes in the network to exchange information in
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Fig. 1. The unbalanced communication topology used in the first set of
experiments. In this topology, node 1 has many more neighbors than the
others, and consequently, it spends more time communicating than other
nodes. Edges connected to node 1 have a heavier weight than other edges.
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Fig. 2. Network of 15 nodes solving problem (14) on a graph where
node 1 has many more neighbours that the rest of the nodes. Because
of asynchronism and delays, the resulting updates do not correspond to
a doubly stochastic matrix, and the nodes do not reach consensus on the
average. Consequently, node 1 (solid black line) does not converge to right
solution and the algorithm does not solve the problem.

20 40 60 80 100 1200.95

1

1.05

1.1x 105

Time (sec)

1 n

∑
n i=

1
F
(w

i(
t)
)

 

 

PS DDA
DDA

Fig. 3. (Blue dashed) The average performance of the team produced
by running DDA and ignoring the weights (average of plots inFigure 2).
(Red Line) When the weights w are not kept to 1 and true asynchronous
PS-DDA is running, the network converges to the right solution despite the
asymmetry of communication overhead of its nodes.
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Fig. 4. (Red,Blue,Green solid) Average progress towards the solution of
problem (14) with All2All, PS-DDA blocking and PS-DDA asynchronous
algorithms when all nodes are running at full speed. (Red,Blue,Green
dashed) Average progress when one node is artificially slowed down to
have a 0.5 second delay at each local iteration. In this case the synchronous
algorithms are running at the speed of the slow node and their curves are
overlapping. The asynchronous algorithms is significantly less affected by
the slow node.

one function call. However, the call is blocking. Hence,
using All2All implicitly requires a synchronous approach
and all nodes must call All2All simultaneously. This solu-
tion resembles algorithms baed on the popular Map-Reduce
approach that have been developed recently for distributed
optimization [32], [33]. We compare this solution with our
PS-DDA implementation operating in blocking and asyn-
chronous mode, executing over a communication G corre-
sponding to the complete graph. In blocking mode, at each
iteration each node blocks in a receive call until one message
from each neighbour arrives. This turns PS-DDA into a
synchronous algorithm and each node computes the exact
average z(t) at every iteration.

Figure 4 shows two sets of experiments. Initially, we
solve problem (14) with all three algorithms in a delay-free
environment. As we see from the solid lines at the bottom
of the figure, the All2All implementation is slightly faster
than the blocking PS-DDA which again is just slightly faster
than the asynchronous PS-DDA implementation. Then, to
illustrate the benefits of asynchronism, we artificially slow
down one of the nodes by adding a 0.5 second pause after
each local gradient computation. In practice, a node could
be slowed down because it is spending cycles on unrelated
tasks, it could have more data to process, or it could simply
have a less powerful CPU. It should come to no surprise that
the synchronous algorithms (purple and red dashed lines) are
both severely impacted as their overall computation runs at
the speed of the slowest node. However, the asynchronous
algorithm (green dashed line) is not as affected. The fast
nodes quickly converge to the solution and the slow node is
pulled to the right solution.

VII. CONCLUDING REMARKS AND FUTURE WORK

Consensus-based distributed optimization algorithms are
an attractive alternative for solving large-scale problems over
peer-to-peer networks. The advantages of such an approach



are increased robustness to node failures and scalability. The
main difficulty comes from the lack of sophisticated com-
munication infrastructure, and performance heavily depends
on the network properties.

We identify averaging, one directional communication,
and asynchronism as the three key ingredients that a consen-
sus algorithm should contain for a reliable and efficient prac-
tical implementation. We note that the benefit of an algorithm
that accommodates real network constraints comes at the
price of more difficult mathematical analysis. In the second
part of the paper, we discuss additional implementation
issues we have observed/experienced, including numerical
instabilities and de-synchronizing the step sizes of different
nodes. For these issues we explain the root cause and side
effects as well as ways to prevent them from happening.
In the last part, we present two simulations on a real cluster
that illustrate how the key ingredients mentioned above yield
practical algorithms that work correctly even in adverse
circumstances where the communication overhead of the
nodes is not equally distributed or where nodes experience
different and unbalanced workloads.

In the future, we plan to conduct a more thorough theo-
retical investigation of the effect of de-synchronizing step
sizes, as well as thresholding the Push Sum weights to
avoid numerical instabilities. We also intend to scale our
experiments to a significantly larger cluster with many more
than the modes 15 nodes used in the experiments reported
here.
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