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Outline

• Motivation and Model Overview

• Theoretical Result

• Construction of Our Theory 
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Part 2



Matrix-Variate Logistic Regression: Probability Model
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Matrix Logistic Regression:

Due to the inner product, both models are mathematically equivalent.  

Vector Logistic Regression:



Why Matrix-Variate Logistic Regression?
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Electroencephalography 
(EEG) data

Fiber-bundle Imaging Spatial-temporal data

• In many practical applications covariates naturally take the form of two-
dimensional arrays, such as:

• The coefficients are also matrices, and contain rich information in their spatial structure.  



Why Matrix-Variate Logistic Regression?

• For estimating     , classical machine learning techniques vectorize the data and estimate a 
coefficient vector.
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Destruction of underlying spatial 
structure. 

High sample complexity.
(Search domain of our solution:             ) By imposing some sort of structure on the coefficient matrix, can we 

consider a more structured class of coefficients that:

• Allows for coefficient estimation with lower sample complexity?
• Preserves the structural information in the coefficient matrix?

Low-Rank Matrix-Variate Logistic Regression



Why Low-Rank Matrix-Variate Logistic Regression?

• Low-rank structures may arise from the presence of redundant variables.

• The model's intrinsic degrees of freedom are smaller than its extrinsic dimensionality.
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We can represent the data in a lower 
dimensional space

We can reduce the sample complexity of 
estimating the parameters

Prior Work:
• Vector based logistic regression

• High-dimensional logistic regression [e.g F. Abramovich and V. Grinshtein 2018]
• Regularized matrix-variate logistic regression

• Regularization for rank-optimized or sparse coefficient estimation [e.g J. Zhang and J. Jiang 
2018, J. V. Shi et al 2014]

• Regularization for inference on image data [e.g B. An and B. Zhang 2020]



Minimax Lower Bounds Provide Error Thresholds

Prior Work

• Minimax lower bounds for graph-based logistic regression [e.g Q. Berthet and N. Baldin 
2020].
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Why Minimax Lower Bounds?

• They provide insights to:
• The fundamental error thresholds of the estimation problem and the performance of corresponding 

algorithms. 
• Indicate the parameters on which the minimax risk depends.



Outline of This Work 
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• Considers matrix-variate logistic regression in the high-dimensional and low-rank 
setting.

• Can we take advantage of the matrix structure of the coefficient matrix to gain 
advantages compared to traditional vectorized training-based coefficient 
estimation?
• Derive a minimax lower bound that is proportional to the rank and dimensions of the coefficient 

matrix.
• Reduce the sample complexity from the vector setting.
• Show that the methods used are easily extendible to the tensor case. 



Model and Problem Formulation

• Consider the matrix LR problem:
• Goal: Find estimate       of      using training data                   .

• Consider the case where B is a rank-r matrix. Specifically, the rank-r singular value decomposition 
of B is
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Matrix of left/right singular vectors 
(with orthonormal columns)

Matrix of singular values 



Benefit of Low-Rank Models (Toy Example) 

• Number of parameters to learn in the case of 
classical LR:

• Number of parameters to learn in the case of 
low-rank model
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Model and Problem Formulation, Continued

Consider the parameter space,      , of all rank-   matrices in                 , and a subset 

                  of rank-    matrices with finite energy. More formally.  

The minimax risk is thus defined as the worst-case mean squared error (MSE) for the best 
estimator, i.e., 
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Main Results of Prior Works

Vector-based Logistic Regression: 

Matrix Logistic Regression:  ??
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Main Result

13

Theorem 1 [Taki et al. 2021]
Consider the rank-r matrix LR problem with       i.i.d observations,                   where the true coefficient matrix                . 

Then, for covariate                                                the minimax risk is lower bounded by

where



Main Result and Discussion 
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• Compared to the vector case, result shows a decrease in the lower bound. 

Minimax risk for vector based LR:

Minimax risk for rank-r matrix LR:   

• Lower bound on the minimax risk is proportional to the intrinsic degrees of freedom 
in the coefficient matrix LR.



Action items: 
• Construct  
• Find upper and lower bounds on the conditional mutual 

information       

The Exciting Part! Proof of Main Results

Proof of Theorem 1 uses an argument based on Fano’s inequality, more specifically:
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Suppose there exists an 
estimator,    , with worst-case 

MSE that matches      . 

This estimator can be used to 
solve a multiple hypothesis 

testing problem. The hypothesis 
test is an exponentially large 

family of distinct matrix 
coefficients:

Minimax risk can be lower 
bounded by the probability of 
error in the hypothesis test. 

Our goal: Further lower bound the probability of error. 



The Exciting Part! Proof of Main Results

1. Constructing 
a) We must construct      such that a minimum distance condition holds, namely:

b) Since                          , we must construct three separate sets and derive conditions under which they exists 
simultaneously 
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 dimensional 
hypercube dimensional 

hypercube
dimensional 
hypercube

Hypercube method: Construct a set of binary vectors/matrices with a minimum distance between any two distinct 
elements 

• Square diagonal matrix • Orthonormal Columns
• Bounded energy

• Orthonormal Columns
• Bounded energy
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Lemma 1: “Each hypercube exists with probability”

Lemma 1 

 dimensional 
hypercube

The Exciting Part! Proof of Main Results
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 dimensional 
hypercube

dimensional 
hypercube

dimensional 
hypercube

The Exciting Part! Proof of Main Results
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Lemma 2

Our packing: 

The Exciting Part! Proof of Main Results
Lemma 2: “For all sets to exists simultaneously, we can construct set       with L elements, where the distance between any 
two elements is bounded”



1. Bounding  
a) Lower bound using Fano’s inequality 
– We require the existence of an estimator producing estimate       and achieving minimax lower bound 
– Consider the minimum distance decoder:
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: detect Bl and

:detection error might occur 

Fano’s inequality states that: 

The Exciting Part! Proof of Main Results



1. Bounding  
b) Upper bound using
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Lemmas 3 and 4 provide upper and lower bounds: 

The Exciting Part! Proof of Main Results



Some Closing Remarks

The result is interesting because:

• The analysis is non-trivial because the model uses a logistic function. Moreover, the result explicitly leverages the low-
rank structure thus the hypothesis set is constructed from three factor sets. We derive conditions under which all sets 
can exists, and can be generalized to the tensor case.   

• Two hypotheses may be far apart but produce the same model (or same observation). Our result gives insight into the 
parameters in which an achievable minimax risk might depend.
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Current Investigations and Future Work

Study the benefits of imposing similar low-rank structures in the multi-dimensional 
LR setting:
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Minimax risk lower bounds on the 
coefficient estimation in tensor-variate 
logistic regression.

Develop algorithms that meet the 
minimax lower bounds.

Test the performance of these 
algorithms on practical data. 



Current Investigations and Future Work

Study the benefits of imposing similar low-rank structures in the multi-dimensional 
LR setting:
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Minimax risk lower bounds on the 
coefficient estimation in tensor-variate 
logistic regression.

• CANDECOMP/PARAFAC (CP).
• Low-rank Tucker.



Current Investigations and Future Work

Study the benefits of imposing similar low-rank structures in the multi-dimensional 
LR setting:
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Develop algorithms that meet the 
minimax lower bounds.



Current Investigations and Future Work

Study the benefits of imposing similar low-rank structures in the multi-dimensional 
LR setting:
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Test the performance of these 
algorithms on practical data. 
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