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ABSTRACT associated with the edde, j} and NV is the total number of

In this paper, we develop algorithms for distributed com nodes. FurthermoreV; denotes the set of nodes that have
'S Paper, w velop aigor ISHIDY pu 1 direct (bidirectional) communication link with nodeThe

tation of averages of the node data over networks with band: , . . . .
width/power constraints or large volumes of data. Distiiou state at _each node_ln the |terat|qn consists of a single E.Em n
averaging algorithms fail to achieve consensus when detep.-er’ V\.'h'Ch overwrites the previous value. Th_e algorithm is
ministic uniform quantization is adopted. We propose a disyme—lndependent,e., does not _depend anand is meant to
tributed algorithm in which the nodes utilize probabitistly ~ cOMPute the average asymptotically. ,
guantized information to communicate with each other. The One major _shqrtcomlng of the majority of_the algor|thms
algorithm we develop is a dynamical system that generate%mposed for distributed average consensus |s_the _relraxmce
sequences achieving a consensus, which is one of the que{n-e exchange of f_;malog data _[4_6]' a clear V|0_Iat|_0n of the
tization values. In addition, we show that the expectedazalu c0MMon assumption of bandwidth and communication power
of the consensus is equal to the average of the original seffonstraints. There has been some limited investigatioowf ¢
sor data. We report the results of simulations conducted tgeNsus under quantized communication. Recently, Yildiz an

evaluate the behavior and the effectiveness of the proposéfagl'one' in .[7],_explored the impact of qqantlzatlon BOIS
algorithm in various scenarios. through modification of the consensus algorithm proposed by

Xaio and Boyd [6]. The algorithm in [6] addresses noisy
Index Terms— Distributed algorithms, average consen-communication links, modeling the case where each nodes
sus, sensor networks receives noise—corrupted versions of the values at itshneig
1. INTRODUCTION bors, the noise being additive and zero—mean. Yildiz and
Scaglione note that the noise component can be considered as
Many applications envisioned for sensor networks condist othe quantization noise and they develop a computationally i
low—power and low—cost nodes. Foreseen applications sueBnsive algorithm for this case [7]. They have shown utiligi
as data fusion and distributed coordination require disted  simulation studies for smalV that, if the increasing correla-
function computation/parameter estimation under banttwid tion among the node states is taken into account, the varianc
and power constraints. Other applications such as camera nef the quantization noise diminishes and nodes converge to a
works and distributed tracking demands communication ogonsensus.
large volumes of data. When the power and bandwidth con-  Kashyapet. alexamine quantization effects from a differ-
straints, or large volume data sets are considered, communint point of view, restricting their attention to the trarission
cation with unquantized values is impractical. of integer values, and introducing the definition of “quaet

Distributed average consensus, in ad hoc networks, is abnsensus”, which is achieved by a vectoif it belongs to
important issue in distributed agreement and synchrapizat the setS defined as:

problems [1] and is also a central topic for load balancing

(with divisible tasks) in parallel computers [2]. More raty, N N

it has also found applications in distributed coordinatidn S§=ax:{mifis, € {L, L+1}, sz =T )
mobile autonomous agents [3] and distributed data fusion in =1

sensor networks [4]. In this paper, we focus on a particuyith 7 and . being the sum of initial node values and an in-
lar clqss of iterative glgorlthms for average consensudehyi teger, respectively [8]. They show that their algorithmgen
used in the applications cited above. Each node updates iy me constraints and with restricted communications sesem
state by adding a weighted sum of the values at local nodeg| converge to a quantized consensus. However, the quan-
€., tized consensus is clearly not a strict conseniseisall nodes

zi(t +1) = Wazi(t) + Z Wija;(t) (1) do not have the same value. Furthermore, there is no stop-

JEN; ping criterion to determine if the algorithm has achieved a

fori =1,2,...,N, andt > 0 [4,5]. HereWV;; is a weight quantized consensus. In addition, since the algorithmiresju



the use of a single link per iteration, the convergence ig ver  In the following, we present a brief review of the quanti-
slow [8]. Of note is that both of the consensus algorithmsation scheme adopted in this paper. Suppose that the scalar
discussed above utilize standard deterministic uniforangu valuex; € R is bounded to a finite interv@-U, U]. Further-
tization to quantize the data. more, suppose that we wish to obtain a quantized message
In this paper, we propose a simple distributed and iterag; with length! bits, wherel is application dependent. We
tive scheme to compute the average at each sensor node ulierefore have, = 2! quantization points given by the set
lizing only quantized information communication. We adoptT = {7, 72, ..., 71 }. The points are uniformly spaced such
the probabilistic quantization (PQ) scheme to quantizéithe thatA = 7,4, — 7; for j € {1,2,...,L — 1}. It follows
formation before transmitting to the neighboring sensB}s [ thatA = 2U/(2! — 1). Now suppose; € [r;, 7;4+1) and let
PQ has been shown to be very effective in decentralized eg; £ Q(z;) whereQ(-) denotes the PQ operation. Thepis
timation since the quantized state is equal to the analdg staquantized in a probabilistic manner:
in expectation [9]. This makes PQ suitable for average-base
algorithms. In the scheme considered here, each node ex- Yr{a =71} =7, andPr{¢; =7} =1-r (3)
changes quantized state information with its neighbors in ah

information across the network by updating each node’s dateemma 1. [9] Let ¢; be anl-bit quantization ok, € [-U, U].

with a weighted average of its neighbors’ quantized valltes. The messagg is an unbiased representationf, i.e.,

is shown here that the distributed average computatioiz-util 2

ing probabilistic consensus indeed achieves a consensgus an E{q;} = z;, and var(g;) < z 5

the consensus is one of the quantization levels. Furthemor 2 -1

the expected value of the achieved consensus is equal to tWF]erevar(-) denotes the variance of its argument.

desired valuei,e., the average of the analog measurements.
The remainder of this paper is organized as follows. Sec-

tion 2 introduces the distributed average consensus proble

and thg PQ. SChe”.‘e- The prqposed algorlthm, along with ' the following, we propose a quantized distributed averag
prop_ertmg, IS de;aﬂed n Section 3. Numencgl exam_ples Alconsensus algorithm and incorporate PQ into the consensus
provided in Section 4. Finally, we conclude with Section 5. framework for networks. Furthermore, we analyze the effect
of PQ on the consensus algorithm.
2. PROBLEM FORMULATION At t = 0 (after all sensors have taken the measurement),

) ] ... each node initializes its state ag(0) = y;, i.e, x(0) = y
We consider a set of nodes of a network, each with an initiayhere x(0) denotes the initial states at the nodes. It then
real valued scalay; € [-U, U], wherei = 1,2,_. .., N. We_ quantizes its state to generatgd) = O(x;(0)). At each
assume strongly connected network topologies, according ¥ iowing step, each node updates its state with a linear-com

which, each node can establish bidirectional noise—fré® co pination of its own quantized state and the quantized states
munication with a subset of the nodes in the network. INxe its neighbors

node topology is represented by tNex N matrix® = [®;;],

(4)

3. DISTRIBUTED CONSENSUS USING PQ

where fori # j, ®;; =1 if nodesi andj directly comml_mi? it +1) = Wiqi(t) + Z Wijq; (1) (5)
cate, andP;; = 0, otherwise. We assume that transmissions JEN:

are always successful and that the topology is fixed. More-

over, we defineV; £ {j € {1,2,..., N} : &y, £ 0}. fori = 1,2,..., N, whereg;(t) = Q(x;(t)), andt denotes

Let 1 denote the vector of ones. Our goal is to develogh® time step. Also}V;; is the weight onz;(t) at nodei.
a distributed iterative algorithm that computes at evergeno Moreover, settingV;; = 0 wheneve;; = 0, the distributed
in the network, the valug 2 (N)~ 11Ty utilizing quantized iterative process reduces to the following recursion
state information communication. We hence aim to design a x(t +1) = Wq(t) (6)
system such that the states at all nodes converge to a consen-
sus and the statistical expectation of the consensus a&thiev whereq(t) denotes the quantized state vector. In the sequel,
in the limit, is the average of the initial states. we assume thaiV, the weight matrix, satisfies the conditions
Remark 1. When the observations folloy = 6 + n; where r_equired for asymptotic average consensus without quantiz
i = 1,2,....N and @ is the scalar to be estimated, and tion [6]:
{n;}N, are indep(_anden_t and _identically distr_ibuted_(i.i._d.) W1=1,1"W=1T )\ =1, andx| < 1 @)
zero—mean Gaussian with varlaneé,Athe maximum likeli-
hood estimate is given by the averager- (N)~'1Ty with  where{);}Y; denote the eigenvalues W in non—increasing
the associated mean square errgt/N. order. Weight matrices satisfying the above conditions are



easy to find if the underlying graph is connected and nonx(t + 1) = Wq(t) € V1 € Ay andPr{q(t + 1) € Sp} > 0.
bipartite,e.g, Maximum—degree and Metropolis weights [6]. Similarly, the set
The following theorem considers the convergence of the i=k—1

probabilistically quantized distributed average comparta Vi C U A (13)
=0
Theorem 1. The distributed iterative consensus utilizing PQ

achieves a consensus, almost surely, given by The maximum distanceq — q| for any pointq € Sy is

kv/N —1/+v/N. This implies that

lim x(t) = c1 (8)

t—o00 i=k—1
wherec € 7. x(t+1)=Wqt)eVie (J A (14)

1=0

Proof. Without loss of generality, we focus on integer quan- ) _
tization in the rangél, m]. DefineM as the discrete Markov  There is thus someé < k and someq < S; such that
chain with initial stateq(0) and transition matrix defined by Pr{Q(x(t + 1)) = q} > 0. This argument implies that

the combination of the deterministic transformatieft +  for any starting state(0) such thatg(0) < Sy for somek,
1) = Wq(t) and the probabilistic quantizey(t + 1) ~  there exists a sequence of transitions with non-zero pibbab

Pr{q(t + 1)|x(t + 1)}. ity whose application results in absorption. O

Let Sy be the set of quantization points that can be repre-
sented in the form1 for some integeg and denote by, the
set of quantization points with minimum Manhattan distanc
k from Sy. Moreover, letC(q) be the open hypercube cen-
tered aig and defined aéy —1,¢1 +1) x (g2 —1.g2+1) X Theorem 2. The expectation of the limiting random vector is
- X (qn —1,qn + 1). Hereg, denotes thé—th coefficient  4iyen py
of g. Note that any point i€(q) has a non-zero probability

The following theorem discusses the expectation of the
éimiting random vectorj.e., the expected value of(t) ast
tends to infinity.

of being quantized tq. Let E {thm x(t)} — (N)"'117x(0). (15)
A = C(q). 9)
qgk Proof. Note that|[x(t)|| < VNU, fort > 0, and,{z;(t) :

. i=1,2,..., N} are bounded for all. Moreover, from The-
The consensus operator has the important property th@tem 1, we know that the random vector sequen@ con-
IWa — piwq| < |q—pql for g —pq| > 0, wherepq denotes  yerges in the limitj.e., lim;_.oc x(t) = c1 for somec € .

the projection ofq onto thel-vector. MoreovercW1 = Thys, py dominated convergence theorem [10], we have
cl. The latter property implies thajf € Sy is an absorbing

state, sinced(x(t + 1)) = Q(Wa(1)) = Q(a(t)) = a(1). £ { lim x(t)} = Jim E{x(0)}. 16)
The former property implies that there are no other absgrbin t—o0 t—o0

states, sinc&(t+1) cannot equad(t) (it must be closer to the
1-vector). This implies, from the properties of the quantize
Q, that there is a non-zero probability thgit + 1) # q(t).

In the following, we derivdim;_,., E{x(t)} and utilize the
above relationship to arrive at the desired result.
Note that the quantization noise;, can be viewed as a

In.order to prove tha_t tis an absorbing Markov chgun, It Fernoulli random variable taking valuesrat\ and(r; —1)A
remains to show that it is possible to reach an absorbing stat . Lo ;
with probabilities1 — r;, andr;, respectively. In terms of

from any other state. We prove this by induction, demonstratquantization noise (), q(t) is written as

ing first that
Pr{q(t +1) € Sola(t) € Si} > 0 (10) q(t) =x(t) +v(?). (7
and subsequently that The distributed iterative process reduces to the followig
_ cursion
et x(t+1) = Wx(t) + Wv(t). (18)

Pr{q(t+1)e |J Sila(t) €S} >0 (1)
i—0 Repeatedly utilizing the state recursion gives

Define the open séi;. as
Vk:{x:|x—ux|<k\/N—1/\/N}. (12)

To commence, observe thet C 4. The distanceéq — whereW! = W . W . ... W, t times. Taking the statistical
tel = VN —1/V/N for q € S;. Hence, ifq(t) € S;,  expectation ok(t) ast — oo and noting that the only random

x(t) = Wix(0) + iwt*jv(j) (19)
j=0



variables arev(j) for j = 0,1,...,t — 1, yields

-1
lim E{x(1)} = lim W'x(0) + > W*IE{v(j)} (20) 28
. t 88
= tlirgow x(0) (21) 33
sinceE{v(j)} = 0forj = 0,1,...,¢t — 1; a corollary of
Lemma 1. Furthermore, noting that 2
Jim W' = (V)17 (22) g
— 00 %U
gives Eé;
lim B{x(t)} = (N)*117x(0). (23) & o[ ‘ ‘ ‘ ‘ ‘
t—o0 10 20 30 40 50 60 70

Iteration Number

Recalling (16) gives the desired result. ) o i ) ) )
Fig. 1. Individual node trajectories using (top:) uniform quan-

This result indicates that the statistical mean of the limit tization and (bottom:) probabilistic quantization.
ing random vector is indeed equal to the initial state averag
Furthermore, this theorem, combined with the previous one,
indicates that the consensus valués a discrete random vari-
able with support defined by whose expectation is equal to
the average of the initial states.

Variance

4. NUMERICAL EXAMPLES

This section details numerical examples evaluating the per 0.02f .
formance of the distributed average computation usingprob , o015~ T
abilistic quantization. Throughout the simulations wdizsi § 001 -.;." -

c -

>

the Metropolis weight matrix defined for a graph [6]. The R )
Metropolis weights on a graph are defined as follows: 0.005) :

0.5 0.6 0.9 1

(1 4 maX{ICZ-, ’Cj})_l, : 75 j, and (I)ij =1 Ave(r)éz;e oflnitialoéft}ates
Wij =< 1= ren, Wik, 1= Fig. 2. The variance of the consensus with respect to (a) the
0, otherwise quantization resolution and (b) the initial state average.

(24)

whereC; = |N;| with | - | denoting cardinality of its argu- trajectories are converging to the same point. In this dase,
ment. This method of choosing weights is adapted from theonsensus idm; .., x(t) = (0.9)1, which is in agreement
Metropolis algorithm in the literature of Markov chain Ment Wwith the theoretical results indicating that the consensias
Carlo. The Metropolis weights are very simple to computeone of the quantization levels. Also note that distributezt-a
and are well suited for distributed implementation. Furthe age computation utilizing deterministic uniform quantiaa
more, the nodes do not need any global knowledge of th@o closest quantization level) also converges, but, treene
communication graph or even the total number of nodes.  consensus due to the bias induced by uniform quantization.

We simulate a network withV' = 50 nodes randomly We next investigate the effect of the quantization resolu-
dispersed on the unit squal@ 1] x [0, 1], connecting two tion and the location of the initial state average on the enns
nodes by an edge if the distance between them is less thans variance. Figure 2 plots the variance of the consensus fo
the connectivity radius (a link exists between any two nodesgaryingA € [0.05,0.25] whenx(0) = 0.85 and for varying
that are at a range less th@ywhered is the connectivity ra- X(0) € [0.5, 1] whenA = 0.25. Note that each data point in
dius [5, 6]) whered = +/log(N)/N. The initial statesx(0)  the plots is an ensemble average of 100 trials. Also plotted i
are drawn i.i.d. from a Gaussian distribution with mean 0.83he curveA? /4. The variance, as expected, tends to increase
and unit variance. The initial states are then regularizetis asA increases and exhibits a harmonic behavior as the loca-
thatx(0) = 0.85. The quantization resolution is taken astion of the average changes. This is due to the effect induced
A = 0.1. Figure 1 depicts the trajectories taken by the dis-by the distance of the average to the quantization levels. Th
tributed consensus computation using PQ at each of the Gflots also suggest that? /4 is an upper bound for consensus
nodes in the network overlayed on one plot. The figure indivariance, which is a topic of current exploration.
cates that the algorithm does indeed achieve consensus as al Figure 3 shows the behavior of the average mean square
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5. CONCLUDING REMARKS

We have proposed a framework for distributed computation of
averages of the node data over networks with bandwidth/powe
constraints or large volumes of data. The proposed method
unites the distributed average consensus and the pratiabili
quantization algorithms. Theoretical and simulation Hssu
demonstrate that the proposed algorithm indeed achieves a
consensus. Furthermore, the consensus is a discrete random
variable whose support is the quantization values and expec
tation is equal to the average of the initial states. PraVvide
numerical examples shows the effectiveness of the proposed
algorithm under varying conditions.
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