
DISTRIBUTED AVERAGE CONSENSUS USING PROBABILISTIC QUANTI ZATION

Tuncer C. Aysal, Mark Coates, and Michael Rabbat

Department of Electrical and Computer Engineering, McGillUniversity, Montreal, QC
{tuncer.aysal,mark.coates,michael.rabbat}@mcgill.ca

ABSTRACT

In this paper, we develop algorithms for distributed compu-
tation of averages of the node data over networks with band-
width/power constraints or large volumes of data. Distributed
averaging algorithms fail to achieve consensus when deter-
ministic uniform quantization is adopted. We propose a dis-
tributed algorithm in which the nodes utilize probabilistically
quantized information to communicate with each other. The
algorithm we develop is a dynamical system that generates
sequences achieving a consensus, which is one of the quan-
tization values. In addition, we show that the expected value
of the consensus is equal to the average of the original sen-
sor data. We report the results of simulations conducted to
evaluate the behavior and the effectiveness of the proposed
algorithm in various scenarios.

Index Terms— Distributed algorithms, average consen-
sus, sensor networks

1. INTRODUCTION

Many applications envisioned for sensor networks consist of
low–power and low–cost nodes. Foreseen applications such
as data fusion and distributed coordination require distributed
function computation/parameter estimation under bandwidth
and power constraints. Other applications such as camera net-
works and distributed tracking demands communication of
large volumes of data. When the power and bandwidth con-
straints, or large volume data sets are considered, communi-
cation with unquantized values is impractical.

Distributed average consensus, in ad hoc networks, is an
important issue in distributed agreement and synchronization
problems [1] and is also a central topic for load balancing
(with divisible tasks) in parallel computers [2]. More recently,
it has also found applications in distributed coordinationof
mobile autonomous agents [3] and distributed data fusion in
sensor networks [4]. In this paper, we focus on a particu-
lar class of iterative algorithms for average consensus, widely
used in the applications cited above. Each node updates its
state by adding a weighted sum of the values at local nodes,
i.e.,

xi(t + 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t) (1)

for i = 1, 2, . . . , N , andt ≥ 0 [4, 5]. HereWij is a weight

associated with the edge{i, j} andN is the total number of
nodes. Furthermore,Ni denotes the set of nodes that have
a direct (bidirectional) communication link with nodei. The
state at each node in the iteration consists of a single real num-
ber, which overwrites the previous value. The algorithm is
time–independent,i.e., does not depend ont and is meant to
compute the average asymptotically.

One major shortcoming of the majority of the algorithms
proposed for distributed average consensus is the relianceon
the exchange of analog data [4–6], a clear violation of the
common assumption of bandwidth and communication power
constraints. There has been some limited investigation of con-
sensus under quantized communication. Recently, Yildiz and
Scaglione, in [7], explored the impact of quantization noise
through modification of the consensus algorithm proposed by
Xaio and Boyd [6]. The algorithm in [6] addresses noisy
communication links, modeling the case where each nodes
receives noise–corrupted versions of the values at its neigh-
bors, the noise being additive and zero–mean. Yildiz and
Scaglione note that the noise component can be considered as
the quantization noise and they develop a computationally in-
tensive algorithm for this case [7]. They have shown utilizing
simulation studies for smallN that, if the increasing correla-
tion among the node states is taken into account, the variance
of the quantization noise diminishes and nodes converge to a
consensus.

Kashyapet. alexamine quantization effects from a differ-
ent point of view, restricting their attention to the transmission
of integer values, and introducing the definition of “quantized
consensus”, which is achieved by a vectorx if it belongs to
the setS defined as:

S ,

{

x : {xi}N
i=1 ∈ {L, L + 1},

N
∑

i=1

xi = T

}

(2)

with T andL being the sum of initial node values and an in-
teger, respectively [8]. They show that their algorithm, under
some constraints and with restricted communications schemes,
will converge to a quantized consensus. However, the quan-
tized consensus is clearly not a strict consensus,i.e., all nodes
do not have the same value. Furthermore, there is no stop-
ping criterion to determine if the algorithm has achieved a
quantized consensus. In addition, since the algorithm requires



the use of a single link per iteration, the convergence is very
slow [8]. Of note is that both of the consensus algorithms
discussed above utilize standard deterministic uniform quan-
tization to quantize the data.

In this paper, we propose a simple distributed and itera-
tive scheme to compute the average at each sensor node uti-
lizing only quantized information communication. We adopt
the probabilistic quantization (PQ) scheme to quantize thein-
formation before transmitting to the neighboring sensors [9].
PQ has been shown to be very effective in decentralized es-
timation since the quantized state is equal to the analog state
in expectation [9]. This makes PQ suitable for average–based
algorithms. In the scheme considered here, each node ex-
changes quantized state information with its neighbors in a
simple and bidirectional manner. This scheme does not in-
volve routing messages in the network; instead, it diffuses
information across the network by updating each node’s data
with a weighted average of its neighbors’ quantized values.It
is shown here that the distributed average computation utiliz-
ing probabilistic consensus indeed achieves a consensus and
the consensus is one of the quantization levels. Furthermore,
the expected value of the achieved consensus is equal to the
desired value,i.e., the average of the analog measurements.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the distributed average consensus problem
and the PQ scheme. The proposed algorithm, along with its
properties, is detailed in Section 3. Numerical examples are
provided in Section 4. Finally, we conclude with Section 5.

2. PROBLEM FORMULATION

We consider a set of nodes of a network, each with an initial
real valued scalaryi ∈ [−U, U ], wherei = 1, 2, . . . , N . We
assume strongly connected network topologies, according to
which, each node can establish bidirectional noise–free com-
munication with a subset of the nodes in the network. TheN–
node topology is represented by theN×N matrixΦ = [Φij ],
where fori 6= j, Φij = 1 if nodesi andj directly communi-
cate, andΦij = 0, otherwise. We assume that transmissions
are always successful and that the topology is fixed. More-
over, we defineNi , {j ∈ {1, 2, . . . , N} : Φij 6= 0}.

Let 1 denote the vector of ones. Our goal is to develop
a distributed iterative algorithm that computes at every node
in the network, the valuey , (N)−11Ty utilizing quantized
state information communication. We hence aim to design a
system such that the states at all nodes converge to a consen-
sus and the statistical expectation of the consensus achieved,
in the limit, is the average of the initial states.

Remark 1. When the observations followyi = θ + ni where
i = 1, 2, . . . , N and θ is the scalar to be estimated, and
{ni}N

i=1 are independent and identically distributed (i.i.d.)
zero–mean Gaussian with varianceσ2, the maximum likeli-
hood estimate is given by the average,θ̂ = (N)−11Ty with
the associated mean square errorσ2/N .

In the following, we present a brief review of the quanti-
zation scheme adopted in this paper. Suppose that the scalar
valuexi ∈ R is bounded to a finite interval[−U, U ]. Further-
more, suppose that we wish to obtain a quantized message
qi with length l bits, wherel is application dependent. We
therefore haveL = 2l quantization points given by the set
τ = {τ1, τ2, . . . , τL}. The points are uniformly spaced such
that ∆ = τj+1 − τj for j ∈ {1, 2, . . . , L − 1}. It follows
that∆ = 2U/(2l − 1). Now supposexi ∈ [τj , τj+1) and let
qi , Q(xi) whereQ(·) denotes the PQ operation. Thenxi is
quantized in a probabilistic manner:

Pr{qi = τj+1} = r, and Pr{qi = τj} = 1 − r (3)

wherer = (xi − τj)/∆. The following lemma, adopted
from [9], discusses two important properties of the PQ.

Lemma 1. [9] Let qi be anl–bit quantization ofxi ∈ [−U, U ].
The messageqi is an unbiased representation ofxi, i.e.,

E{qi} = xi, and var(qi) ≤
U2

(2l − 1)2
(4)

wherevar(·) denotes the variance of its argument.

3. DISTRIBUTED CONSENSUS USING PQ

In the following, we propose a quantized distributed average
consensus algorithm and incorporate PQ into the consensus
framework for networks. Furthermore, we analyze the effect
of PQ on the consensus algorithm.

At t = 0 (after all sensors have taken the measurement),
each node initializes its state asxi(0) = yi, i.e., x(0) = y

wherex(0) denotes the initial states at the nodes. It then
quantizes its state to generateqi(0) = Q(xi(0)). At each
following step, each node updates its state with a linear com-
bination of its own quantized state and the quantized statesat
its neighbors

xi(t + 1) = Wiiqi(t) +
∑

j∈Ni

Wijqj(t) (5)

for i = 1, 2, . . . , N , whereqj(t) = Q(xj(t)), andt denotes
the time step. Also,Wij is the weight onxj(t) at nodei.
Moreover, settingWij = 0 wheneverΦij = 0, the distributed
iterative process reduces to the following recursion

x(t + 1) = Wq(t) (6)

whereq(t) denotes the quantized state vector. In the sequel,
we assume thatW, the weight matrix, satisfies the conditions
required for asymptotic average consensus without quantiza-
tion [6]:

W1 = 1, 1TW = 1T, λ1 = 1, and|λi| < 1 (7)

where{λi}N
i=1 denote the eigenvalues ofW in non–increasing

order. Weight matrices satisfying the above conditions are



easy to find if the underlying graph is connected and non–
bipartite,e.g., Maximum–degree and Metropolis weights [6].

The following theorem considers the convergence of the
probabilistically quantized distributed average computation.

Theorem 1. The distributed iterative consensus utilizing PQ
achieves a consensus, almost surely, given by

lim
t→∞

x(t) = c1 (8)

wherec ∈ τ .

Proof. Without loss of generality, we focus on integer quan-
tization in the range[1, m]. DefineM as the discrete Markov
chain with initial stateq(0) and transition matrix defined by
the combination of the deterministic transformationx(t +
1) = Wq(t) and the probabilistic quantizerq(t + 1) ∼
Pr{q(t + 1)|x(t + 1)}.

Let S0 be the set of quantization points that can be repre-
sented in the formq1 for some integerq and denote bySk the
set of quantization points with minimum Manhattan distance
k from S0. Moreover, letC(q) be the open hypercube cen-
tered atq and defined as(q1 − 1, q1 + 1)× (q2 − 1, q2 + 1)×
... × (qN − 1, qN + 1). Hereqk denotes thek–th coefficient
of q. Note that any point inC(q) has a non-zero probability
of being quantized toq. Let

Ak =
⋃

q∈Sk

C(q). (9)

The consensus operator has the important property that
|Wq−µWq| < |q−µq| for |q−µq| > 0, whereµq denotes
the projection ofq onto the1–vector. Moreover,cW1 =
c1. The latter property implies thatq ∈ S0 is an absorbing
state, sinceQ(x(t + 1)) = Q(Wq(t)) = Q(q(t)) = q(t).
The former property implies that there are no other absorbing
states, sincex(t+1) cannot equalq(t) (it must be closer to the
1–vector). This implies, from the properties of the quantizer
Q, that there is a non-zero probability thatq(t + 1) 6= q(t).

In order to prove thatM is an absorbing Markov chain, it
remains to show that it is possible to reach an absorbing state
from any other state. We prove this by induction, demonstrat-
ing first that

Pr{q(t + 1) ∈ S0|q(t) ∈ S1} > 0 (10)

and subsequently that

Pr{q(t + 1) ∈
i=k−1
⋃

i=0

Si|q(t) ∈ Sk} > 0. (11)

Define the open setVk as

Vk =
{

x : |x − µx| < k
√

N − 1/
√

N
}

. (12)

To commence, observe thatV1 ⊂ A0. The distance|q −
µq| =

√
N − 1/

√
N for q ∈ S1. Hence, ifq(t) ∈ S1,

x(t + 1) = Wq(t) ∈ V1 ∈ A0 andPr{q(t + 1) ∈ S0} > 0.
Similarly, the set

Vk ⊂
i=k−1
⋃

i=0

Ai. (13)

The maximum distance|q − µq| for any pointq ∈ Sk is
k
√

N − 1/
√

N . This implies that

x(t + 1) = Wq(t) ∈ Vk ∈
i=k−1
⋃

i=0

Ai. (14)

There is thus somei < k and someq ∈ Si such that
Pr{Q(x(t + 1)) = q} > 0. This argument implies that
for any starting stateq(0) such thatq(0) ∈ Sk for somek,
there exists a sequence of transitions with non–zero probabil-
ity whose application results in absorption.

The following theorem discusses the expectation of the
limiting random vector,i.e., the expected value ofx(t) as t
tends to infinity.

Theorem 2. The expectation of the limiting random vector is
given by

E

{

lim
t→∞

x(t)
}

= (N)−111Tx(0). (15)

Proof. Note that||x(t)|| ≤
√

NU , for t ≥ 0, and,{xi(t) :
i = 1, 2, . . . , N} are bounded for allt. Moreover, from The-
orem 1, we know that the random vector sequencex(t) con-
verges in the limit,i.e., limt→∞ x(t) = c1 for somec ∈ τ .
Thus, by dominated convergence theorem [10], we have

E

{

lim
t→∞

x(t)
}

= lim
t→∞

E{x(t)}. (16)

In the following, we derivelimt→∞ E{x(t)} and utilize the
above relationship to arrive at the desired result.

Note that the quantization noise,vi, can be viewed as a
Bernoulli random variable taking values atri∆ and(ri−1)∆
with probabilities1 − ri, andri, respectively. In terms of
quantization noisev(t), q(t) is written as

q(t) = x(t) + v(t). (17)

The distributed iterative process reduces to the followingre-
cursion

x(t + 1) = Wx(t) + Wv(t). (18)

Repeatedly utilizing the state recursion gives

x(t) = Wtx(0) +

t−1
∑

j=0

Wt−jv(j) (19)

whereWt = W · W · . . .W, t times. Taking the statistical
expectation ofx(t) ast → ∞ and noting that the only random



variables arev(j) for j = 0, 1, . . . , t − 1, yields

lim
t→∞

E{x(t)} = lim
t→∞

Wtx(0) +

t−1
∑

j=0

Wt−j
E{v(j)} (20)

= lim
t→∞

Wtx(0) (21)

sinceE{v(j)} = 0 for j = 0, 1, . . . , t − 1; a corollary of
Lemma 1. Furthermore, noting that

lim
t→∞

Wt = (N)−111T (22)

gives
lim

t→∞
E{x(t)} = (N)−111Tx(0). (23)

Recalling (16) gives the desired result.

This result indicates that the statistical mean of the limit-
ing random vector is indeed equal to the initial state average.
Furthermore, this theorem, combined with the previous one,
indicates that the consensus value,c, is a discrete random vari-
able with support defined byτ whose expectation is equal to
the average of the initial states.

4. NUMERICAL EXAMPLES

This section details numerical examples evaluating the per-
formance of the distributed average computation using prob-
abilistic quantization. Throughout the simulations we utilize
the Metropolis weight matrix defined for a graph [6]. The
Metropolis weights on a graph are defined as follows:

Wij =







(1 + max{Ki,Kj})−1, i 6= j, and Φij = 1
1 − ∑

k∈Ni
Wik, i = j

0, otherwise
(24)

whereKi = |Ni| with | · | denoting cardinality of its argu-
ment. This method of choosing weights is adapted from the
Metropolis algorithm in the literature of Markov chain Monte
Carlo. The Metropolis weights are very simple to compute
and are well suited for distributed implementation. Further-
more, the nodes do not need any global knowledge of the
communication graph or even the total number of nodes.

We simulate a network withN = 50 nodes randomly
dispersed on the unit square[0, 1] × [0, 1], connecting two
nodes by an edge if the distance between them is less than
the connectivity radius (a link exists between any two nodes
that are at a range less thand, whered is the connectivity ra-
dius [5, 6]) whered =

√

log(N)/N . The initial statesx(0)
are drawn i.i.d. from a Gaussian distribution with mean 0.85
and unit variance. The initial states are then regularized such
that x(0) = 0.85. The quantization resolution is taken as
∆ = 0.1. Figure 1 depicts the trajectories taken by the dis-
tributed consensus computation using PQ at each of the 50
nodes in the network overlayed on one plot. The figure indi-
cates that the algorithm does indeed achieve consensus as all
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Fig. 1. Individual node trajectories using (top:) uniform quan-
tization and (bottom:) probabilistic quantization.
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Fig. 2. The variance of the consensus with respect to (a) the
quantization resolution and (b) the initial state average.

trajectories are converging to the same point. In this case,the
consensus islimt→∞ x(t) = (0.9)1, which is in agreement
with the theoretical results indicating that the consensusis at
one of the quantization levels. Also note that distributed aver-
age computation utilizing deterministic uniform quantization
(to closest quantization level) also converges, but, thereis no
consensus due to the bias induced by uniform quantization.

We next investigate the effect of the quantization resolu-
tion and the location of the initial state average on the consen-
sus variance. Figure 2 plots the variance of the consensus for
varying∆ ∈ [0.05, 0.25] whenx(0) = 0.85 and for varying
x(0) ∈ [0.5, 1] when∆ = 0.25. Note that each data point in
the plots is an ensemble average of 100 trials. Also plotted is
the curve∆2/4. The variance, as expected, tends to increase
as∆ increases and exhibits a harmonic behavior as the loca-
tion of the average changes. This is due to the effect induced
by the distance of the average to the quantization levels. The
plots also suggest that∆2/4 is an upper bound for consensus
variance, which is a topic of current exploration.

Figure 3 shows the behavior of the average mean square
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Fig. 3. The average MSE of the consensus utilizing PQ for
varying quantization resolution.
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Fig. 4. The consensus value histograms for varying initial
state average,x(0) ∈ {0.80, 0.825, . . . , 1.00} and∆ = 0.2.

error (MSE) per iteration defined as:MSE(t) = (N)−1||x(t)−
x(0)||2, for ∆ ∈ {0.10, 0.15, 0.20, 0.25}. In other words,
MSE(t) is the average mean squared distance of the states
at iterationt from the initial mean. Each curve is an en-
semble average of 1000 experiments. The smaller quantiza-
tion fidelity yields a smaller steady state MSE, with a slightly
larger convergence time. The quasi–convex shape of the MSE
curves are due to the fact that the algorithm, after all the state
values converge into a quantization range[τi, τi+1) for some
i ∈ {1, 2, . . . , L − 1}, drifts to a quantization value.

Considered next is the consensus value of the probabilisti-
cally quantized distributed average consensus. Figure 4 plots
the histograms of the consensus value for varying initial state
average,i.e., x(0) ∈ {0.80, 0.825, . . . , 1.00} for ∆ = 0.2.
Note that the consensus values shifts as the initial average
value shifts from 0.80 to 1.00 and its support is alwaysτ

corroborating the theoretical results. Moreover, the shift of
consensus values is due to the fact that the consensus, in ex-
pectation, is equal to the average of initial states.

5. CONCLUDING REMARKS

We have proposed a framework for distributed computation of
averages of the node data over networks with bandwidth/power
constraints or large volumes of data. The proposed method
unites the distributed average consensus and the probabilistic
quantization algorithms. Theoretical and simulation results
demonstrate that the proposed algorithm indeed achieves a
consensus. Furthermore, the consensus is a discrete random
variable whose support is the quantization values and expec-
tation is equal to the average of the initial states. Provided
numerical examples shows the effectiveness of the proposed
algorithm under varying conditions.
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